## From Nitrobenzenes to Substituted Tetrahydroquinolines in a Single Step by a Domino Reduction / Imine Formation / Aza-Diels–Alder Reaction

Hans-Georg Imrich,<sup>†</sup> Jürgen Conrad,<sup>†</sup> Denis Bubrin<sup>‡</sup> and Uwe Beifuss<sup>\*,†</sup>

<sup>†</sup>Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany

<sup>‡</sup>Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569

Stuttgart, Germany

ubeifuss@uni-hohenheim.de

## **Supporting Information**

## **Table of contents**

| Figures 1-21  | NMR spectra of compounds 5a-r, and 8                                      | S2-S22  |
|---------------|---------------------------------------------------------------------------|---------|
| Figures 22-24 | X-ray crystal structures of compounds <b>5b</b> , <b>5d</b> and <b>5h</b> | S23-S25 |



Figure 1. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5a in CDCl<sub>3</sub>.



(3aSR,4SR,9bRS)-4-Phenyl-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*exo*-5a)

Figure 2. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *exo*-5a in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-6-Bromo-4-phenyl-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-**5b**)

Figure 3. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5b in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-7-Bromo-4-phenyl-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-**5**c)

Figure 4. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5c in CDCl<sub>3</sub>.





Figure 5. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5d in CDCl<sub>3</sub>.



(3a*SR*,4*SR*,9b*RS*)-8-Bromo-4-phenyl-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*exo*-**5d**)

Figure 6. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *exo*-5d in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-4-Phenyl-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline-8-carbonitrile (*endo*-5e)

Figure 7. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5e in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-8-Methoxy-4-phenyl-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-**5f**)

Figure 8. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5f in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-8-Methyl-4-phenyl-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-**5**g)

Figure 9. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5g in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-4-(4-Fluorophenyl)-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-**5h**)

Figure 10. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5h in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-4-(4-Chlorophenyl)-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-**5**i)

Figure 11. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5i in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-4-(4-Bromophenyl)-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-**5j**)

Figure 12. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5j in CDCl<sub>3</sub>.



4-((3a*SR*,4*RS*,9b*RS*)-3a,4,5,9b-Tetrahydro-3*H*-cyclopenta[*c*]quinolin-4-yl)benzonitrile (*endo*-**5**k)

Figure 13. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5k in CDCl<sub>3</sub>.





Figure 14. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5l in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-4-(Methoxyphenyl)-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-**5m**)

Figure 15. <sup>1</sup>H (300 MHz) and <sup>13</sup>C (75 MHz) NMR spectra of *endo*-5m in CDCl<sub>3</sub>.



(3a*SR*,4*RS*,9b*RS*)-4-p-Tolyl-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-**5n**)

Figure 16. <sup>1</sup>H (300 MHz) and <sup>13</sup>C (75 MHz) NMR spectra of *endo*-5n in CDCl<sub>3</sub>.





Figure 17. <sup>1</sup>H (300 MHz) and <sup>13</sup>C (75 MHz) NMR spectra of *endo*-50 in CDCl<sub>3</sub>.





Figure 18. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5p in CDCl<sub>3</sub>.



(3aSR,4RS,9bRS)-4-Cyclohexyl-3a,4,5,9b-tetrahydro-3*H*-cyclopenta[*c*]quinoline (*endo*-5q)

Figure 19. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5q in CDCl<sub>3</sub>.





Figure 20. <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectra of *endo*-5r in CDCl<sub>3</sub>.



Figure 21.  $^{1}$ H (500 MHz) and  $^{13}$ C (125 MHz) NMR spectra of 8 in CDCl<sub>3</sub>.





**Figure 22**. X-ray crystal structure of (3a*SR*,4*RS*,9b*RS*)-6-bromo-4-phenyl-3a,4,5,9b-tetrahydro-*3H*-cyclopenta[*c*]quinoline (**5b**)



**Figure 23**. X-ray crystal structure of (3a*SR*,4*RS*,9b*RS*)-8-bromo-4-phenyl-3a,4,5,9b-tetrahydro-*3H*-cyclopenta[*c*]quinoline (**5d**)



9 H, Jaa 3 9 9 H, Jaa 3 9 9 9 4 6 5 a N 5 1 6 H 5 1 6 5 4 F

**Figure 24**. X-ray crystal structure of (3*aSR*,4*RS*,9*bRS*)-4-(4-fluorophenyl)-3*a*,4,5,9*b*-tetrahydro-*3H*-cyclopenta[*c*]quinoline (**5h**)