Aza- Annulation of Enynyl Azides: A New Approach to substituted Pyridines
Chada Raji Reddy, ${ }^{,}{ }^{\dagger}, \dagger$ Sujatarani A. Panda ${ }^{\dagger, \dagger}$ and Motatipally Damoder Reddy ${ }^{\dagger}$
\dagger Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, India
\ddagger Academy of Scientific and Innovative Research, New Delhi, India
E-mail: rajireddy@iict.res.in

Table of Contents

1. General information $\ldots . ~ S 2$
2. Experimental procedures and characterization of compounds................. S3-S33

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectras for all new compounds S34-S116

General. Reactions were monitored by thin-layer chromatography carried out on silica plates using UV-light and anisaldehyde or potassium permanganate or β-naphthol for visualization. Column chromatography was performed on silica gel ($60-120$ mesh) using n hexane and ethyl acetate as eluent. Evaporation of solvents was conducted under reduced pressure at temperatures less than $45{ }^{\circ} \mathrm{C}$. FTIR spectra were recorded on KBr thin film. ${ }^{1} \mathrm{H}$ NMR (300 MHz and 500 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz and 125 MHz) spectra were recorded in CDCl_{3} solvent. Chemical shifts δ and coupling constants J are given in ppm (parts per million) and Hz (hertz) respectively. Chemical shifts are reported relative to residual solvent as an internal standard for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}: \delta 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$). Mass spectra were obtained on VG $70-70 \mathrm{H}$ or $\mathrm{LC} / \mathrm{MSD}$ trap SL spectrometer operating at 70 eV using direct inlet system.

Experimental section

Substituted azides $\mathbf{1 a - 1 n}$ have been prepared using the literature procedure, ${ }^{1}$ and known compounds data compared with the reported data. Characterization data for new compounds is given below.

General procedure for the preparation of MBH -azides (1a-1n): To a stirred solution of corresponding MBH-acetate (1 equiv.) in 10 mL of aqueous methanol ($\mathrm{MeOH} /$ water: 9/1) was added sodium azide (1.5 equiv.) at room temperature and stirred for given time. After completion of the reaction, the mixture was diluted with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc: hexanes) to afford the corresponding product.

(E)-Methyl 2-(azidomethyl)-5-(naphthalen-2-yl)pent-2-en-4-ynoate (1b):

Following the general procedure, methyl 3-acetoxy-2-methylene-5-(naphthalen-2-yl)pent-4-ynoate ($1 \mathrm{~g}, 3.24 \mathrm{mmol}$) was allowed to react with sodium azide ($0.32 \mathrm{~g}, 4.87 \mathrm{mmol}$) for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (4% EtOAc in petroleum ether) to afford the azide $\mathbf{1 b}\left(0.83 \mathrm{~g}, 88 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.5$ (petroleum ether: EtOAc $=9: 1$); M.P.: $53-55^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=14.2,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=7.2,1.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.62(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=8.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.99,135.67,133.18$, 133.11, 131.65, 130.43, 128.51, 127.43, 126.78, 125.76, 125.25, 124.72, 119.49, 102.59, 89.23, 52.56, 48.09; IR (KBr): $v_{\max }=2189,2077,2103,1710,1239,1101,803,775 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 314$ $(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NaN}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 314.0908$, found: 314.0908.

(\boldsymbol{E})-Methyl 2-(azidomethyl)-5-(3-(p-toyl)pent-2-en-4-ynoate (1d):

Following the general procedure, methyl 3-acetoxy-2-methylene-5-(p-tolyl)pent-4-ynoate ($1 \mathrm{~g}, 3.67 \mathrm{mmol}$) was allowed to react with sodium azide ($0.36 \mathrm{~g}, 5.51 \mathrm{mmol}$) for 5 h . After the work-up, the residue was purified by column chromatography on silica gel (4% EtOAc in petroleum ether) to afford the azide $\mathbf{1 d}\left(0.8 \mathrm{~g}, 85 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.6$ (petroleum ether: $\mathrm{EtOAc}=9: 1$); M.P.: 43 $-45{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.38$ ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.98,140.21,135.21,131.91,129.30,125.75,124.88,118.70,104.69,84.09,52.45,48.12$; IR (KBr): $v_{\max }=2950,2192,2100,1716,1109,1250,763 \mathrm{~cm}^{-1}$; MS (ESI): m/z $278(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{\mathrm{a}} \mathrm{N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 278.0900$, found: 278.0895.
(E)-Methyl 2-(azidomethyl)-5-(4-methoxyphenyl)pent-2-en-4-ynoate (1e):

Following the general procedure, methyl 3-acetoxy-5-(4-methoxyphenyl)-2-methylenepent-4-ynoate ($1 \mathrm{~g}, 3.47 \mathrm{mmol}$) was allowed to react with sodium azide $(0.39 \mathrm{~g}, 5.20 \mathrm{mmol})$ for 3 h . After the workup, the residue was purified by column chromatography on silica gel (5% EtOAc in petroleum ether) to afford the azide $\mathbf{1 e}\left(0.81 \mathrm{~g}, 86 \%\right.$ yield) as brown yellow solid. $\mathrm{R}_{f}=0.6$ (petroleum ether: EtOAc = 9:1). M.P: $52-54{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.04,160.76,134.57,133.71,125.06,114.20,113.78,104.93,83.88$, 55.32, 52.40, 48.11; IR (KBr): $v_{\max }=2948,2189,2102,1714,1595,1251,833 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 294(\mathrm{M}+\mathrm{Na})^{+} ; \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{\mathrm{a}} \mathrm{N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}$: 294.0849, found: 294.0859.
(E)-Methyl 2-(azidomethyl)-5-(4-cyanophenyl)pent-2-en-4-ynoate (1g):

Following the general procedure, methyl 3-acetoxy-5-(4-cyanophenyl)-2-methylenepent-4-ynoate ($1 \mathrm{~g}, 3.53 \mathrm{mmol}$) was allowed to react with sodium azide $(0.34 \mathrm{~g}, 5.30 \mathrm{mmol})$ for 2 h . After the workup, the residue was purified by column chromatography on silica gel ($4 \% \mathrm{EtOAc}$ in petroleum ether) to afford the azide $\mathbf{1 g}\left(0.76 \mathrm{~g}, 80 \%\right.$ yield) as brown yellow solid, $\mathrm{R}_{f}=0.6$ (petroleum ether: EtOAc $=4: 1)$. M.P: $75-7{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.46,137.56,132.31,132.13,126.41,123.21,118.02,112.68,101.09,87.80,52.63$, 48.09; IR (KBr): $v_{\max }=2924,2093,2125,1717,1614,1286,1253,842,553$. MS (ESI): $m / z 267(\mathrm{M}+\mathrm{H})^{+}$Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 63.15; H, 3.79; N, 21.04. Found: C, 62.99; H, 3.91; N, 21.07.

(E)-Methyl 2-(azidomethyl)-5-(4-nitrophenyl)pent-2-en-4-ynoate (1h):

Following the general procedure, methyl 3-acetoxy-2-methylene-5-(4-nitrophenyl)pent-4-ynoate ($1 \mathrm{~g}, 3.30 \mathrm{mmol}$) was allowed to react with sodium azide $(0.321 \mathrm{~g}, 4.95 \mathrm{mmol})$ for 3 h . After the work-up, the residue was purified by column chromatography on silica gel (4% EtOAc in petroleum ether) to afford the azide $\mathbf{1 h}\left(0.61 \mathrm{~g}, 71 \%\right.$ yield) as brown yellow solid. $\mathrm{R}_{f}=0.6$ (petroleum ether : EtOAc $=4: 1)$ M.P: $75-77{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.24(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H})$, 3.88 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.46,147.70,137.87,132.66,128.30,123.67,123.11,100.73,88.50,52.72$, 48.16; IR $(\mathrm{KBr}): v_{\max }=2093,2125,1718,1614,1528,1346,856 \mathrm{~cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z} 287(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 54.55; H , 3.52; N, 19.57. Found: C, 54.09; H, 3.38; N, 19.9.
(E)-Methyl 2-(azidomethyl)-5-(3-(trifluoromethyl)phenyl)pent-2-en-4-ynoate (1i):

Following the general procedure, methyl 3-acetoxy-2-methylene-5-(3-(trifluoromethyl)phenyl)pent-4-ynoate ($1 \mathrm{~g}, 3.06 \mathrm{mmol}$) was allowed to react with sodium azide $(0.3 \mathrm{~g}, 4.60 \mathrm{mmol})$ for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (3% EtOAc in petroleum ether) to afford the azide $\mathbf{1 i}\left(0.65 \mathrm{~g}, 69 \%\right.$ yield) as white solid. $\mathrm{R}_{f}=0.6$ (petroleum ether :

EtOAc = 9:1). M.P: $138-140{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $(\mathrm{s}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.68,136.96,134.98,131.48,131.05,129.15,128.63,126.15$, 123.73, 122.74, 101.78, 85.54, 52.64, 48.18; IR (KBr): $v_{\max }=2925,2854,2095,1718,1121,770,692 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 310(\mathrm{M}+$ H^{+}; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 54.37; H, 3.26; N, 13.59. Found: C, 54.95; H, 3.96; N, 11.7.
(E)-Methyl 5-(4-acetylphenyl)-2-(azidomethyl)pent-2-en-4-ynoate (1j):

Following the general procedure, methyl 3-acetoxy-5-(4-acetylphenyl)-2-methylenepent-4-ynoate ($1 \mathrm{~g}, 3.33 \mathrm{mmol}$) was allowed to react with sodium azide $(0.325 \mathrm{~g}, 5.00 \mathrm{mmol})$ for 4 h . After the workup, the residue was purified by column chromatography on silica gel (5% EtOAc in petroleum ether) to afford the azide $\mathbf{1 j}\left(0.78 \mathrm{~g}, 82 \%\right.$ yield) as white solid. $\mathrm{R}_{f}=0.5$ (petroleum ether: EtOAc $=9: 1$). M.P: 70-72 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, 3H), 2.62 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 197.07, 165.64, 137.17, 136.87, 132.04, 128.29, 126.32, 123.79, 102.47, 86.96, 52.60, 48.12, 26.64; IR (KBr): $v_{\max }=2953,2113,2082,1716,1708,1611,1257,1110,844,763 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 284(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 284.1029$, found: 284.1025.
(E)-tert-Butyl-3-(4-(azidomethyl)-5-methoxy-5-oxopent-3-en-1-yn-1-yl)-1H-indole-1-carboxylate (1k):

Following the general procedure, tert-butyl-3-(3-acetoxy-4-(methoxycarbonyl)pent-4-en-1-yn-1-yl)-1H-indole-1-carboxylate (1g, 2.51 $\mathrm{mmol})$ was allowed to react with sodium azide $(0.245 \mathrm{~g}, 3.77 \mathrm{mmol})$ for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (6% EtOAc in petroleum ether) to afford the azide $\mathbf{1 k}\left(0.70 \mathrm{~g}, 73 \%\right.$ yield) as brown solid. $\mathrm{R}_{f}=0.5$ (petroleum ether: $\mathrm{EtOAc}=9: 1$); M.P: $82-84{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.87$, $148.70,134.70,134.62,130.54,129.80,125.51,124.73,123.61,119.85,115.37,102.19,97.09,88.44,84.84,52.46,48.16,28.03$; IR $(\mathrm{KBr}): v_{\max }=2123,2091,1736,1708,1228,1155,760 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 381(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}: 381.1557$, found: 381.1559.

(E)-Methyl 2-(azidomethyl)oct-2-en-4-ynoate (11):

Following the general procedure, methyl 3-acetoxy-2-methyleneoct-4-ynoate ($1 \mathrm{~g}, 4.46 \mathrm{mmol}$) was allowed to react with sodium azide $(0.435 \mathrm{~g}, 6.69 \mathrm{mmol})$ for 1 h . After the work-up, the residue was purified by column chromatography on silica gel (3\% EtOAc in petroleum ether) to afford the azide $11\left(0.75 \mathrm{~g}, 80 \%\right.$ yield) as pale yellow liquid, $\mathrm{R}_{f}=0.4$ (petroleum ether : EtOAc $=9: 1$); ${ }^{1} \mathrm{H}$ NMR
(300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.05,135.05,125.68,106.94,76.35,52.28,47.85,21.89,21.43,13.41 ; \mathrm{IR}(\mathrm{KBr}): v_{\max }=2965,2937$, 2215, 2098, 1718, 1268, 1108, $763 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 230(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 208.1084$, found: 208.1080.

(\boldsymbol{E})-Methyl 2-(azidomethyl)undec-2-en-4-ynoate (1m):

Following the general procedure, methyl 3-acetoxy-2-methyleneundec-4-ynoate ($1 \mathrm{~g}, 3.75 \mathrm{mmol}$) was allowed to react with sodium azide ($0.366 \mathrm{~g}, 5.63 \mathrm{mmol}$) for 3 h . After work-up, the residue was purified by column chromatography on silica gel (3 \% EtOAc in petroleum ether) to afford the azide $\mathbf{1 m}\left(0.81 \mathrm{~g}, 87 \%\right.$ yield) as pale yellow liquid. $\mathrm{R}_{f}=0.4$ (petroleum ether : EtOAc $=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.89(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{td}, J=7.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.28(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 166.07,135.04,125.72,107.19,76.26,52.28,47.87,31.18,28.49,28.13,22.44,19.95$, 13.94; IR (KBr): $v_{\max }=2928,2857,2211,2099,1718,1267,1106,763 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 272(\mathrm{M}+\mathrm{Na})^{+} ; \mathrm{HRMS}(\mathrm{ESI}): m / z$ calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NaN}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 272.1369$, found: 272.1364.
(E)-3-(Azidomethyl)-6-phenylhex-3-en-5-yn-2-one (1n):

Following the general procedure, 4-methylene-5-oxo-1-phenylhex-1-yn-3-yl acetate ($1 \mathrm{~g}, 4.13 \mathrm{mmol}$) was allowed to react with sodium azide ($0.402 \mathrm{~g}, 6.19 \mathrm{mmol}$). After 2 h , the residue was purified by column chromatography on silica gel ($8 \% \mathrm{EtOAc}$ in petroleum ether) to afford the corresponding azide $1 \mathrm{n}\left(0.80 \mathrm{~g}, 86 \%\right.$ yield) as brown solid. $\mathrm{R}_{f}=0.5$ petroleum ether : EtOAc $\left.=4: 1\right)$; M.P: 47-49 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{q}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 2.43$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.89,143.80,132.02,129.91,128.63,124.51,121.77,106.04,84.64,47.03,25.56$; IR (KBr): $v_{\max }=2926,2095,1741,1656,1255,758,689 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 248(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS $(\mathrm{ESI}): m / z$ calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M})^{+}:$ 225.0896, found: 225.0893.

General procedure for the preparation of substituted Pyridines (2a-2n): To a stirred solution of alkynyl azide 1a-1n (1 equiv.) in 1,2-dichloroethane (3.0 mL) was added AgSbF_{6} (0.3 equiv.) and TFA (2 equiv.) at $80^{\circ} \mathrm{C}$. After completion of the reaction (Table 1), the mixture was quenched by saturated NaHCO_{3} and stirred for 30 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc: hexanes) to afford the corresponding product.

Methyl 6-phenylnicotinate (2a):

Following the general procedure, azide $\mathbf{1 a}(100 \mathrm{mg}, 0.41 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(42 \mathrm{mg}, 0.12 \mathrm{mmol})$ and TFA (61 $\mu \mathrm{L}, 0.82 \mathrm{mmol}$) for 10 h . After the workup, the residue was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in petroleum ether) to afford the pyridine 2a. $\left(73 \mathrm{mg}, 82 \%\right.$ yield) as yellow solid; $\mathrm{R}_{f}=0.6$ (petroleum ether : EtOAc $=7: 3$). Spectral data of $\mathbf{2 a}$ was compared with the reported data. ${ }^{2}$

Methyl 6-(napthalen-2-yl)nicotinate (2b):

Following the general procedure, azide $\mathbf{1 b}(100 \mathrm{mg}, 0.34 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(35 \mathrm{mg}, 0.10 \mathrm{mmol})$ and TFA $(51.0 \mu \mathrm{~L}, 0.68 \mathrm{mmol})$ for 22 h . After the workup, the residue was purified by column chromatography on silica gel ($12 \% \mathrm{EtOAc}$ in petroleum ether) to afford the pyridine $\mathbf{2 b}\left(71 \mathrm{mg}, 79 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.6$ (petroleum ether : EtOAc $=7: 3$); M.P: $82-84$ ${ }^{\mathrm{o}} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.45$ $(\mathrm{m}, 5 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.73,162.96,150.82,137.59,137.25,133.86,130.76,129.65,128.42,127.96$, 126.80, 126.03, 125.27, 125.21, 124.68, 124.25, 52.52; IR (KBr): $v_{\max }=2924,1722,1596,1314,1130,781 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 264$ $(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 264.1019$, found: 264.1022.

Methyl 6-(thiophen-2-yl)nicotinate (2c):

Following the general procedure, azide $\mathbf{1 c}(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(41 \mathrm{mg}, 0.12 \mathrm{mmol})$ and TFA (60.1 $\mu \mathrm{L}, 0.80 \mathrm{mmol})$ for 8 h . After the workup, the residue was purified by column chromatography on silica gel $(10 \% \mathrm{EtOAc}$ in petroleum ether) to afford the pyridine $\mathbf{2 c}\left(69 \mathrm{mg}, 78 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.5$ (petroleum ether: EtOAc $=4: 1$); M.P: $110-112{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.15(\mathrm{dd}, J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=5.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.66,155.89,151.05,143.93,137.77,129.48$, $128.38,126.35,123.80,118.02,52.33 ; \mathrm{IR}(\mathrm{KBr}): v_{\max }=2923,2852,1714,1297,1122,778,772 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 220(\mathrm{M}+\mathrm{H})^{+} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 220.0426$, found: 220.0426.

Methyl 6-(p-tolyl)nicotinate (2d):

Following the general procedure, compound $\mathbf{1 d}(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(40 \mathrm{mg}, 0.12 \mathrm{mmol})$ and TFA $(58.2 \mu \mathrm{~L}, 0.78 \mathrm{mmol})$ for 10 h . After the workup, the residue was purified by column chromatography on silica gel ($13 \% \mathrm{EtOAc}$ in
petroleum ether) to afford the pyridine $\mathbf{2 d}\left(72 \mathrm{mg}, 81 \%\right.$ yield) as pale yellow solid. $\mathrm{R}_{f}=0.5$ (petroleum ether : EtOAc $=4: 1$). Spectral data of $\mathbf{2 d}$ was compared with the reported data. ${ }^{3}$

Methyl 6-(4-methoxyphenyl)nicotinate (2e):

Following the general procedure, compound $\mathbf{1 e}(100 \mathrm{mg}, 0.36 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(37 \mathrm{mg}, 0.11 \mathrm{mmol})$ and TFA $(54.8 \mu \mathrm{~L}, 0.73 \mathrm{mmol})$ for 8 h . After the workup, the residue was purified by column chromatography on silica gel ($12 \% \mathrm{EtOAc}$ in petroleum ether) to afford the pyridine $\mathbf{2 e}\left(78 \mathrm{mg}, 86 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.5$ (petroleum ether : EtOAc $=4: 1$). Spectral data of $\mathbf{2 e}$ was compared with the reported data. ${ }^{2}$

Methyl 6-(4-chlorophenyl)nicotinate (2f):

Following the general procedure, azide $\mathbf{1 f}(100 \mathrm{mg}, 0.36 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(38 \mathrm{mg}, 0.11 \mathrm{mmol})$ and TFA (54.0 $\mu \mathrm{L}, 0.72 \mathrm{mmol}$) for 10 h . After the workup, the residue was purified by column chromatography on silica gel ($15 \% \mathrm{EtOAc}$ in petroleum ether) to afford the pyridine $\mathbf{2 f}\left(60 \mathrm{mg}, 66 \%\right.$ yield) as pale yellow solid. $\mathrm{R}_{f}=0.4$ (petroleum ether: $\mathrm{EtOAc}=4: 1$). Spectral data of $\mathbf{2 f}$ was compared with the reported data. ${ }^{4}$

Methyl 6-(4-cyanophenyl)nicotinate (2g):

Following the general procedure, azide $\mathbf{1 g}(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ was allowed to react with AgSbF_{6} ($39 \mathrm{mg}, 0.11 \mathrm{mmol}$) and TFA (55.8 $\mu \mathrm{L}, 0.75 \mathrm{mmol}$) for 14 h . After the workup, the residue was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in petroleum ether) to afford the corresponding pyridine $\mathbf{2 g}$ (54 mg , (60% yield) as brown solid. $\mathrm{R}_{f}=0.4$ (petroleum ether: EtOAc $=$ 4:1); M.P: $118-120{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.31(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.45,158.57,151.19,142.29$, 138.22, 132.66, 127.89, 125.37, 120.30, 118.52, 113.47, 52.52; IR (KBr): $v_{\max }=2923,2100,1720,1292,1118 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ $239(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 239.0815$, found: 239.0813.

Methyl 6-(4-nitrophenyl)nicotinate (2h):

Following the general procedure, (E)-methyl 2-(azidomethyl)-5-(4-nitrophenyl)pent-2-en-4-ynoate ($\mathbf{1 h}, 100 \mathrm{mg}, 0.35 \mathrm{mmol}$) was allowed to react with $\mathrm{AgSbF}_{6}(36 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{TFA}(51.8 \mu \mathrm{~L}, 0.69 \mathrm{mmol})$ for 18 h . After the workup, the residue was purified by column chromatography on silica gel (12% EtOAc in petroleum ether) to afford $\mathbf{2 h}$ ($56 \mathrm{mg}, 62 \%$ yield) as white solid. $\mathrm{R}_{f}=0.4$
(petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $225-227^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.48-8.30(\mathrm{~m}, 3 \mathrm{H}), 8.25(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.51,158.18,156.72,151.20,143.92,138.29$, $128.20,125.65,124.09,120.60,52.59 ;$ IR $(\mathrm{KBr}): v_{\max }=2924,1717,1340,1295,1124,749 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 259(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{HRMS}$ (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 259.0713$, found: 259.0711.

Methyl 6-(3-(trifluoromethyl)phenyl)nicotinate (2i):

Following the general procedure, azide $\mathbf{1 i}(100 \mathrm{mg}, 0.32 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(33 \mathrm{mg}, 0.09 \mathrm{mmol})$ and TFA (24 $\mu \mathrm{L}, 0.64 \mathrm{mmol})$ for 16 h . After the workup, the residue was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in petroleum ether) to afford the pyridine $\mathbf{2 i}\left(63 \mathrm{mg}, 69 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.6$ (petroleum ether: EtOAc $=4: 1$); M.P: $95-97{ }^{\circ} \mathrm{C}$; ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.46-8.32(\mathrm{~m}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.57(\mathrm{~m}$, 2H), $3.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.61,159.19,151.09,139.00,138.15,130.46,129.40,126.50,126.45,124.92$, 124.26, 124.21, 119.92, 52.46; IR (KBr): $v_{\max }=2925,1721,1339,1117,782 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 282(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 282.0736$, found: 282.0748 .

Methyl 6-(4-acetyphenyl)nicotinate (2j):

Following the general procedure, azide $\mathbf{1 j}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(36 \mathrm{mg}, 0.10 \mathrm{mmol})$ and TFA (52.4 $\mu \mathrm{L}, 0.70 \mathrm{mmol}$) for 18 h . After the work up, the residue was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in petroleum ether) to afford pyridine $\mathbf{2 j}$ ($68 \mathrm{mg}, 75 \%$ yield) as yellow solid. $\mathrm{R}_{f}=0.5$ (petroleum ether: EtOAc $=4: 1$); M.P:150-152 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.68,165.60,159.46,151.04,142.30,138.05,137.81$, $128.84,127.50,124.89,120.37,52.45,26.77 ;$ IR $(\mathrm{KBr}): v_{\max }=2922,1719,1679,1302,1267,779 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 256(\mathrm{M}+\mathrm{H})^{+} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 256.0968$, found: 256.0966 .

Methyl 6-(1H-indol-3-yl)nicotinate (2k):

Following the general procedure, compound $\mathbf{1 k}(90 \mathrm{mg}, 0.23 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(24 \mathrm{mg}, 0.07 \mathrm{mmol})$ and TFA ($35.1 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$) for 18 h . After the workup, the residue was purified by column chromatography on silica gel ($35 \% \mathrm{EtOAc}$ in petroleum ether) to afford the pyridine $\mathbf{2 k}\left(48 \mathrm{mg}, 80 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.4$ (petroleum ether: EtOAc $=1: 1$); M.P: 218-220;
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}$): $\delta 12.18(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 164.54,156.55,147.56,139.03$, $137.18,129.94,129.81,124.63,122.59,121.27,121.16,120.19,112.45,112.05,52.33$; $\mathrm{IR}(\mathrm{KBr}): v_{\max }=2922,2645,1726,1598$, 1437, 1290, $745 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 253(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$253.09683: found: 253.0971.

Methyl 6-propylnicotinate (21):

Following the general procedure, azide $\mathbf{1 1}(100 \mathrm{mg}, 0.48 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(48 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $\mathrm{TFA}(71.6$ $\mu \mathrm{L}, 0.96 \mathrm{mmol})$ for 20 h . After the workup, the residue was purified by column chromatography on silica gel ($13 \% \mathrm{EtOAc}$ in petroleum ether) to afford the pyridine $\mathbf{2 l}\left(73 \mathrm{mg}, 84 \%\right.$ yield) as pale yellow liquid. $\mathrm{R}_{f}=0.4$ (petroleum ether: EtOAc $=4: 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.13(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.80(\mathrm{~m}$, $2 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.86,165.88,150.38,137.22,123.37,122.31$, 52.12, 40.35, 22.76, 13.68; IR (KBr): $v_{\max }=2959,1727,1598,1287,1118,768 \mathrm{~cm}^{-1} ;$ MS (ESI): $m / z 180(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 180.1019$, found: 180.1018.

Methyl 6-hexylnicotinate (2m):

Following the general procedure, azide $\mathbf{1 m}(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(41 \mathrm{mg}, 0.12 \mathrm{mmol})$ and TFA $(59.6 \mu \mathrm{~L}, 0.80 \mathrm{mmol})$ for 26 h . After the workup, the residue was purified by column chromatography on silica gel ($15 \% \mathrm{EtOAc}$ in petroleum ether) to afford the corresponding pyridine $\mathbf{2 m}\left(76 \mathrm{mg}, 86 \%\right.$ yield) as pale yellow liquid. $\mathrm{R}_{f}=0.5$ (petroleum ether: EtOAc $=4: 1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, $2.90-2.79(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{dd}, J=14.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $167.24,166.00,150.51,137.28,123.39,122.30,52.22,38.59,31.62,29.61,29.00,22.52,14.03 ; \mathrm{IR}(\mathrm{KBr}): v_{\max }=2927,2856$, 1727,1598, 1288, 1118, $769 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 222(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 222.1488$, found: 222.1484.

1-(6-Phenylpyridin-3-yl)ethanone (2n):

Following the general procedure, azide $\mathbf{1 n}(160 \mathrm{mg}, 0.71 \mathrm{mmol})$ was allowed to react with $\mathrm{AgSbF}_{6}(73 \mathrm{mg}, 0.21 \mathrm{mmol})$ and TFA $(105.6 \mu \mathrm{~L}, 1.42 \mathrm{mmol})$ for 2 h . After the workup, the residue was purified by column chromatography on silica gel ($8 \% \mathrm{EtOAc}$ in
petroleum ether) to afford the pyridine $\mathbf{2 n}\left(128 \mathrm{mg}, 91 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.6$ (petroleum ether: $\mathrm{EtOAc}=4: 1$). Spectral data of $\mathbf{2 n}$ was compared with the literature data. ${ }^{5}$

General procedure for the preparation of substituted Iodo-pyridines ($\mathbf{3 a - 3 g}$ and $\mathbf{3 h}$): To a solution of azide (1 equiv.) $\mathbf{1 a} \mathbf{- 1 n}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and NaHCO_{3} (1 equiv.) was added at $0{ }^{\circ} \mathrm{C}$ followed by the addition of iodine (5 equiv.), the solution was stirred at room temperature for given time (Scheme 1). After completion of the reaction, the mixture was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and extracted with EtOAc, organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc: hexanes) to afford the corresponding product. In the case of 1a, $\mathbf{1 f}, \mathbf{1 g}, \mathbf{1 l}$ and $\mathbf{1 n}$ the formation of $\mathbf{4 a}$ to $\mathbf{4 e}$ were observed either as a minor or as an exclusive product.

Methyl 5-iodo-6-phenylnicotinate (3a):

Following the general procedure, azide $\mathbf{1 a}(100 \mathrm{mg}, 0.41 \mathrm{mmol})$ was allowed to react with $\mathrm{NaHCO}_{3}(34 \mathrm{mg}, 0.41 \mathrm{mmol})$ and iodine ($524 \mathrm{mg}, 2.07 \mathrm{mmol}$) for 22 h . After the workup, the residue was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in petroleum ether) to afford the iodo pyridine $\mathbf{3 a}$ ($85 \mathrm{mg}, 60 \%$ yield) along with acyl pyrrole $\mathbf{4 a}$ ($21 \mathrm{mg}, 21 \%$ yield).

3a: Brown solid; $\mathrm{R}_{f}=0.5$ (petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $134-136{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.85(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.01$,
$164.29,149.43,148.58,141.05,129.26,129.13,128.02,125.30,93.12,52.64$; $\mathrm{IR}(\mathrm{KBr}): v_{\max }=2925,2853,1730,1277,1122 \mathrm{~cm}^{-1}$;
MS (ESI): $m / z 340(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{INO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 339.9819$, found: 339.9829 .

Methyl 5-benzoyl-1H-pyrrole-3-carboxylate (4a):

Brown solid; $\mathrm{R}_{f}=0.3$ (petroleum ether: $\operatorname{EtOAc}=4: 1$); M.P: $120-122{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 185.46,164.49,137.42$, $132.57,131.47,129.37,129.11,128.57,119.93,118.28,51.52$; IR (KBr): $v_{\max }=3264,2925,2854,1728,1631,1289,1217 \mathrm{~cm}^{-1}$. MS (ESI): $m / z 230(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 230.0806$, found: 230.0811 .

Methyl 5-iodo-6-(naphthalen-2-yl)nicotinate (3b):

Following the general procedure, azide $\mathbf{1 b}(100 \mathrm{mg}, 0.34 \mathrm{mmol})$ was allowed to react with $\mathrm{NaHCO}_{3}(29 \mathrm{mg}, 0.34 \mathrm{mmol})$ and iodine ($433 \mathrm{mg}, 1.72 \mathrm{mmol}$) for 22 h . After the workup, the residue was purified by column chromatography on silica gel ($8 \% \mathrm{EtOAc}$ in petroleum ether) to afford the corresponding iodo pyridine $\mathbf{3 b}$ ($117 \mathrm{mg}, 88 \%$ yield) as yellow solid. $\mathrm{R}_{f}=0.6$ (petroleum ether: EtOAc
$=4: 1$); M.P: $172-174{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.29(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.65-$ $7.30(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.94,164.38,149.51,147.86,139.42,133.57,130.52,129.40,128.50$, $126.67,126.20,125.88,125.11,125.06,96.38,52.77$; $\mathrm{IR}(\mathrm{KBr}): v_{\max }=2924,1724,1271,1113,776 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / z 390(\mathrm{M}+\mathrm{H})^{+} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{INO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 389.9985$, found: 389.9999.

Methyl 5-iodo-6-(thiophen-2-yl)nicotinate (3c):

Following the general procedure, azide $\mathbf{1 c}(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ was allowed to react with $\mathrm{NaHCO}_{3}(34 \mathrm{mg}, 0.40 \mathrm{mmol})$ and iodine ($512 \mathrm{mg}, 2.02 \mathrm{mmol}$) for 23 h . After the workup, the residue was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in petroleum ether) to afford the iodo pyridine $\mathbf{3 c}\left(122 \mathrm{mg}, 87 \%\right.$ yield) as white solid. $\mathrm{R}_{f}=0.6$ (petroleum ether: EtOAc $=4: 1$); M.P: 102$104{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.09(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.08(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.17,156.71,150.15,149.00,143.75,130.56,130.35$, 127.60, 124.09, 88.79, 52.57; IR (KBr): $v_{\max }=2925,2854,1702,1432,1294,1123,724 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 346(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{HRMS}$ (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{INO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 345.9385$, found: 345.9393 .

Methyl 5-iodo-6-(p-tolyl)nicotinate (3d):

Following the general procedure, $\mathbf{1 d}(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ was allowed to react with $\mathrm{NaHCO}_{3}(32 \mathrm{mg}, 0.39 \mathrm{mmol})$ and iodine (495 $\mathrm{mg}, 1.96 \mathrm{mmol}$) for 16 h . After the workup, the residue was purified by column chromatography on silica gel (12% EtOAc in petroleum ether) to afford the iodo pyridine $\mathbf{3 d}\left(98 \mathrm{mg}, 71 \%\right.$ yield) as pale yellow solid. $\mathrm{R}_{f}=0.5$ (petroleum ether: EtOAc = 4:1); M.P: 70-72 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.17(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.05,164.44,149.49$, 148.67, 139.46, 138.24, 129.19, 128.77, 125.12, 93.12, 52.68, 21.48; IR (KBr): $v_{\max }=2923,1724,1426,1289,771 \mathrm{~cm}^{-1} ;$ MS (ESI): $\mathrm{m} / \mathrm{z} 354(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{HRMS}(\mathrm{ESI})$: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{INO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 353.9979$, found: 353.9985 .

Methyl 5-iodo-6-(4-methoxyphenyl)nicotinate (3e):

Following the general procedure, (E)-methyl 2-(azidomethyl)-5-(4-methoxyphenyl)pent-2-en-4-ynoate ($\mathbf{1 e}, 100 \mathrm{mg}, 0.37 \mathrm{mmol}$) was allowed to react with $\mathrm{NaHCO}_{3}(31 \mathrm{mg}, 0.37 \mathrm{mmol})$ and iodine $(467 \mathrm{mg}, 1.84 \mathrm{mmol})$ for 3 h . After the workup, the residue was purified by column chromatography on silica gel (10% EtOAc in petroleum ether) to afford the iodo pyridine $\mathbf{3 e}$ ($126 \mathrm{mg}, 92 \%$ yield) as white solid. $\mathrm{R}_{f}=0.6$ (petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $80-82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.82$
$(\mathrm{d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $164.46,164.41,160.44,149.43,148.76,133.38,130.88,128.76,124.83,114.27,113.36,92.86,55.35,52.61 ; \mathrm{IR}(\mathrm{KBr}): v_{\max }=2952$, 2837, 1715, 1294, 1255, $1173 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 370(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{INO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 369.9928$, found: 369.9934.

Methyl 6-(4-chorophenyl)-5-iodonicotinate (3f):

Following the general procedure, $\mathbf{1 f}(100 \mathrm{mg}, 0.36 \mathrm{mmol})$ was allowed to react with $\mathrm{NaHCO}_{3}(31 \mathrm{mg}, 0.36 \mathrm{mmol})$ and iodine (460 $\mathrm{mg}, 1.81 \mathrm{mmol}$) for 20 h . After the workup, the residue was purified by column chromatography on silica gel ($8 \% \mathrm{EtOAc}$ in petroleum ether) to afford the iodo pyridine $\mathbf{3 f}(27 \mathrm{mg}, 20 \%$ yield) along with acyl pyrrole $\mathbf{4 b}$ ($50 \mathrm{mg}, 52 \%$ yield).

3f: White solid; $\mathrm{R}_{f}=0.6$ (petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $106-108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.18(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.23$, 163.81, 149.56, 148.80, 139.41, 135.54, 130.73, 128.36, 125.59, 92.90, 52.75; IR (KBr): $v_{\max }=2923,2857,1726,1457,1280 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 373(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{CIINO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 373.9439$, found: 373.9438.

Methyl 5-(4-chlorobenzoyl)-1H-pyrrole-3-carboxylate (4b):

4b: Yellow solid; $\mathrm{R}_{f}=0.3$ (petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 183.80$, $164.26,139.02,135.62,131.15,130.42,129.09,128.93,119.43,118.58,51.55 ; \operatorname{IR}(\mathrm{KBr}): v_{\max }=3263,2925,1727,1623,1289$, $757 \mathrm{~cm}^{-1} ;$ MS (ESI): $m / z 264(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 264.0422$, found: 264.0420 .

tert-Butyl-3-(3-iodo-5-(methoxycarbonyl)pyridin-2-yl)-1H-indole-1-carboxylate (3g):

Following the general procedure, azide $\mathbf{1 k}(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ was allowed to react with $\mathrm{NaHCO}_{3}(22 \mathrm{mg}, 0.26 \mathrm{mmol})$ and iodine ($332 \mathrm{mg}, 1.31 \mathrm{mmol}$) for 20 h . After the workup, the residue was purified by column chromatography on silica gel ($13 \% \mathrm{EtOAc}$ in petroleum ether) to afford the iodo pyridine $\mathbf{3 g}\left(114 \mathrm{mg}, 90 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.5$ (petroleum ether: EtOAc $=4: 1$); M.P: $106-108{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.24(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$
$164.43,159.24,149.39,148.91,135.14,128.73,128.03,124.99,124.67,123.35,121.61,120.91,115.26,93.62,84.52,52.71,28.21$;
IR (KBr): $v_{\max }=2979,1732,1370,1279,1152,750 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 479(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{IN}_{2} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}: 479.0462$, found: 479.0449 .

1-(5-Iodo-6-phenylpyridin-3-yl)ethanone (3h):

Following the general procedure, azide $\mathbf{1 n}(100 \mathrm{mg}, 0.44 \mathrm{mmol})$ was allowed to react with $\mathrm{NaHCO}_{3}(37 \mathrm{mg}, 0.44 \mathrm{mmol})$ and iodine ($562 \mathrm{mg}, 2.22 \mathrm{mmol}$) for 12 h . After the workup, the residue was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in petroleum ether) to afford the iodo pyridine $\mathbf{3 h}(82 \mathrm{mg}, 57 \%$ yield) along with the acyl pyrrole $\mathbf{4 e}(20 \mathrm{mg}, 21 \%$ yield).

3h: Yellow solid; $\mathrm{R}_{f}=0.5$ (petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $93-95{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.22,165.08,148.49,147.31$, 141.03, 131.52, 129.42, 129.18, 128.12, 94.01, 26.89; IR (KBr): $v_{\max }=2921,1679,1571,1264,743 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 324$ $(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{INO}(\mathrm{M}+\mathrm{H})^{+}: 323.9879$, found: 323.9871 .

1-(5-Benzoyl-1H-pyrrol-3-yl)ethanone (4e):

4e: Yellow solid; $\mathrm{R}_{f}=0.4$ (petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $90-92{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.72(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 193.31, 185.54, 137.27, 132.60, 131.77, 129.01, 128.56, 127.70, 118.36, 27.32; $\mathrm{IR}(\mathrm{KBr}): v_{\max }=3257,1718,1628,1548,1376,1286$ cm^{-1}; MS (ESI): $m / z 214(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 214.0862$, found: 214.0858.

Methyl 5-(4-cyanobenzoyl)-1H-pyrrole-3-carboxylate (4c):

Following the general procedure, azide $\mathbf{1 g}(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ was allowed to react with $\mathrm{NaHCO}_{3}(32 \mathrm{mg}, 0.37 \mathrm{mmol})$ and iodine ($476 \mathrm{mg}, 1.87 \mathrm{mmol}$) for 20 h . After the workup, the residue was purified by column chromatography on silica gel ($15 \% \mathrm{EtOAc}$ in petroleum ether) to afford the acyl pyrrole $\mathbf{4 c}$. ($75 \mathrm{mg}, 79 \%$ yield) as yellow solid. $\mathrm{R}_{f}=0.4$ (petroleum ether: EtOAc $=4: 1$); M.P: 183$185{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$
(s, 1H), $3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 183.31,164.01,140.84,132.38,130.76,129.81,129.35,120.14,118.81,117.90$, 115.79, 51.60; IR (KBr): $v_{\max }=3274,2954,228,1717,1626,1295,1231,762 \mathrm{~cm}^{-1} ;$ MS (ESI): $m / z 277(\mathrm{M}+\mathrm{Na})^{+} ; \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NaN}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 277.0584$, found: 277.0595.

Methyl 5-butyryl-1H-pyrrole-3-carboxylate (4d):

Following the general procedure, azide $11(93 \mathrm{mg}, 0.45 \mathrm{mmol})$ was allowed to react with $\mathrm{NaHCO}_{3}(37 \mathrm{mg}, 0.45 \mathrm{mmol})$ and iodine ($568 \mathrm{mg}, 2.24 \mathrm{mmol}$) for 20 h . After the workup, the residue was purified by column chromatography on silica gel ($15 \% \mathrm{EtOAc}$ in petroleum ether) to afford the acyl pyrrole $\mathbf{4 d}\left(76 \mathrm{mg}, 81 \%\right.$ yield) as pale yellow liquid. $\mathrm{R}_{f}=0.4$ (petroleum ether: EtOAc $\left.=4: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84$ $-1.67(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.47,164.34,132.45,127.90,118.05,116.17,51.42,39.89$, 18.43, 13.89; IR (KBr): $v_{\max }=3270,2925,2854,1715,1654,1209,766 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 196(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}(\mathrm{M})^{+}: 195.0872$, found: 195.0889.
(E)-Methyl 5-(3-methoxy-3-oxoprop-1-en-1-yl)-6-(4-methoxyphenyl)nicotinate (5a):

To a solution of methyl 5-iodo-6-(4-methoxyphenyl)nicotinate ($\mathbf{3 e}, 100 \mathrm{mg}, 0.27 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6 \mathrm{mg}, 0.027 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathrm{Bu}_{4} \mathrm{NBr}(87 \mathrm{mg}, 0.27 \mathrm{mmol}), \mathrm{NaHCO}_{3}(57 \mathrm{mg}, 0.67 \mathrm{mmol})$ and methy acrylate $(25.6 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{DMF}(5 \mathrm{~mL})$. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 2 h . After the completion of reaction quenched by aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and reaction mixture was stirred for 30 min . The mixture was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$) organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude was purified by column chromatography on silica gel ($15 \% \mathrm{EtOAc}$ in petroleum ether) to afford the product $\mathbf{5 a}\left(77 \mathrm{mg}, 86 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.5$ (petroleum ether: EtOAc $=4: 1$); M.P: $98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.23(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.60,165.44$, $161.75,160.91,150.92,142.05,136.40,131.58,130.48,127.84,123.98,121.20,114.04,55.41,52.54,51.90 ; \mathrm{IR}(\mathrm{KBr}): v_{\max }=2925$, 2848, 2364, 1716, 1248, 1174, 842, $794 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 328(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$: 328.1179, found: 328.1192.

Methyl 5-(2-hydroxyphenyl)-6-(4-methoxyphenyl)nicotinate (5b):

To a solution of $3 \mathrm{e} 100 \mathrm{mg}, 0.27 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(229 \mathrm{mg}, 1.08 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(31 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and (2hydroxyphenyl)boronic acid ($49 \mathrm{mg}, 0.35 \mathrm{mmol}$) in DMF (5 mL) was degassed with N_{2} for 20 min . The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 6 h . After the completion of reaction, DMF was removed under vacuum, and the residue was dissolved in $\mathrm{EtOAc}(5 \mathrm{~mL})$, filtered through celite and concentrated in vacuo. The crude was purified by column chromatography on silica gel ($15 \% \mathrm{EtOAc}$ in petroleum ether) to afford the product $\mathbf{5 b}\left(67 \mathrm{mg}, 73 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.5$ (petroleum ether: EtOAc $=4: 1$); M.P: $120-122$ ${ }^{\mathrm{o}} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $165.73,160.66,160.25,152.26,149.82,140.86,131.27,131.06,130.94,130.69,129.75,126.23,123.75,121.26,116.41,113.55$, 55.19, 52.40; IR (KBr): $v_{\max }=3377,2922,1701,1593,1254,1166,755 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}): m / z 336(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{HRMS}(\mathrm{ESI}): m / z$ calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 336.1230$, found: 336.1247 .

Methyl 6-(4-methoxyphenyl)-5-(phenylethynyl)nicotinate (5c):

To a solution of $\mathbf{3 e}(100 \mathrm{mg}, 0.27 \mathrm{mmol})$ in trethylamine $(3 \mathrm{~mL})$ was added to a mixture of $\mathrm{Pd}\left(\mathrm{Ph}_{3}\right)_{2} \mathrm{Cl}_{2}(19 \mathrm{mg}, 0.027 \mathrm{mmol}, 10 \mathrm{~mol}$ $\%$) and copper(I)iodide ($10 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in a flame dried flask. The mixture was degassed with N_{2} for 15 min . Phenylacetylene ($0.12 \mathrm{~mL}, 1.08 \mathrm{mmol}$) was added, and the mixture was stirred at room temperature overnight. After the completion of reaction, the mixture was diluted with Water (3 mL) and then the mixture was extracted with EtOAc (10 mL x 2). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through celite, and concentrated in vacuo. The crude was purified by column chromatography on silica gel (18% EtOAc in petroleum ether) to afford the product $\mathbf{5 c}(87 \mathrm{mg}, 93 \%$ yield) as yellow solid. $\mathrm{R}_{f}=0.4$ (petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.28,161.92,160.89,150.84,149.16,142.03,137.70,131.44,131.05,128.84,128.42,123.06$, $122.54,118.87,116.93,114.22,113.37,95.13,86.93,55.34,52.41$; IR (KBr): $v_{\max }=2926,1720,1580,1258,1105,751 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI): $m / z 344(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 344.1281$, found: 344.1292.

Methyl 6-phenyl-5-(phenylethynyl)nicotinate (5d):

To a solution of $\mathbf{3 a}(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ in trethylamine $(5 \mathrm{~mL})$ was added to a mixture of $\mathrm{Pd}\left(\mathrm{Ph}_{3}\right)_{2} \mathrm{Cl}_{2}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol}$ $\%$) and copper(I)iodide ($11 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in a flame dried flask. The mixture was degassed with N_{2} for 15 min . Phenylacetylene ($129 \mu \mathrm{~L}, 1.40 \mathrm{mmol}$) was added, and the mixture was stirred at room temperature overnight. After the completion of reaction, the mixture was diluted with Water (3 mL) and then the mixture was extracted with EtOAc (10 mL x 2). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through celite, and concentrated in vacuo. The crude was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in petroleum ether) to afford the product $\mathbf{5 d}(78 \mathrm{mg}, 85 \%$ yield) as yellow solid. $\mathrm{R}_{f}=0.6$ (petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $110-115^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.15-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.31(\mathrm{~m}, 8 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.16,162.56,149.14,141.79$, $138.43,131.42,129.62,129.42,128.87,128.38,127.94,123.67,122.40,117.68,95.35,86.55,52.47 ; \mathrm{IR}(\mathrm{KBr}): v_{\max }=2926,2205$ 1720, 1268, 1204, 745, $686 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 314(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 314.1175$, found: 314.1168.

Methyl 5-iodo-6-phenylbenzo[h]quinoline-3-carboxylate (6a):

To a solution methyl 6-phenyl-5-(phenylethynyl)nicotinate (5d, $30 \mathrm{mg}, 0.095 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was slowly added solution of ICl in $\mathrm{DCM}(0.4 \mathrm{~mL}, 0.19 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture stirred for 48 h at room temperature. Upon completion, the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, washed with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel ($18 \% \mathrm{EtOAc}$ in petroleum ether) to afford the corresponding product $6 \mathbf{a}\left(29 \mathrm{mg}, 71 \%\right.$ yield) as yellow solid. $\mathrm{R}_{f}=0.4$ (petroleum ether: $\mathrm{EtOAc}=4: 1$); M.P: $170-175{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $9.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.41(\mathrm{dd}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{ddd}, J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}$, $4 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.68,149.58,148.76,147.00$, $144.18,143.86,134.73,130.94,129.79,129.70,128.63,128.20,128.03,127.79,127.03,125.58,125.04,103.58,52.63$; IR (KBr): $v_{\max }$ $=2921,1721,1318,1269,1251,763 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 440(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{IO}_{2} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}: 440.0142$, found: 440.0126.
(Z)-Methyl-5-benzylidene-5H-indeno[1,2-b]pyridine-3-carboxylate (6b):

To a solution of $\mathbf{5 d}(30 \mathrm{mg}, 0.095 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{mg}, 0.004 \mathrm{mmol}), 1,1-\mathrm{bis}($ diphenylphosphino)ferrrocene $(5 \mathrm{mg}, 0.009 \mathrm{mmol})$ and toluene $(0.3 \mathrm{~mL})$ were added under N_{2} atmosphere. The reaction mixture was stirred at room temperature for 5 min . Water $(1.5 \mu \mathrm{~L}, 0.09 \mathrm{mmol})$ was then added via microsyringe. The reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 24 h. Upon completion of the reaction, resultant mixture was cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL), and filtered through a celite plug. The filtrate was concentrated under reduced pressure. The crude was purified by column chromatography on silica gel (15% EtOAc in petroleum ether) to afford the azafluorene $\mathbf{6 b}$ ($21 \mathrm{mg}, 68 \%$ yield) as yellow solid. $\mathrm{R}_{f}=0.4$ (petroleum ether: $\mathrm{EtOAc}=4: 1)$; M.P: $170-175^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.19-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{td}$, $J=17.1,8.2 \mathrm{~Hz}, 7 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.32,163.22,150.81,141.01,137.12,135.62,132.84,132.12$, $130.92,130.05,129.40,128.99,128.76,123.30,121.53,120.32,52.28$; IR (KBr): $v_{\max }=2924,2853,1718,1279,697 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI): $m / z 314(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 314.1175$, found: 314.1166.

References:

1) Park, S. P.; Ahn, S-H.; Lee, K -J. Tetrahedron 2010, 66, 3490.
2) Gerber, R.; Frech, C. M. Chem. Eur. J. 2011, 17, 11893.
3) Inada, K.; Miyaura, N. Tetrahedron 2000, 56, 8661.
4) Shiao, M.-J.; Liu, K.-H.; Lin, P.-Y. Heterocycles 1993, 36, 507.
5) (a) El-Deeb, I. M.; Lee, S.H. Bioorg. Med. Chem. 2010, 18, 3860; (b) Comins, D. L.; Mantlo, N. B. Tetrahedron Lett. 1983, 24, 3683.

1b
${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1	1	1	1	,	1	,	1				1	I	1	1	1	1		1	,	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

L0. 26 I -
$\stackrel{\stackrel{+}{\stackrel{\circ}{0}}}{\stackrel{0}{\mid}}$

| $\stackrel{\circ}{\dot{\sim}}$ |
| :---: | :---: |
| $\stackrel{\sim}{\sim}$ |
| 1 |

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1	1				1				1	100			70	1				1		
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underbrace{6}_{\stackrel{\circ}{\circ}_{6}^{\circ} 0_{0}^{0}}$

1m
${ }^{1} \mathrm{H}$ NMR, $\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$

1m
${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1n
${ }^{1} \mathrm{H}$ NMR, $\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$

1 n
${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

		1																		
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \text { f1 (ppm) } \end{aligned}$	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR, 125 MHz , DMSO-d d_{6}

${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\pm	$\stackrel{\square}{0}$	$\stackrel{\sim}{\sim}$	9
¢	-	¢	$\underset{\sim}{\sim}$
\/	\|	।	\}

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	,	1	1	1	T
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

	1		1	1		1		1	1		T	1		1		1	1		1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

	1		1	1	1	1	1	1	1	1	1	1	1	1	T	,	T	1	T	,
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${\underset{1}{i}}_{\sim}^{\infty}$

${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\circ}{\text { ® }}$

${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

	1	,	'	1	T	1	T	1	T	1 '	1	1	1	1	1	T	1	T	1	T
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

S108

