Supporting Information

Lewis and Brønsted Acid-Induced (3+2)-Annulation of Donor-Acceptor Cyclopropanes to Alkynes: Indene Assembly

Eduard R. Rakhmankulov,^[a] Konstantin L. Ivanov,^[a] Ekaterina M. Budynina,^{*[a,b]} Olga A. Ivanova,^[a] Alexey O. Chagarovskiy,^[a,b] Dmitriy A. Skvortsov,^[a] Gennadij V. Latyshev,^[a] Igor V. Trushkov,^[a,b] and Mikhail Ya. Melnikov^[a]

^a Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991 Russia, e-mail: <u>ekatbud@kinet.chem.msu.ru</u>

^b Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitrii Rogachev, Samory Mashela 1, Moscow 117997 Russia

Table of Content

General Information	S2			
General procedure for the (3+2)-annulation of cyclopropanes 1 to alkynes 2	S 3			
Analytical data for indenes 3				
Analytical data for dimethyl 4-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-methyl-2-				
phenylcyclopent-2-ene-1,1-dicarboxylate (4)				
Synthesis and analytical data for 4-methyl-5-phenyl-3,3a,8,9-tetrahydroacenaphtho[4,5-				
<i>b</i>][1,4]dioxin-1(2 <i>H</i>)-one (5)				
Structural assignments of indenes 3	S16			
DFT calculations	S23			
Fluorescence properties	S76			
Cell assays				
References	S78			
¹ H and ¹³ C NMR spectra	S80			

General Information

NMR spectra were acquired on Bruker Avance 600 spectrometer at room temperature; the chemical shifts δ were measured in ppm with respect to solvents (CDCl₃: $\delta_{\rm H} = 7.26$, $\delta_{\rm C} =$ 77.0; DMSO-d₆: $\delta_{\rm H} = 2.50$, $\delta_{\rm C} = 39.5$). Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, double doublet. Coupling constants (J) are in Hertz. The structures of all compounds were elucidated with the aid of 1D NMR (¹H, ¹³C) and 2D NMR (¹H-¹H COSY, ¹H-¹³C HSQC and HMBC, ¹H-¹H NOESY) spectroscopy. Infrared spectra were recorded on Thermo Nicolet IR200 FT-IR and Agilent FTIR Cary 630 spectrometers with ATR (Attenuated Total Reflectance) module. MALDI-TOF (Matrix Assisted Laser Desorption Ionization / Time of Flight) mass spectra were recorded on Bruker Daltonics Ultrafex II spectrometer in positive mode; anthracene or 1,8,9-trihydroxyanthracene were used as a matrix. High resolution and accurate mass measurements were carried out using a Bruker micro TOF- O^{TM} ESI-TOF (Electro Spray Ionization / Time of Flight) and Thermo ScientificTM LTO Orbitrap mass spectrometers. Elemental analyses were performed with Fisons EA-1108 CHNS elemental analyser instrument. Absorption spectra were measured on a Shimadzu UV-2450 UV-Vis spectrophotometer with 1 nm resolution and corrected for the blank. Steady state emission and excitation spectra were taken on a PTI luminescence spectrometer with a 1 nm resolution. Analytical thin layer chromatography (TLC) was carried out with silica gel plates (silica gel 60, F_{254} , supported on aluminium); the revelation was done by UV lamp (365 nm) and chemical staining (iodine vapour and potassium permanganate solution in water). Column chromatography was performed on silica gel 60 (230-400 mesh, Merck). Lewis acids (SnCl₄, BF₃·OEt₂), TfOH and alkynes (phenylacetylene, hexyne-1, octyne-4, 1-phenylpropyne, 1-phenylbutyne, tolan) were commercially available. All the reactions were carried out using freshly distilled and dry solvents. Parent arylidenemalonates and 2-aryl-1,1-cyclopropane diesters 1 were prepared by published procedures.^[S1,S2] 4,4'-Dimethoxytolan was prepared from 4-iodoanisole and 2-methyl-3-butyn-2-ol via double Sonogashira coupling according to known procedures.^[S3,S4]

All the calculations have been performed within density functional theory (DFT),^[S5] using the hybrid functional B3LYP.^[S6] The standard SVP basis set,^[S7] as implemented in the ORCA 3.0 suite of programs,^[S8] has been used in all cases together with the RIJCOSX approximation.^[S9] Frequency analysis was carried out to check whether optimized structures were local minima or transition states. No imaginary frequencies were found for local minima, and only one imaginary frequency was found for each transition state. The geometries of *ortho-* σ -complex **P1** and *ipso-* σ -complex **P2**, as well as initial vinyl cation **C1**, were proved by performing the intrinsic reaction coordinate (IRC) calculations^[S10] from corresponding TS points using GAMESS-US suite of programs^[S11] at the same level of theory.

General procedure for the (3+2)-annulation of cyclopropanes 1 to alkynes 2

To solution of cyclopropane **1** (0.30 mmol) in dry MeNO₂ (10 mL) alkyne **2** (1.2 mmol) and LA (120 mol%) or TfOH (10 mol%, as a 10 vol% solution in MeNO₂) were added sequentially under argon atmosphere in the presence of 4 Å molecular sieves. The resulting mixture was stirred under conditions specified, poured into aqueous NaHCO₃ solution (10 mL) and extracted with CH₂Cl₂ (3×5 mL). The combined organic layers were washed with water (2×5 mL) and dried with Na₂SO₄. Solvent was evaporated under reduced pressure. Indene **3** was purified by column chromatography on silica gel (eluent petroleum ether – ethyl acetate).

Dimethyl 2-[(7-methyl-8-phenyl-3,6-dihydro-2*H*-indeno[5,6-*b*][1,4]dioxin-6-yl)methyl]malonate (3a)

= TfOH, 10 h (25 °C); yield 87 mg (71%); yellow oil; R_f 0.65 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) δ = 2.01 (s, 3H, CH₃), 2.45 (ddd, ²J = 14.3, ³J

 $= 6.2, {}^{3}J = 5.2 \text{ Hz}, 1\text{H}, C(1')\text{H}_{2}), 2.73 \text{ (ddd, } {}^{2}J = 14.3, {}^{3}J = 7.8, {}^{3}J = 4.8 \text{ Hz}, 1\text{H}, C(1')\text{H}_{2}), 3.17 \text{ (dd, } {}^{3}J = 7.8, {}^{3}J = 6.2 \text{ Hz}, 1\text{H}, C(2')\text{H}), 3.40 \text{ (ddd, } {}^{3}J = 5.2, {}^{3}J = 4.8, {}^{4}J = 0.7 \text{ Hz}, 1\text{H}, C(6)\text{H}), 3.60 \text{ (s, 3H, OCH}_{3}), 3.65 \text{ (s, 3H, OCH}_{3}), 4.22-4.24 \text{ (m, 4H, OCH}_{2}\text{CH}_{2}\text{O}), 6.71 \text{ (s, 1H, C(9)H), 6.94 (d, } {}^{4}J = 0.7 \text{ Hz}, 1\text{H}, C(5)\text{H}), 7.33-7.45 \text{ (m, 5H, Ph); } {}^{13}\text{C NMR} \text{ (CDCl}_{3}, 150 \text{ MHz}) \delta = 13.1 \text{ (CH}_{3}), 29.2 \text{ (C(1')H}_{2}), 47.7 \text{ (CH), 49.9 (CH), 52.4 (OCH}_{3}), 52.5 \text{ (OCH}_{3}), 64.4 \text{ (2×OCH}_{2}), 108.5 \text{ (CH), 112.9 (CH), 127.1 (CH), 128.4 (2×CH), 129.0 (2×CH), 135.1 (C), 137.4 \text{ (C), 139.0 (C), 139.6 (C), 141.0 (2×C), 142.7 (C), 169.9 (2×CO_{2}\text{Me}); IR (Nujol) 1748, 1731, 1585, 1477, 1435, 1355, 1333, 1275, 1260, 1156, 1065, 881, 731, 703 \text{ cm}^{-1}; \text{HRMS} \text{ (ESI) calcd for C}_{24}\text{H}_{25}\text{O}_{6} \text{ [M+H]}^{+}: 409.1946, \text{ found: 409.1948.}$

Dimethyl 2-[(7,8-diphenyl-3,6-dihydro-2*H*-indeno[5,6-b][1,4]dioxin-6-yl)methyl]malonate (3b)

CO₂Me TfOH, 24 h (25 °C); yield 58 mg (41%); white foam; $R_{\rm f}$ 0.60 (petroleum ether – ethyl acetate, 2:1).

 $MeO_2C \xrightarrow{4} 1$

ether – ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) δ = 2.19 (ddd, ²J = 14.2, ³J = 7.3, ³J = 5.2 Hz,

 $\begin{array}{l} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\$

(CH), 113.2 (CH), 126.8 (CH), 127.4 (CH), 128.2 (2×CH), 128.6 (2×CH), 129.1 (2×CH), 129.3 (2×CH), 135.0 (C), 135.5 (C), 137.9 (C), 139.8 (C), 139.9 (C), 141.8 (C), 143.0 (C), 143.3 (C), 169.4 (\underline{CO}_2 Me), 169.7 (\underline{CO}_2 Me); IR (Nujol) 1755, 1740, 1600, 1590, 1470, 1385, 1365, 1340, 1290, 1235, 1165, 1080, 940, 915, 885, 780, 720, 670 cm⁻¹; MALDI-TOF MS: m/z = 470 [M]⁺ (470 calcd for C₂₉H₂₆O₆). Anal. calcd for C₂₉H₂₆O₆: C, 74.03; H, 5.57; Found: C, 74.05; H, 5.53.

Dimethyl 2-{[7,8-bis(4-methoxyphenyl)-3,6-dihydro-2*H*-indeno[5,6-b][1,4]dioxin-6yl]methyl}malonate (3c)

TfOH, 10 h (25 °C); yield 129 mg (81%, estimated purity 90%); yellow oil; $R_{\rm f}$ 0.64 (petroleum ether – ethyl acetate, 2:1)

¹H NMR (CDCl₃, 600 MHz) $\delta = 2.13$ (ddd, ²*J* = 14.0, ³*J* = 7.3, ³*J* = 5.0 Hz, 1H, C(1')H₂), 2.62 (ddd, ²*J* = 14.0, ³*J* = 9.4, ³*J* = 4.3 Hz, 1H, C(1')H₂), 3.30 (dd, ³*J* = 9.4, ³*J* = 5.0 Hz, 1H, C(2')H), 3.52 (s, 3H, OCH₃), 3.62 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃),

3.85 (s, 3H, OCH₃), 4.01 (dd, ${}^{3}J = 7.3$, ${}^{3}J = 4.3$ Hz, 1H, C(6)H), 4.23–4.27 (m, 4H, OCH₂CH₂O), 6.72 (s, 1H, C(4)H), 6.78 (d, ${}^{3}J = 8.8$ Hz, 2H, Ar), 6.92 (d, ${}^{3}J = 8.7$ Hz, 2H, Ar), 7.02 (s, 1H, C(9)H), 7.09 (d, ${}^{3}J = 8.8$ Hz, 2H, Ar), 7.22 (d, ${}^{3}J = 8.7$ Hz, 2H, Ar); 13 C NMR (CDCl₃, 150 MHz) $\delta = 30.3$ (C(1')H₂), 47.7 (CH), 48.2 (CH), 52.3 (OCH₃), 52.4 3 (OCH₃), 55.1 (OCH₃), 55.2 (OCH₃), 64.3 (OCH₂), 64.4 (OCH₂), 109.2 (CH), 113.2 (CH), 113.7 (2×CH), 114.1 (2×CH), 127.7 (C), 127.9 (C), 130.3 (2×CH), 130.5 (2×CH), 137.7 (C), 138.1 (C), 140.2 (C), 141.5 (C), 142.5 (C), 142.9 (C), 158.4 (C), 158.8 (C), 169.5 (<u>CO₂Me</u>), 169.8 (<u>CO₂Me</u>); IR (Nujol) 1749, 1733, 1684, 1605, 1581, 1513, 1506, 1476, 1437, 1245, 1175, 1065, 1027, 834 cm⁻¹; HRMS (ESI) calcd for C₃₁H₃₀NaO₈ [M+Na]⁺: 553.1834, found: 553.1833.

Dimethyl 2-[(6-methyl-7-phenyl-5*H*-indeno[5,6-d][1,3]dioxol-5-yl)methyl]malonate (3d)

Conditions 1: TfOH, 6 h (25 °C); yield 100 mg (85%); conditions 2: $BF_3 \cdot Et_2O$, 3 h (25 °C); yield 85 mg (72%); yellow oil; R_f 0.69 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) δ = 2.00 (s, 3H, CH₃), 2.52 (ddd, ²*J* = 14.4, ³*J* = 6.2, ³*J* = 5.3 Hz, 1H, C(1')H₂), 2.75 (ddd, ²*J* = 14.4, ³*J* = 7.5, ³*J* = 4.8 Hz,

1H, C(1')H₂), 3.06 (dd, ${}^{3}J = 7.5$, ${}^{3}J = 6.2$ Hz, 1H, C(2')H), 3.40 (dd, ${}^{3}J = 5.3$, ${}^{3}J = 4.8$ Hz, 1H, C(5)H), 3.57 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃), 5.92 (d, ${}^{2}J = 7.7$ Hz, 1H, C(2)H₂), 5.93 (d, ${}^{2}J = 7.7$ Hz, 1H, C(2)H₂), 6.69 (s, 1H, C(8)H), 6.93 (s, 1H, C(4)H), 7.34–7.37 (m, 3H, Ph), 7.44–7.47 (m, 2H, Ph); 13 C NMR (CDCl₃, 150 MHz) $\delta = 13.1$ (CH₃), 28.9 (C(1')H₂), 47.4 (CH), 50.6 (CH),

52.4 (OCH₃), 52.5 (OCH₃), 100.9 (C(2)H₂), 101.0 (CH, Ar), 105.1 (CH, Ar), 127.2 (CH, Ph), 128.4 (2×CH, Ph), 129.0 (2×CH, Ph), 135.1 (C), 137.9 (C), 139.4 (C), 140.0 (C), 140.8 (C), 145.3 (C), 146.9 (C), 169.8 (2×CO₂Me); IR (Nujol) 1748, 1733, 1474, 1436, 1282, 1260, 1237, 1145, 1033, 932, 702 cm⁻¹. HRMS (ESI) calcd for $C_{23}H_{22}NaO_6$ [M+Na]⁺: 417.1294, found: 417.1309.

Dimethyl 2-[(6-ethyl-7-phenyl-5*H*-indeno[5,6-d][1,3]dioxol-5-yl)methyl]malonate (3e)

TfOH, 8 h (25 °C); yield 104 mg (85%); yellow oil; R_f 0.66 (petroleum ether - ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 1.10$ (t, ³J = 7.6 Hz, 3H, CH₂CH₃), 2.23– 2.25 (m, 1H, CH₂CH₃), 2.43 (ddd, ${}^{2}J = 14.3$, ${}^{3}J = 5.9$, ${}^{3}J = 5.5$ Hz, 1H, C(1')H₂), 2.53–2.55 (m, 1H, CH₂CH₃), 2.76 (ddd, ${}^{2}J = 14.3$, ${}^{3}J = 8.2$, ${}^{3}J =$

4.5 Hz, 1H, C(1')H₂), 3.10 (dd, ${}^{3}J = 8.2$, ${}^{3}J = 5.5$ Hz, 1H, C(2')H), 3.57 (s, 3H, OCH₃), 3.58 (dd, ${}^{3}J = 5.9$, ${}^{3}J = 4.5$ Hz, 1H, C(5)H), 3.66 (s, 3H, OCH₃), 5.92 (dd, ${}^{2}J = 8.8$, ${}^{5}J = 1.5$ Hz, 1H, $C(2)H_2$, 5.93 (dd, ${}^{2}J = 8.8$, ${}^{5}J = 1.5$ Hz, 1H, $C(2)H_2$), 6.65 (br. s, 1H, C(8)H), 6.95 (br. s, 1H, C(4)H), 7.32–7.37 (m, 3H, Ph), 7.44–7.47 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 14.9$ (CH₂CH₃), 19.9 (CH₂CH₃), 28.9 (C(1')H₂), 46.7 (CH), 47.6 (CH), 52.4 (OCH₃), 52.6 (OCH₃), 100.9 (C(2)H₂), 101.2 (CH, Ar), 105.3 (CH, Ar), 127.3 (CH, Ph), 128.4 (2×CH, Ph), 129.0 (2×CH, Ph), 135.2 (C), 137.9 (C), 139.0 (C), 140.1 (C), 145.4 (C), 146.9 (C), 147.0 (C), 169.8 (CO₂Me), 169.9 (CO₂Me); IR (Nujol) 1750, 1733, 1470, 1436, 1364, 1265, 1145, 1036, 938, 862, 807, 702 cm⁻¹; HRMS (ESI) calcd for $C_{24}H_{25}O_6$ [M+H]⁺: 409.1646, found: 409.1639.

Dimethyl 2-[(6,7-diphenyl-5H-indeno[5,6-d][1,3]dioxol-5-yl)methyl]malonate (3f)

TfOH, 24 h (25 °C); yield 47 mg (34%, estimated purity 90%); yellow oil; $R_{\rm f}$ 0.57 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 2.29$ (ddd, ²J = 14.3, ³J = 6.6, ³J = 5.2 Hz, -Ph 1H, C(1')H₂), 2.69 (ddd, ${}^{2}J = 14.3$, ${}^{3}J = 8.8$, ${}^{3}J = 4.5$ Hz, 1H, C(1')H₂), 3.16 $(dd, {}^{3}J = 8.8, {}^{3}J = 5.2 \text{ Hz}, 1\text{H}, C(2')\text{H}), 3.49 \text{ (s, 3H, OCH_3)}, 3.58 \text{ (s, 3H, OCH_3)}, 4.11 (ddd, {}^{3}J = 3.58 \text{ (s, 3H, OCH_3)}, 4.11 (ddd, {}^{3}J = 3.58 \text{ (s, 3H, OCH_3)}, 4.11 (ddd, {}^{3}J = 3.58 \text{ (s, 3H, OCH_3)}, 4.11 (ddd, {}^{3}J = 3.58 \text{ (s, 3H, OCH_3)}, 4.11 (ddd, {}^{3}J = 3.58 \text{ (s, 3H, OCH_3)}, 4.11 (ddd, {}^{3}J = 3.58 \text{ (s, 3H, OCH_3)}, 4.11 (ddd, {}^{3}J = 3.58 \text{ (s, 3H, OCH_3)}, 3.58 \text{ (s, 3H, OCH_3)}, 4.11 (ddd, {}^{3}J = 3.58 \text{ (s, 3H, OCH_3)}, 3.58 \text{ (s, 3H, OCH_3)}, 4.11 (ddd, {}^{3}J = 3.58 \text{ (s, 3H, OCH_3)}, 3.58 \text{ (s, 3H, OCH$ 6.6, ${}^{3}J = 4.5$, ${}^{4}J = 0.6$ Hz, 1H, C(5)H), 5.95 (dd, ${}^{2}J = 8.4$, ${}^{5}J = 1.5$ Hz, 1H, C(2)H₂), 5.98 (d, ${}^{2}J = 1.5$ Hz, 1H, C(2)H₂), 5.98 (d, {}^{2}J = 1.5 8.4, ${}^{5}J = 1.5$ Hz, 1H, C(2)H₂), 6.71 (br. s, 1H, C(8)H), 7.05 (br. s, 1H, C(4)H), 7.13-7.24 (m, 5H, Ph), 7.30–7.41 (m, 5H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 29.7$ (C(1')H₂), 47.8 (CH), 48.0 (CH), 52.4 (OCH₃), 52.4 (OCH₃), 101.1 (C(2)H₂), 101.7 (CH), 105.3 (CH), 126.8 (CH), 127.5 (C), 128.2 (2×CH), 128.7 (2×CH), 129.1 (2×CH), 129.3 (2×CH), 134.8 (C), 135.4 (C), 138.6

(C), 140.2 (C), 140.3 (C), 143.1 (C), 146.1 (C), 147.2 (C), 169.4 (\underline{CO}_2Me), 169.7 (\underline{CO}_2Me); HRMS (ESI) calcd for $C_{28}H_{24}NaO_6 [M+Na]^+$: 479.1465, found: 479.1467.

Dimethyl 2-{[6,7-bis(4-methoxyphenyl)-5*H*-indeno[5,6-*d*][1,3]dioxol-5-yl]methyl}malonate (3g)

TfOH, 8 h (25 °C); yield 138 mg (89%); yellow oil; $R_{\rm f}$ 0.55 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 2.23$ (ddd, ²*J* = 14.3, ³*J* = 6.7, ³*J* = 5.1 Hz, 1H, C(1')H₂), 2.66 (ddd, ²*J* = 14.3, ³*J* = 9.0, ³*J* = 4.3 Hz, 1H, C(1')H₂), 3.16 (dd, ³*J* = 9.0, ³*J* = 5.1 Hz, 1H, C(2')H), 3.51 (s, 3H, OCH₃), 3.57 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃),

3.85 (s, 3H, OCH₃), 4.02 (dd, ${}^{3}J = 6.7$, ${}^{3}J = 4.3$ Hz, 1H, C(5)H), 5.92 (dd, ${}^{2}J = 8.5$, ${}^{5}J = 1.5$ Hz, 1H, C(2)H₂), 5.96 (dd, ${}^{2}J = 8.5$, ${}^{5}J = 1.5$ Hz, 1H, C(2)H₂), 6.69 (br. s, 1H, C(8)H), Ar), 6.77 (d, ${}^{3}J = 8.7$ Hz, 2H, Ar), 6.83 (d, ${}^{3}J = 8.7$ Hz, 2H, Ar), 7.01 (br. s, 1H, C(4)H, Ar), 7.07 (d, ${}^{3}J = 8.7$ Hz, 2H, Ar), 7.22 (d, ${}^{3}J = 8.7$ Hz, 2H, Ar); 13 C NMR (CDCl₃, 150 MHz) $\delta = 30.0$ (C(1')H₂), 47.8 (CH), 47.9 (CH), 52.3 (OCH₃), 52.4 (OCH₃), 55.1 (OCH₃), 55.2 (OCH₃), 101.0 (C(2)H₂), 101.5 (CH), 105.3 (CH), 113.7 (2×CH), 114.2 (2×CH), 127.6 (C), 127.8 (C), 130.2 (2×CH), 130.5 (2×CH), 138.3 (C), 138.5 (C), 140.6 (C), 142.4 (C), 145.8 (C), 147.1 (C), 158.4 (C), 158.8 (C), 169.4 (CO₂Me), 169.8 (CO₂Me); HRMS (ESI) calcd for C₃₀H₂₈NaO₈ [M+Na]⁺: 539.1676, found: 539.1682.

Dimethyl 2-[(5,6-dimethoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3h)

Conditions 1: TfOH, 8 h (25 °C); yield 91 mg (74%); conditions 2: SnCl₄, 40 min (25 °C); yield 76 mg (62%); yellow oil; $R_{\rm f}$ 0.67 (petroleum ether – ethyl acetate, 2:1).

³ ¹H NMR (CDCl₃, 600 MHz) δ = 2.01 (s, 3H, CH₃), 2.55 (ddd, ²J = 14.4, ³J = 5.4, ³J = 5.4 Hz, 1H, C(1')H₂), 2.79 (ddd, ²J = 14.4, ³J = 7.8, ³J = 4.8 Hz,

1H, C(1')H₂), 2.99 (dd, ${}^{3}J = 7.8$, ${}^{3}J = 5.4$ Hz, 1H, C(2')H), 3.43 (ddd, ${}^{3}J = 5.4$, ${}^{3}J = 4.8$, ${}^{4}J = 0.6$ Hz, 1H, C(1)H), 3.48 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 6.74 (s, 1H, C(4)H), 7.01 (d, ${}^{4}J = 0.6$ Hz, 1H, C(7)H), 7.35–7.38 (m, 3H, Ph), 7.46–7.48 (m, 2H, Ph); 13 C NMR (CDCl₃, 150 MHz) $\delta = 13.0$ (CH₃), 28.9 (C(1')H₂), 47.3 (CH), 50.3 (CH), 52.3 (OCH₃), 52.5 (OCH₃), 56.2 (OCH₃), 56.4 (OCH₃), 103.6 (CH), 108.2 (CH), 127.2 (CH), 128.5 (2×CH), 129.0 (2×CH), 135.3 (C), 136.3 (C), 138.7 (C), 139.5 (C), 140.6 (C), 146.9 (C), 148.6 (C), 169.9 (CO₂Me), 170.0 (CO₂Me); IR (Nujol) 1747, 1732, 1684, 1604, 1506, 1437,

1279, 1265, 1214, 1078, 1017, 705 cm⁻¹; HRMS (ESI) calcd for $C_{24}H_{26}NaO_6$ [M+Na]⁺: 433.1622, found: 433.1611.

Dimethyl 2-[(2-ethyl-5,6-dimethoxy-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3i)

CO₂Me TfOH, 17 h (25 °C); yield 76 mg (60%); yellow oil; R_f 0.60 (petroleum MeO₂C⁻ ether – ethyl acetate, 2:1). MeO ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.10$ (t, ³J = 7.6 Hz, 3H, CH₂CH₃), 2.25– Et 2.27 (m, 1H, CH₂CH₃), 2.46 (ddd, ${}^{2}J = 14.3$, ${}^{3}J = 5.6$, ${}^{3}J = 5.0$ Hz, 1H, MeO $C(1')H_2$, 2.54–2.56 (m, 1H, CH₂CH₃), 2.81 (ddd, ²J = 14.3, ³J = 8.5, ³J = 4.6 Hz, 1H, C(1')H₂), 3.03 (dd, ${}^{3}J = 8.5$, ${}^{3}J = 5.0$ Hz, 1H, C(2')H), 3.48 (s, 3H, OCH₃), 3.62 (dd, ${}^{3}J = 5.6$, ${}^{3}J = 4.6$ Hz, 1H, C(1)H), 3.65 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 6.70 (s, 1H, C(4)H), 7.03 (s, 1H, C(7)H), 7.35–7.37 (m, 3H, Ph), 7.45–7.47 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 14.9$ (CH₂CH₃), 19.9 (CH₂CH₃), 28.9 (C(1')H₂), 46.9 (CH), 47.4 (CH), 52.3 (OCH₃), 52.5 (OCH₃), 56.2 (OCH₃), 56.4 (OCH₃), 103.7 (CH), 108.5 (CH), 127.2 (CH), 128.5 (2×CH), 129.0 (2×CH), 135.4 (C), 136.4 (C), 138.9 (C), 139.2 (C), 146.7 (C), 147.0 (C), 148.7 (C), 169.9 (2×<u>C</u>O₂Me); IR (Nujol) 1747, 1732, 1605, 1493, 1437, 1271, 1212, 1146, 1117, 1026, 857, 732, 705 cm⁻¹; HRMS (ESI) calcd for $C_{25}H_{29}O_6$ [M+H]⁺: 425.1959, found: 425.1942.

Dimethyl 2-[(5,6-dimethoxy-2,3-diphenyl-1*H*-inden-1-yl)methyl]malonate (3j)

TfOH, 24 h (25 °C); yield 53 mg (38%, estimated purity 90%); yellow oil; CO₂Me MeO₂C $R_{\rm f}$ 0.57 (petroleum ether – ethyl acetate, 2:1). MeO ¹H NMR (CDCl₃, 600 MHz) $\delta = 2.32$ (ddd, ²J = 14.3, ³J = 6.2, ³J = 4.9 Hz, -Ph 1H, C(1')H₂), 2.72 (ddd, ${}^{2}J = 14.3$, ${}^{3}J = 8.9$, ${}^{3}J = 4.6$ Hz, 1H, C(1')H₂), MeO 3.09 (dd, ${}^{3}J = 8.9$, ${}^{3}J = 4.9$ Hz, 1H, C(2')H), 3.49 (s, 3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.97 (s, 3H, OCH₃), 4.14 (dd, ${}^{3}J = 6.2$, ${}^{3}J = 4.6$ Hz, 1H, C(1)H), 6.74 (s, 1H, C(4)H), 7.12 (s, 1H, C(7)H), 7.13–7.41 (m, 10H, Ph); ¹³C NMR (CDCl₃, 150 MHz) δ = 29.6 (C(1')H₂), 47.7 (CH), 48.3 (CH), 52.3 (OCH₃), 52.4 (OCH₃), 56.2 (OCH₃), 56.4 (OCH₃), 104.1 (CH), 108.2 (CH), 126.8 (CH), 127.4 (CH), 128.2 (2×CH), 128.7 (2×CH), 129.1 (2×CH), 129.3 (2×CH), 135.0 (C), 135.6 (C), 137.0 (C), 138.8 (C), 140.4 (C), 143.0 (C), 147.7 (C), 148.9 (C), 169.5 (CO₂Me), 169.8 (CO₂Me); IR (Nujol) 1760, 1735, 1610, 1585, 1500, 1470, 1385, 1370, 1310, 1290, 1270, 1255, 1230, 1210, 1160, 1135, 1040, 1025, 895, 860, 760, 720 cm⁻¹; HRMS (ESI) calcd for $C_{29}H_{29}O_6$ [M+H]⁺: 473.1959, found: 473.1961.

Dimethyl 2-[(2-ethyl-6-methoxy-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3k)

MeO₂C

BF₃·Et₂O, 1.5 h (25 °C); yield 48 mg (41%, estimated purity 90%); yellow oil; $R_f 0.51$ (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 1.11$ (t, ³J = 7.6 Hz, 3H, CH₂C<u>H</u>₃), 2.25–

⁵ A_{4} B_{h} 2.27 (m, 1H, CH₂CH₃), 2.43 (ddd, ²*J* = 14.3, ³*J* = 6.0, ³*J* = 5.2 Hz, 1H, C(1')H₂), 2.55–2.58 (m, 1H, CH₂CH₃), 2.80 (ddd, ²*J* = 14.3, ³*J* = 8.5, ³*J* = 4.5 Hz, 1H, C(1')H₂), 3.15 (dd, ³*J* = 8.5, ³*J* = 5.2 Hz, 1H, C(2')H), 3.52 (s, 3H, OCH₃), 3.66 (dd, ³*J* = 6.0, ³*J* = 4.5 Hz, 1H, C(1)H), 3.66 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 6.77 (dd, ³*J* = 8.3, ⁴*J* = 2.4 Hz, 1H, C(5)H), 7.04 (d, ⁴*J* = 2.4 Hz, 1H, C(7)H), 7.05 (d, ³*J* = 8.3 Hz, 1H, C(4)H), 7.35–7.37 (m, 3H, Ph), 7.44–7.46 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) δ = 14.7 (CH₂CH₃), 19.8 (CH₂CH₃), 28.9 (C(1')H₂), 46.9 (CH(1)), 47.7 (C(2')H), 52.3 (CO₂CH₃), 52.5 (CO₂CH₃), 55.6 (C(6)OCH₃), 110.6 (C(7)H), 112.3 (C(5)H), 120.1 (C(4)H), 127.1 (*para*-CH), 128.4 (2×CH), 129.0 (2×CH), 135.4 (C, Ph), 138.9 (C(3)), 139.1 (C(3a)), 145.8 (C(2)), 146.0 (C(7a)), 157.7 (C(6)), 169.9 (2×CO₂Me); IR (Nujol) 1751, 1733, 1606, 1581, 1478, 1435, 1253, 1242, 1145, 1033, 703 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₇O₅ [M+H]⁺: 395.1853, found: 395.1848.

Dimethyl 2-[(5-ethoxy-6-methoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3l)

CO₂Me BF₃·Et₂O, 3 h (25 °C); yield 28 mg (20%); yellow oil; R_f 0.61 (petroleum ether – ethyl acetate, 2:1).

Dimethyl 2-[(6-ethoxy-5-methoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3m)

CO₂Me Yield 83 mg (60%); yellow oil; R_f 0.68 (petroleum ether – ethyl acetate, MeO₂C^{2/}/₁, 2:1).

EtO ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.49$ (t, ³J = 7.1 Hz, 3H, CH₃), 2.01 (s, Me 3H, CH₃), 2.54 (ddd, ${}^{2}J = 14.3$, ${}^{3}J = 5.5$, ${}^{3}J = 5.4$ Hz, 1H, C(1')H₂), 2.78 MeO $(ddd, {}^{2}J = 14.3, {}^{3}J = 7.8, {}^{3}J = 4.8 \text{ Hz}, 1\text{H}, C(1')\text{H}_{2}), 3.02 (dd, {}^{3}J = 7.8, {}^{3}J = 5.5 \text{ Hz}, 1\text{H}, C(2')\text{H}),$ 3.43 (dd, ${}^{3}J = 5.4$, ${}^{3}J = 4.8$ Hz, 1H, C(1)H), 3.49 (s, 3H, OCH₃), 3.66 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 4.13 (dq, ${}^{2}J = 9.5$, ${}^{3}J = 7.1$ Hz, 1H, OCH₂), 4.16 (dq, ${}^{2}J = 9.5$, ${}^{3}J = 7.1$ Hz, 1H, OCH₂), 6.75 (s, 1H, C(4)H), 7.02 (s, 1H, C(7)H), 7.36–7.40 (m, 3H, Ph), 7.47–7.49 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) $\delta = 13.06 ({}^{1}J_{CH} = 127 \text{ Hz}, \text{ CH}_{3}), 14.93 ({}^{1}J_{CH} = 127 \text{ Hz}, \text{ CH}_{3}\text{CH}_{2}\text{O}),$ 28.94 (${}^{1}J_{CH} = 133$ Hz, C(1')H₂), 47.30 (${}^{1}J_{CH} = 132$ Hz, C(2')H), 50.20 (${}^{1}J_{CH} = 128$ Hz, C(1)H), 52.40 (${}^{1}J_{CH} = 147$ Hz, CO₂CH₃), 52.56 (${}^{1}J_{CH} = 148$ Hz, CO₂CH₃), 56.26 (${}^{1}J_{CH} = 144$ Hz, CH₃OC(5)), 64.94 (${}^{1}J_{CH} = 144$ Hz, CH₃CH₂O), 103.83 (${}^{1}J_{CH} = 158$ Hz, C(4)H), 109.91 (${}^{1}J_{$ 156 Hz, C(7)H), 127.15 (${}^{1}J_{CH} = 161$ Hz, para-CH), 128.48 (${}^{1}J_{CH} = 161$ Hz, 2×ortho-CH), 128.99 $(^{1}J_{CH} = 160 \text{ Hz}, 2 \times meta\text{-CH}), 135.34 \text{ (C, Ph)}, 136.35 \text{ (C(7a))}, 138.83 \text{ (C(3a))}, 139.52 \text{ (C(3))}, 139$ 140.61 (C(2)), 146.09 (C(6)), 148.96 (C(5)), 169.97 (CO₂CH₃), 170.01 (CO₂CH₃); IR (film) 1755, 1740, 1660, 1609, 1585, 1500, 1448, 1365, 1295, 1275, 1215, 1192, 1163, 1123, 1088, 1058, 1048 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₈NaO₆ [M+Na]⁺: 447.1778, found: 447.1777.

Dimethyl 2-[(2-methyl-3-phenyl-8-tosyl-3,4-dihydrocyclopenta[b]indol-1yl)methyl]malonate (3n)

TfOH, 5 h (50 °C); yield 83 mg (51%, estimated purity 90%); yellow oil; $R_{\rm f}$ 0.53 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 2.12$ (s, 3H, CH₃), 2.30 (s, 3H, CH₃), 2.82 (ddd, ²*J* = 13.7, ³*J* = 6.3, ³*J* = 4.0 Hz, 1H, C(1')H₂), 2.86 (dd, ³*J* = 6.3, ³*J* = 6.0 Hz, 1H, C(2')H), 3.35 (ddd, ²*J* = 13.7, ³*J* = 6.0, ³*J* = 4.8 Hz, 1H, C(1')H₂), 3.43 (s, 3H, OCH₃), 3.57 (s, 3H, OCH₃),

3.90 (dd, ${}^{3}J = 4.8$, ${}^{3}J = 4.0$ Hz, 1H, C(1)H), 7.13 (dd, ${}^{3}J = 8.0$, 7.7 Hz, 1H, Ar), 7.15 (d, ${}^{3}J = 8.4$ Hz, 2H, Ar), 7.24 (ddd, ${}^{3}J = 8.4$, 7.3, ${}^{4}J = 1.2$ Hz, 1H, Ar), 7.31 (br. d, ${}^{3}J = 7.8$ Hz, 1H, Ar), 7.35-7.38 (m, 1H, Ar), 7.45–7.48 (m, 4H, Ar), 7.66 (d, ${}^{3}J = 8.4$ Hz, 2H, Ar), 8.06 (d, ${}^{3}J = 8.4$ Hz, 1H, Ar); 13 C NMR (CDCl₃, 150 MHz) $\delta = 13.3$ (CH₃), 21.5 (CH₃, Ts), 28.5 (C(1')H₂), 46.8 (CH), 49.1 (CH), 52.3 (OCH₃), 52.5 (OCH₃), 115.2 (CH), 120.0 (CH), 123.6 (CH), 123.8 (CH), 124.9 (C), 126.6 (2×CH), 127.4 (CH), 128.3 (2×CH), 128.9 (2×CH), 129.6 (C), 129.7 (2×CH), 132.4 (C), 134.9 (C), 135.4 (C), 139.3 (C), 140.7 (C), 144.3 (C), 144.8 (C), 169.1 (CO₂Me), 169.8

(<u>C</u>O₂Me); IR (Nujol) 1748, 1733, 1598, 1370, 1173, 1089, 813, 730, 703, 667 cm⁻¹; HRMS (ESI) calcd for $C_{31}H_{30}NO_6S$ [M+H]⁺: 544.1788, found: 544.1785.

Dimethyl 2-[(6-fluoro-2-methyl-1-phenyl-4-tosyl-3,4-dihydrocyclopenta[*b*]indol-3yl)methyl]malonate (30)

BF₃·Et₂O, 3 h (25 °C); yield 76 mg (60%); yellow oil; R_f 0.55 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 2.11$ (s, 3H, CH₃C(2)), 2.32 (s, 3H, CH₃, Ts), 2.82 (ddd, ²*J* = 13.8, ³*J* = 6.2, ³*J* = 4.1 Hz, 1H, C(1')H₂), 2.85 (dd, ³*J* = 6.2, ³*J* = 5.9 Hz, 1H, C(2')H), 3.34 (ddd, ²*J* = 13.8, ³*J* = 5.9, ³*J* = 5.0 Hz, 1H, C(1')H₂), 3.46 (s, 3H, OCH₃),

3.58 (s, 3H, OCH₃), 3.88 (dd, ${}^{3}J = 5.0$, ${}^{3}J = 4.1$ Hz, 1H, C(3)H), 6.89 (ddd, ${}^{3}J_{HF} = 8.9$, ${}^{3}J_{HH} = 8.7$, ${}^{4}J_{HH} = 2.3$ Hz, 1H, C(7)H), 7.19 (d, ${}^{3}J = 8.3$ Hz, 2H, Ts), 7.23 (dd, ${}^{3}J_{HH} = 8.7$, ${}^{4}J_{HF} = 5.4$ Hz, 1H, C(8)H), 7.34–7.38 (m, 2H, Ph), 7.44-7.47 (m, 3H, Ph), 7.67 (d, ${}^{3}J = 8.3$ Hz, 2H, Ts), 7.82 (dd, ${}^{3}J_{HF} = 9.9$, ${}^{4}J_{HH} = 2.3$ Hz, 1H, (C(5)H); 13 C NMR (CDCl₃, 150 MHz) $\delta = 13.2$ (<u>C</u>H₃C(2)), 21.5 (CH₃, Ts), 28.4 (C(1')H₂), 46.9 (C(2')H), 49.1 (C(3)H), 52.3 (OCH₃), 52.5 (OCH₃), 102.8 (${}^{2}J_{CF} = 28$ Hz, C(5)H), 111.8 (${}^{2}J_{CF} = 23$ Hz, C(7)H), 120.5 (${}^{3}J_{CF} = 9$ Hz, C(8)H), 121.3 (C), 126.7 (2×CH, Ts), 127.5 (CH, *para*-Ph), 128.4 (2×CH), 128.8 (2×CH), 129.8 (2×CH, Ts), 132.0 (C), 134.5 (CSO₂), 134.8 (C), 135.2 (C(1)), 139.6 (C(2)), 140.9 (${}^{3}J_{CF} = 11$ Hz, C(4a)), 144.3 (${}^{4}J_{CF} = 4$ Hz, C(8a)), 145.1 (<u>C</u>CH₃, Ts), 160.2 (${}^{1}J_{CF} = 242$ Hz, C(6)F), 169.0 (<u>C</u>O₂Me), 169.8 (<u>C</u>O₂Me); IR (film) 1755, 1740, 1660, 1618, 1605, 1590, 1553, 1496, 1460, 1445, 1386, 1355, 1303, 1278, 1250, 1230, 1198, 1189, 1165, 1128, 1103 1053, 1029, 1005 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₉FNO₆S [M+H]⁺: 562.1694, found: 562.1691.

Dimethyl 2-[(4,5,6-trimethoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3p)

BF₃·Et₂O, 3 h (25 °C); yield 69 mg (52%); yellow oil; R_f 0.63 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 2.06$ (s, 3H, CH₃), 2.61 (ddd, ²J = 14.3, ³J = 5.4, ³J = 4.8 Hz, 1H, C(1')H₂), 2.81 (ddd, ²J = 14.3, ³J = 7.9, ³J = 4.5 Hz, 1H, C(1')H₂), 3.05 (dd, ³J = 7.9, ³J = 5.4 Hz, 1H, C(2')H), 3.32 (s, 3H,

OCH₃), 3.50 (s, 3H, OCH₃), 3.55 (dd, ${}^{3}J = 4.8$, ${}^{3}J = 4.5$ Hz, 1H, C(1)H), 3.69 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 6.85 (s, 1H, C(7)H), 7.32–7.34 (m, 3H, Ph), 7.38–7.41 (m, 2H, Ph); 13 C NMR (CDCl₃, 150 MHz) $\delta = 12.6$ (CH₃), 29.0 (C(1')H₂), 47.2 (C(2')H), 50.6 (C(1)H), 52.3 (CO₂<u>C</u>H₃), 52.6 (CO₂<u>C</u>H₃), 56.4 (OCH₃), 61.0 (2×OCH₃), 104.6 (C(7)H), 126.7 (*para*-CH, Ph), 127.4 (2×*meta*-CH, Ph), 129.3 (2×*ortho*-CH, Ph), 131.5 (C(3a)), 136.8 (C, Ph), 138.7 (C(3)), 140.3 (C(7a)), 140.5 (C(2)), 142.0 (C(5)), 147.6 (C(4)), 151.4 (C(6)), 169.9 (\underline{CO}_2 Me), 170.0 (\underline{CO}_2 Me); HRMS (ESI) calcd for C₂₅H₂₈NaO₇ [M+Na]⁺: 463.1727, found: 463.1720.

Dimethyl 2-[(5,6,7-trimethoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3q)

CO₂Me Yield 28 mg (21%); yellow oil; R_f 0.69 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 2.00$ (s, 3H, CH₃), 2.52 (ddd, ²J = 14.2, ³J = 6.5, ³J = 5.1 Hz, 1H, C(1')H₂), 2.97 (ddd, ²J = 14.2, ³J =

Ph 14.2, ${}^{3}J = 6.5$, ${}^{3}J = 5.1$ Hz, 1H, C(1')H₂), 2.97 (ddd, ${}^{2}J = 14.2$, ${}^{3}J = 7.3$, ${}^{3}J = 4.4$ Hz, 1H, C(1')H₂), 3.15 (dd, ${}^{3}J = 7.3$, ${}^{3}J = 6.5$ Hz, 1H, C(2')H), 3.54 (s, 3H, OCH₃), 3.63 (s, 3H, OCH₃), 3.64 (dd, ${}^{3}J = 5.1$ Hz, ${}^{3}J = 4.4$ Hz, 1H, C(1)H), 3.80 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 4.03 (s, 3H, OCH₃), 6.51 (s, 1H, C(4)H), 7.36–7.39 (m, 3H, Ph), 7.47–7.50 (m, 2H, Ph); 13 C NMR (CDCl₃, 150 MHz) $\delta = 13.1$ (CH₃), 27.6 (C(1')H₂), 47.6 (C(2')H), 49.2 (C(1)H), 52.3 (CO₂<u>C</u>H₃), 52.5 (CO₂<u>C</u>H₃), 56.3 (OCH₃), 60.4 (OCH₃), 61.1 (OCH₃), 99.4 (C(4)H, Ar), 127.2 (*para*-CH, Ph), 127.7 (C(7a)), 128.5 (2×*meta*-CH, Ph), 129.0 (2×*ortho*-CH, Ph), 135.1 (C, Ph), 139.3 (C(3)), 139.4 (C(6)), 141.8 (C(3a)), 142.6 (C(2)), 149.8 (C-OMe), 153.7 (C-OMe), 169.9 (<u>CO₂Me)</u>, 170.0 (<u>CO₂Me)</u>; IR (film) 1750, 1735, 1600, 1470, 1360, 1270, 1125, 1050, 740 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₈NaO₇ [M+Na]⁺: 463.1727, found: 463.1722.

Dimethyl 2-[(2-ethyl-4,5,6-trimethoxy-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3r)

MeO

Me

MeO

MeO

Me TfOH, 5 h (25 °C); yield 79 mg (58%); yellow oil; $R_{\rm f}$ 0.57 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 1.04$ (t, ³J = 7.5 Hz, 3H, CH₂CH₃), 2.12– 2.14 (m, 1H, CH₂CH₃), 2.37–2.39 (m, 1H, CH₂CH₃), 2.49 (ddd, ²J = 14.3, ³J = 5.4, ³J = 4.8 Hz, 1H, C(1')H₂), 2.78 (ddd, ²J = 14.3, ³J = 8.6, ³J = 4.5

Hz, 1H, C(1')H₂), 3.05 (dd, ${}^{3}J = 8.6$, ${}^{3}J = 4.8$ Hz, 1H, C(2')H), 3.28 (s, 3H, OCH₃), 3.58 (s, 3H, OCH₃), 3.61 (dd, ${}^{3}J = 5.4$, ${}^{3}J = 4.5$ Hz, 1H, C(1)H), 3.69 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 6.83 (s, 1H, C(7)H), 7.32–7.34 (m, 3H, Ph), 7.38–7.41 (m, 2H, Ph); 13 C NMR (CDCl₃, 150 MHz) $\delta = 14.8$ (CH₂CH₃), 19.6 (CH₂CH₃), 28.9 (C(1')H₂), 47.27 (C(2')H), 47.28 (C(1)H), 52.3 (OCH₃), 52.6 (OCH₃), 56.4 (OCH₃), 61.0 (2×OCH₃), 104.7 (CH, Ar), 126.7 (*para*-CH, Ph), 127.4 (2×*meta*-CH, Ph), 129.3 (2×*ortho*-CH, Ph), 131.4 (C(3a)), 136.8 (C(Ph)), 138.7 (C(3)), 140.5 (C(7a)), 142.0 (C(5)), 146.3 (C(2)), 147.6 (C(4)), 151.4 (C(6)), 169.9

(<u>C</u>O₂Me), 170.0 (<u>C</u>O₂Me); IR (Nujol) 1748, 1733, 1473, 1436, 1281, 1260, 1237, 1145, 1124, 1034, 702 cm⁻¹; HRMS (ESI) calcd for $C_{26}H_{31}O_7$ [M+H]⁺: 455.2064, found: 455.2059.

Dimethyl 2-[(2-ethyl-5,6,7-trimethoxy-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3s)

 $MeO = CO_2Me$ $MeO = CO_2Me$ CO_2Me CO_2Me

Me Yield 29 mg (21%, estimated purity 90%); yellow oil; $R_{\rm f}$ 0.65 Me (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 1.11$ (t, ³J = 7.6 Hz, 3H, CH₂C<u>H</u>₃),

Ph 2.21–2.27 (m, 1H, C<u>H</u>₂CH₃), 2.41 (ddd, ²*J* = 14.3, ³*J* = 5.7, ³*J* = 5.6 Hz, 1H, C(1')H₂), 2.48–2.54 (m, 1H, C<u>H</u>₂CH₃), 2.97 (ddd, ²*J* = 14.3, ³*J* = 7.9, ³*J* = 4.3 Hz, 1H, C(1')H₂), 3.17 (dd, ³*J* = 7.9, ³*J* = 5.7 Hz, 1H, C(2')H), 3.51 (s, 3H, OCH₃), 3.62 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.83 (dd, ³*J* = 5.6, ³*J* = 4.3 Hz, 1H, C(1)H), 3.87 (s, 3H, OCH₃), 4.03 (s, 3H, OCH₃), 6.46 (s, 1H, C(4)H), 7.32–7.34 (m, 2H, Ph), 7.36–7.39 (m, 1H, Ph), 7.45–7.48 (m, 1H, Ph); ¹³C NMR (CDCl₃, 150 MHz) δ = 14.8 (CH₂C<u>H₃</u>), 19.9 (C<u>H</u>₂CH₃), 27.8 (C(1')H₂), 45.8 (C(1)H), 47.7 (C(2')H), 52.2 (OCH₃), 52.4 (OCH₃), 56.3 (OCH₃), 60.4 (OCH₃), 61.0 (OCH₃), 99.6 (C(4)H), Ar), 127.2 (*para*-CH, Ph), 127.7 (C(7a)), 128.5 (2×*meta*-CH, Ph), 129.0 (2×*ortho*-CH, Ph), 135.2 (C, Ph), 138.9 (C(3)), 139.5 (C(6)), 141.9 (C(3a)), 148.7 (C(2)), 149.9 (C-OMe), 153.8 (C-OMe), 169.9 (<u>C</u>O₂Me), 170.0 (<u>C</u>O₂Me);HRMS (ESI) calcd for C₂₆H₃₁O₇ [M+H]⁺: 455.2064, found: 455.2055.

Dimethyl 2-[(4,5,6-trimethoxy-2,3-diphenyl-1*H*-inden-1-yl)methyl]malonate (3t)

TfOH, 24 h (25 °C); yield 42 mg (28%); yellow oil; R_f 0.63 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 2.34$ (ddd, ²J = 14.3, ³J = 6.0, ³J = 5.1 Hz, 1H, C(1')H₂), 2.68 (ddd, ²J = 14.3, ³J = 8.9, ³J = 4.6 Hz, 1H, C(1')H₂), 3.11 (dd, ³J = 8.9, ³J = 5.1 Hz, 1H, C(2')H), 3.29 (s, 3H, OCH₃), 3.49 (s,

3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 4.13 (ddd, ${}^{3}J = 6.0, {}^{3}J = 4.6, {}^{4}J = 0.6$ Hz, 1H, C(1)H), 6.92 (d, ${}^{4}J = 0.6$ Hz, 1H, C(7)H), 7.06–7.07 (m, 2H, Ph), 7.12–7.14 (m, 1H, Ph), 7.17–7.19 (m, 2H, Ph), 7.33–7.40 (m, 5H, Ph); 13 C NMR (CDCl₃, 150 MHz) $\delta = 29.8$ (C(1')), 47.5 (CH), 48.7 (CH), 52.3 (OCH₃), 52.4 (OCH₃), 59.4 (OCH₃), 61.0 (OCH₃), 61.1 (OCH₃), 104.6 (C(7)H), 126.6 (CH), 126.8 (CH), 127.7 (2×CH), 128.1 (2×CH), 129.2 (2×CH), 129.7 (2×CH), 131.4 (C), 135.0 (C), 137.0 (C), 140.1 (C), 140.9 (C), 142.3 (C), 142.6 (C), 148.5 (C), 152.2 (C), 169.4 (CO₂Me), 169.9 (CO₂Me); IR (Nujol) 1747, 1733, 1684, 1601, 1577, 1466, 1446, 1436, 1259, 1243, 1121, 1026, 701 cm⁻¹; HRMS (ESI) calcd for C₃₀H₃₁O₇ [M+H]⁺: 503.2064, found: 503.2072.

Dimethyl 2-[(5,6,7-trimethoxy-2,3-diphenyl-1*H*-inden-1-yl)methyl]malonate (3u)

 $MeO \xrightarrow{1} CO_2Me$ $MeO \xrightarrow{1} CO_2Me$ $MeO \xrightarrow{5} CO_2Me$ $MeO \xrightarrow{5} Ph$

Yield 24 mg (16%); yellow oil; R_f 0.71 (petroleum ether – ethyl acetate, 2:1).

¹H NMR (CDCl₃, 600 MHz) $\delta = 2.27$ (ddd, ²J = 14.2, ³J = 6.3, ³J = 5.3 Hz, 1H, C(1')H), 2.88 (ddd, ²J = 14.2, ³J = 9.0, ³J = 4.0 Hz, 1H,

C(1')H), 3.24 (dd, ${}^{3}J = 9.0$, ${}^{3}J = 5.3$ Hz, 1H, C(2')H), 3.47 (s, 3H, CO₂CH₃), 3.50 (s, 3H, CO₂CH₃), 3.79 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 4.07 (s, 3H, OCH₃), 4.38 (dd, ${}^{3}J = 6.3$, ${}^{3}J = 4.0$ Hz, 1H, C(1)H), 6.50 (s, 1H, C(4)H), 7.15 (d, ${}^{3}J = 6.9$ Hz, 2H, Ph), 7.16-7.19 (m, 1H, Ph), 7.22 (dd, ${}^{3}J = 7.6$, ${}^{3}J = 6.9$ Hz, 2H, Ph), 7.30 (d, ${}^{3}J = 6.9$ Hz, 2H, Ph), 7.35–7.37 (m, 1H, Ph), 7.41 (dd, ${}^{3}J = 7.6$, ${}^{3}J = 6.9$ Hz, 2H, Ph); 13 C NMR (CDCl₃, 150 MHz): 28.6 (C(1')), 47.0 (CH), 47.9 (CH), 52.2 (CO₂CH₃), 52.3 (CO₂CH₃), 56.3 (OCH₃), 60.5 (OCH₃), 61.1 (OCH₃), 100.1 (C(4)H), 127.0 (CH, Ph), 127.4 (CH, Ph), 128.2 (2×CH), 128.3 (C(7a)), 128.8 (2×CH), 129.2 (2×CH), 129.3 (2×CH), 134.7 (C, Ph), 135.4 (C, Ph), 140.1 (C(3)), 140.2 (COMe), 142.0 (C(3a)), 144.6 (C(2)), 149.9 (COMe), 154.0 (COMe), 169.6(CO₂Me), 169.8(CO₂Me); IR (film) 1730, 1600, 1465, 1360, 1195, 1105, 1025, 830, 700 cm⁻¹; HRMS (ESI) calcd for C₃₀H₃₀NaO₇ [M+Na]⁺: 525.1884, found: 525.1877.

Dimethyl 2-{[4,5,6-trimethoxy-2,3-bis(4-methoxyphenyl)-1*H*-inden-1-yl]methyl}malonate (3v)

TfOH, 15 h (25 °C); yield 125 mg (74%, estimated purity 90%); yellow oil; R_f 0.50 (petroleum ether – ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz, 333K) $\delta = 2.32$ (ddd, ²J = 14.2, ³J = 6.0, ³J = 5.0 Hz, 1H, C(1')H₂), 2.66 (ddd, ²J = 14.2, ³J = 9.0, ³J = 4.5 Hz, 1H, C(1')H₂), 3.11 (dd, ³J = 9.0, ³J = 5.0 Hz, 1H, C(2')H), 3.30 (s, 3H, OCH₃), 3.49 (s, 3H, OCH₃), 3.51 (s, 3H,

OCH₃), 3.76 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 4.05 (dd, ${}^{3}J = 6.0$, ${}^{3}J = 4.5$ Hz, 1H, C(1)H), 6.74 (d, ${}^{3}J = 8.7$ Hz, 2H, Ar), 6.87 (d, ${}^{3}J = 7.7$ Hz, 2H, Ar), 6.89 (s, 1H, C(7)H), 6.99 (d, ${}^{3}J = 8.7$ Hz, 2H, Ar), 7.27 (d, ${}^{3}J = 7.7$ Hz, 2H, Ar); 13 C NMR (CDCl₃, 150 MHz) $\delta = 29.9$ (C(1')), 47.5 (CH), 48.5 (CH), 52.3 (OCH₃), 52.4 (OCH₃), 55.09 (OCH₃), 55.14 (OCH₃), 56.4 (OCH₃), 61.0 (OCH₃), 61.2 (OCH₃), 104.6 (C(7)H), 113.2 (2×CH), 113.6 (2×CH), 127.6 (C), 129.4 (C), 130.3 (2×CH), 130.9 (2×CH), 131.7 (C), 138.4 (C), 140.7 (C), 142.2 (2×C), 148.3 (C), 151.8 (C), 158.2 (C), 158.4 (C), 169.5 (CO₂Me), 169.9 (CO₂Me); IR (film) 1735, 1610, 1450, 1390, 1250, 1065, 740 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₄NaO₉ [M+Na]⁺: 585.2095, found: 585.2095.

Dimethyl 4-(2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)-3-methyl-2-phenylcyclopent-2-ene-1,1dicarboxylate (4)

Cyclopentene **4** was obtained together with indene **3a** when reaction was carried out under non-optimized conditions: SnCl₄, 6 h (-40 °C, EtNO₂); yield 33 mg (27%); yellow oil; R_f 0.43 (petroleum ether – ethyl acetate, 2:1). ¹H NMR (CDCl₃, 600 MHz) $\delta = 1.43$ (d, ⁴J = 1.2 Hz, 3H, CH₃), 2.56 (dd, ²J

 $= 13.7, {}^{3}J = 7.5 \text{ Hz}, 1\text{H}, C(5)\text{H}_{2}), 3.07 \text{ (dd, }{}^{2}J = 13.7, {}^{3}J = 8.3 \text{ Hz}, 1\text{H}, C(5)\text{H}_{2}), 3.58 \text{ (s, 3H, OCH_3)}, 3.70 \text{ (s, 3H, OCH_3)}, 3.85 \text{ (m, 1H, C(4)H)}, 4.25-4.27 \text{ (m, 4H, OCH_2CH_2O)}, 6.73 \text{ (dd, }{}^{3}J = 8.3, {}^{4}J = 2.0 \text{ Hz}, 1\text{H}, C(7')\text{H}), 6.77 \text{ (d, }{}^{4}J = 2.0 \text{ Hz}, 1\text{H}, C(5')\text{H}), 6.84 \text{ (d, }{}^{3}J = 8.3 \text{ Hz}, 1\text{H}, C(8')\text{H}), 7.24-7.33 \text{ (m, 5H, Ph)}; {}^{13}\text{C} \text{ NMR} (CDCl_3, 150 \text{ MHz}) \delta = 14.3 \text{ (CH_3)}, 43.2 \text{ (C(5)H_2)}, 52.2 \text{ (OCH_3)}, 52.4 \text{ (OCH_3)}, 53.6 \text{ (C(4)H)}, 64.3 \text{ (OCH_2)}, 64.4 \text{ (OCH_2)}, 69.4 \text{ (C)}, 116.7 \text{ (CH)}, 117.3 \text{ (CH)}, 127.1 \text{ (CH)}, 127.7 \text{ (2×CH)}, 129.8 \text{ (2×CH)}, 136.1 \text{ (C)}, 136.5 \text{ (C)}, 136.8 \text{ (C)}, 142.3 \text{ (C)}, 143.6 \text{ (C)}, 145.4 \text{ (C)}, 171.8 \text{ (CO}_2\text{Me)}, 172.1 \text{ (CO}_2\text{Me)}; \text{MALDI-TOF MS: } m/z = 409 \text{ [M+1]}^+ \text{ (409 calcd for C}_{24}\text{H}_{25}\text{O}_6\text{)}. \text{ Anal. calcd for C}_{24}\text{H}_{24}\text{O}_6\text{: C}, 70.43; \text{ H}, 5.77; \text{ Found: C}, 70.57; \text{H}, 5.92.$

4-Methyl-5-phenyl-3,3a,8,9-tetrahydroacenaphtho[4,5-b][1,4]dioxin-1(2H)-one (5)

To solution of indene **3a** (150 mg, 0.37 mmol) in MeOH (0.4 mL) the solution of KOH (84 mg, 1.5 mmol) in H₂O (0.75 mL) was added and the resulting mixture was stirred overnight. Then, the reaction mixture was concentrated under reduced pressure and the residue was diluted with H₂O

(10 mL). The resulting solution was once washed with Et₂O (10 mL) and acidified with 1 M HCl up to pH 1. The mixture was extracted with Et₂O (3×10 mL), the combined organic layers were dried with Na₂SO₄ and concentrated. The resulting yellowish oil (85 mg, 0.22 mmol) was dissolved in solution of P₂O₅ (450 mg, 3.1 mmol) in TfOH (3.2 mL). The reaction mixture was stirred at room temperature for 3 h and then poured into ice/water (10 mL). Product **5** was extracted with Et₂O (3×10 mL), the combined organic layers were dried with Na₂SO₄ and concentrated under reduce pressure. Product **5** was purified by column chromatography on silica gel; yield 21 mg (30%); yellowish oil; R_f 0.31 (eluent ethyl acetate).

¹H NMR (CDCl₃, 600 MHz) $\delta = 1.57$ (dddd, ²J = 12.2, ³J = 13.2, ³J = 13.1, ³J = 4.5 Hz, 1H, C(3)H₂), 2.13 (d, ⁴J = 0.6 Hz, 3H, CH₃), 2.50 (ddd, ²J = 12.2, ³J = 5.1, ³J = 4.9, ³J = 2.0 Hz, 1H, C(3)H₂), 2.76 (ddd, ²J = 18.1, ³J = 13.1, ³J = 5.1 Hz, 1H, C(2)H₂), 2.88 (ddd, ²J = 18.1, ³J = 4.5, ³J = 2.0 Hz, 1H, C(2)H₂), 3.36 (ddq, ³J = 13.2, ³J = 4.9, ⁴J = 0.6 Hz, 1H, CH), 4.26–4.29 (m, 2H, CH₂O), 4.30–4.32 (m, 1H, CH₂O), 4.45–4.48 (m, 1H, CH₂O), 6.99 (s, 1H, C(6)H), 7.35–7.38 (m, 2H, CH₂O), 4.30–4.32 (m, 2H, CH₂O), 4.45–4.48 (m, 2H, CH₂O), 4.40–4.32 (m, 2H, CH₂O), 4.45–4.48 (m, 2H, CH₂O), 4.40–4.30 (m, 2H, CH₂O), 4.45–4.48 (m, 2H, CH₂O), 4.40–4.48 (m, 2H, CH₂O), 4.45–4.48 (m, 2H, CH₂O),

1H, Ph), 7.40–7.41 (m, 2H, Ph), 7.46–7.48 (m, 2H, Ph); ¹³C NMR (CDCl₃, 150 MHz) δ = 13.0 (¹*J*_{CH} = 127 Hz, CH₃), 25.9 (¹*J*_{CH} = 131 Hz, CH₂), 40.8 (¹*J*_{CH} = 130 Hz, CH₂), 50.3 (¹*J*_{CH} = 127 Hz, CH), 63.9 (¹*J*_{CH} = 148 Hz, CH₂O), 64.8 (¹*J*_{CH} = 149 Hz, CH₂O), 113.7 (CH), 118.3 (C), 127.3 (CH), 128.5 (2×CH), 128.8 (2×CH), 134.7 (C), 136.1 (C), 137.8 (C), 140.2 (C), 142.9 (C), 143.3 (C), 146.4 (C), 196.5 (C=O); IR (film) 1410, 1395, 1375, 1250, 1050, 920, 750 cm⁻¹; HRMS (ESI) calcd for C₂₁H₁₈NaO₃ [M+Na]⁺: 341.1148, found: 341.1146.

Structural assignments of indenes 3

To elucidate the structure of indenes **3**, the careful analysis of ¹H and ¹³C NMR 1D and 2D spectra and their comparison with the described spectral data of related systems was carried out. Herein we present a summary of the structural characterization of **3**.

The ¹H and ¹³C NMR spectra of **3** were assigned using HSQC, HMBC and NOESY 2D NMR spectroscopy. The NMR data of **3** revealed the formation of indene core, containing CH–CH₂–CH system. In ¹H NMR spectra, this four-spin system is characterized by the following patterns (Figure S1).

Figure S1

To determine what regioisomers were formed *via* annulation the comprehensive assignments of ¹H and ¹³C were made for indenes **3k-m,o-s,u** by means of HSQC, HMBC, and NOESY analysis (Table S1). This allowed us to elucidate a set of spectral criteria which provided correct assignment of **3** to definite regioisomer.

Analysis of chemical shifts for H(4) and H(7) protons of the indene core and their comparison with the literature data support assignments deduced from 2D NMR. Thus, for 5,6-dialkoxy substituted indenes **3a-j,l,m**, H(4) shifts were found to be 0.2–0.3 ppm upfield than H(7) shifts (Table S2). This difference is caused by shielding effect of aromatic substituent at C(3) position of indene due to "ring current" of aryl which is arranged orthogonally to the plane of the indene system.

According to the literature data,^[S11-S17] the same pattern of chemical shifts of the identical protons is observed for the related 3-aryl-5,6-dialkoxyindenes (Table S3).

Table S1. Representative responses in 2D spectra of indenes 3

S17

 S_a Different solvents were used to record 2D spectra for **3r**: CDCl₃ (HMBC), DMSO-d₆ (NOESY).

 Table S2. Chemical shifts of H(4) and H(7) for 3-aryl-5,6-dialkoxyindenes 3a-j,l,m

Indene 3	\mathbf{R}^1	x	\mathbf{R}^2	R ³	$\delta_{ m H}$ (p	opm)
					H(4)	H(7)
a	Me	Н	-CH ₂	CH ₂ -	6.71	6.94
b	Ph	Н	-CH ₂	CH ₂ -	6.74	7.05
с	$4-MeOC_6H_4$	MeO	-CH ₂	CH ₂ -	6.72	7.02
d	Me	Н	-C	-CH ₂ -		6.93
e	Et	Н	-C	-CH ₂ -		6.95
f	Ph	Н	-C	H ₂ -	6.71	7.05
g	4-MeOC ₆ H ₄	MeO	-C	H ₂ -	6.69	7.01
h	Me	Н	Me	Me	6.74	7.01
i	Et	Н	Me	Me	6.70	7.03
j	Ph	Η	Me	Me	6.74	7.12
l	Me	Η	Et	Me	6.75	7.01
m	Me	Η	Me	Et	6.75	7.02

Table S3. Chemical shifts of H(4) and H(7) for related 3-aryl-5,6-dialkoxyindenes

\mathbf{R}^1	\mathbf{R}^2	R^3	Ar	R^4	R ⁵	$\delta_{ m H}$ (ppm)	[Ref]
						H(4)	H(7)	
Η	Ph	Н	Ph	Me	Н	6.89	7.04	[S11]
Η	Ph	Ph	Ph	Η	Me	6.51	6.77	[S12]
Η	Н	Me	Ph	-C	H ₂ -	6.60	6.78	[S13]
Η	Н	Me	Ph	Me	Me	6.78	7.02	[S13]
Η	Cl	Me	Ph	-C	H ₂ -	6.62	7.02	[S13]
Η	Cl	Me	Ph	Me	Me	6.70	7.14	[S13]
Η	OH	Ph	Ph	-C	H ₂ -	6.64	>7.19	[S14]
Me	OH	Ph	Ph	Me	Me	6.75	7.12	[S15]
Η	OH	CO_2Me	$4-MeOC_6H_4$	-C	H ₂ -	6.70	7.14	[S16]
Η	2-oxooxazolidin-1-yl	OMe	Ph	Me	Me	6.76	6.95	[S17]

The above spectral data allow for clear-cut differentiation between regioisomeric indenes with other sets of substituents in benzene moiety of the indene system. Thus, according to HMBC data, indene **3k** was assigned to 6-methoxy- rather than 5-methoxy-isomer. Additional evidence is provided by comparison of chemical shifts of H(4) and H(7) in 3-aryl-5-methoxy- and 3-aryl-6-methoxy-indenes (Table S4). In 5-methoxyisomers, both 3-aryl and 5-methoxy groups have shielding effect on H(4), whereas H(7) is not induced by these substituents. As a result, shifts of these two protons are quite different.^[S8,S12] Oppositely, in 3-aryl-6-methoxyindenes, H(4) is shielded by aryl group while H(7) is shielded by methoxy group that provides similar values of chemical shifts for these protons.^[S8]

5-MeO-Indenes	$\delta_{\rm H}$ (1	opm)	[Ref]	6-MeO-Indenes	$\delta_{\rm H}$ (1	opm)	[Ref]/
	H(4)	H(7)			H(4)	H(7)	label
H HO Ph F H HO Ph Ph MeO H Ph H Ph	6.76	>7	[S14]	H MeO ⁷ ¹ ² CO ₂ Bu H Ph	7.14	7.10	[S14]
$MeO = H OH$ $C_{6}H OH$ $C_{6}H_{4}-4-OMe$	6.74	8.4	[S18]	$MeO \xrightarrow{7}{1} CO_2Me$ $G^{2} Et$ H H H H H H	7.05	7.04	3k

Table S4. Chemical shifts of H(4) and H(7) for 3-aryl-5-methoxy- and 3-aryl-6-methoxyindenes

Similar analysis can be applied to make structural assignments for trimethoxy-substituted indenes. In 3-aryl-4,5,6-trimethoxyindenes, H(7) is shielded by two methoxy groups at C(4) and C(6) positions of indene core. This shielding effect provides H(7) chemical shifts at *ca*. 6.9 ppm, according to the literature, and *ca*. 6.8-6.9 ppm for synthesized indenes **3p,r,t,v** (Table S5).

In 5,6,7-trimethoxy-substituted isomers, H(4) atom is shielded not only two methoxy groups at C(5) and C(7) but also aryl substituent at C(3). This additional shielding effect leads to upfield shift of H(4) resonance which are observed at *ca*. 6.5 ppm for indenes **3q,s,u** (Table S5).

Table S5. Chemical shifts of H(4) and H(7) for 3-aryl-4,5,6- and 3-aryl-5,6,7-trimethoxyindenes

Analogous regularities are observed for chemical shifts of C(3a) and C(7a) in ¹³C NMR spectra of 4,5,6- and 5,6,7-trimethoxyindenes (Table S6). In 4,5,6-trimethoxyindenes **3p,r,t,v**, C(3a) is induced by shielding effect of two methoxy groups at C(4) and C(6) that leads to upfield shift of C(3a) resonance in comparison with C(7a) resonance. Directly opposed regularity is observed for 3-aryl-5,6,7-trimethoxyindenes **3q,s,u** wherein C(7a) resonance is upfield shifted due to shielding effect of two methoxy groups at C(7) and C(5).

Table S6.	Chemical shifts	of C(3a) and	d C(7a) for	4,5,6- and	5,6,7-trimethox	yindenes
-----------	-----------------	--------------	-------------	------------	-----------------	----------

4.5.6-Trimethoxyindenes 3	$\delta_{ m C}$ (ppm)		5.6.7-Trimethoxyindenes 3	$\delta_{\rm C}$ (ppm)	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C(3a)	C(7a)		C(3a)	C(7a)
$MeO \xrightarrow{7}_{4} \xrightarrow{1}_{3a} CO_2Me$ $MeO \xrightarrow{6}_{4} \xrightarrow{3a}_{3a} \xrightarrow{3}_{3a}$ $MeO \xrightarrow{7}_{4} Ph \qquad 3p$	131.5	140.3	$\begin{array}{c} & & & CO_2Me \\ MeO & & & CO_2Me \\ MeO & & & & CO_2Me \\ & & & & & CO_2Me \\ & & & & & & CO_2Me \\ & & & & & & CO_2Me \\ & & & & & & & CO_2Me \\ & & & & & & & & CO_2Me \\ & & & & & & & & & \\ & & & & & & & & $	141.8	127.7
$MeO \xrightarrow{7}_{43a} (CO_2Me)$	131.4	140.5	$MeO + CO_2Me + CO_2$	141.9	127.7
-	-	-	$MeO \qquad CO_2Me \\ MeO \qquad T \qquad Ta \qquad CO_2Me \\ MeO \qquad T \qquad Ta \qquad Ta \qquad CO_2Me \\ MeO \qquad Same a \ Same \ Same a \ Same \ Same a \ Same \ Same $	142.0	128.3

Strong downfield shift (*ca.* 0.5 ppm) of one of H(1') resonances is observed in ¹H NMR spectra of cyclopentaindoles **3n,o**. This is apparently caused by deshielding effect of SO₂ moiety of the tosyl group that together with HMBC and NOESY data supports formation of isomers **3n,o** with unidirectional tosyl and methylmalonate fragments.

DFT calculations

In order to provide a better understanding of regioselectivity of D-A cyclopropane annulation to alkynes, we carried out DFT calculations of energy barriers for three model a) the reaction processes. the prototypes of which were: of dimethyl 2-(4methoxyphenyl)cyclopropane-1,1-dicarboxylate (1d) with 1-phenylbutyne (2b) which affords rearranged product $3\mathbf{k}$ exclusively; **b**) the reaction of dimethyl 2-(3,4,5the trimethoxyphenyl)cyclopropane-1,1-dicarboxylate (1h) with 1-phenylpropyne (2a), producing both "normal" and rearranged isomers **3p** and **3q**; c) the reaction of **1h** with 4,4'-dimethoxytolan (2d) which leads to the "normal" product 3v exclusively (Table S7). Vinyl cations C1, C1' and C1", which were chosen as starting points of the calculations, are simplified models of intermediates I-2, I-2' and I-2'' due to the absence of the malonyl fragment in their structure (the fragment does not participate in this annulation).

Table S7

Experiment

Calculations:

Starting points

a) C1 as a starting point

We started our calculations with the geometry optimization of C1 in a conformation appropriate for the intramolecular electrophilic attack of the vinyl cation moiety on the *ortho*and *ipso*-atoms of the proximal aryl group (Figure S1). σ -Complex P1 formed *via* an *ortho*attack was found to be 1.2 kcal/mol more stable than the isomeric σ -complex P2 which is formed *via* an *ipso*-attack. This minor difference in stability between **P1** and **P2** can be ascribed to the stabilization of **P2** by a *para*-methoxy group despite the obvious concurrent destabilization due to the presence of a highly strained *spiro*-cyclobutene fragment. However, the energy barrier of **P2** formation *via* **TS2** was found to be 7.5 kcal/mol lower than that for **P1** formation *via* **TS1**. The reversed transformation of **P2** to vinyl cation **C1** *via* **TS2** has a calculated activation barrier of 4.9 kcal/mol while the formation of allyl cation **P3** *via* **TS3** has an analogous barrier of 4.1 kcal/mol. Moreover, the latter route is thermodynamically preferable as well: allyl cation **P3** was found to be the most stable intermediate (-30.6 kcal/mol) within both calculated pathways. The intramolecular *ortho*-attack of the allyl cation in **P3** produces a new *ortho-σ*-complex **P4** which is 17.7 kcal/mol more stable than *ipso-σ*-complex **P2** and 16.5 kcal/mol more stable than *ortho-σ*-complex **P1**.

Figure S1. DFT-computed pathways for *ortho* (red) and *ipso* (blue) attacks within vinyl cation C1

b) C1' as a starting point

In contrast to C1, vinyl cation C1' contains two additional MeO groups at the C(3) and C(5) positions of an aromatic substituent acting as a nucleophile. These groups influence the energy barriers and reaction thermodynamics for *ortho*-attacks significantly due to their S24

activation and stabilization of intermediates P1' and P4' produced in the reaction (Figure S2). For instance, σ -complex P1', the formation of which was found to be a virtually barrier-less process, is 27.2 kcal/mol more stable than the initial vinyl cation C1'. Oppositely, these two MeO groups have no significant effect on the *ipso*-attack. The calculated energy barrier for the *ipso*-attack (TS2') is 0.4 kcal/mol. This suggests that both *ortho*- and *ipso*-attacks are possible though the *ortho*-path is thermodynamically more preferable. If formed, *ipso*- σ -complex P2' can undergo a reverse transformation *via* TS2' to C1' or be further transformed *via* TS3' to allyl cation P3' which is 30.7 kcal/mol more stable than the initial vinyl cation C1'. The activation energy of the subsequent *ortho*-attack *via* TS4' is 5.9 kcal/mol lower than the analogous barrier for TS4 that is also provided by the activating effect of MeO groups. An *ortho*-attack in P3' leads to a new σ -complex P4' which is 15.7 kcal/mol more stable than the *ortho-* σ -complex P1'.

Figure S2. DFT-computed pathways for *ortho* (red) and *ipso* (blue) attacks within vinyl cation C1'. Relaxed surface scan along C-C bond forming *via ortho* path

c) C1" as a starting point

In contrast to C1', vinyl cation C1'' contains two additional MeO groups at the *para*-positions of two aromatic substituents at the double bond. One of these groups provides

additional stabilization of the vinyl cationic center in C1" that ensures a more positive value of Δ H_r. For example, *ortho-σ*-complex P1" is 16.5 kcal/mol more stable than C1", while for P1' formation, this gain in energy is 27.2 kcal/mol. Meanwhile, for the *ipso-*attack, this effect becomes more significant. Namely, while the transformation of C1' to *ipso-σ*-complex P2' is exothermic (Δ H_r = -3.6 kcal/mol), the analogous cyclization of C1" to P2" is an endothermic process (Δ H_r = +3.0 kcal/mol). Moreover, the stabilization of the cationic center in C1" results in the activation barriers of P1" and P2" formation becoming 0.7 and 4.1 kcal/mol higher than those for P1' and P2', respectively. In contrast to C1', the energy barrier of *ipso-*attack for C1" becomes tangibly higher (by 3.8 kcal/mol) than that of *ortho-*attack. Analogously to P2 and P2', *ipso-σ-*complex P2", if formed, can undergo reverse transformation *via* TS2" to initial cation C1" or be transformed *via* TS3" to thermodynamically more preferable allyl cation P3". However, in contrast to the previous two cases, the activation barrier of P2"-*via*-TS3"-to-P3" transformation is higher than the barrier of P2"-*via*-TS2"-to-C1" transformation. Therefore, the increase in activation barrier of the *ipso-*attack while the decrease in the barrier of the reverse transformation reduces possibility of reaction *via ipso-*path.

Figure S3. DFT-computed pathways for *ortho* (red) and *ipso* (blue) attacks within vinyl cation C1"

Therefore, the obtained results were found to strongly correlate with the experimental data. Regiochemistry of the annulation is determined by the relative activating energies of *ortho*-and *ipso*-attacks (kinetically controlled process). Thus, the model reaction **a**), wherein the activating barrier of *ipso*-attack is 7.5 kcal/mol lower than that of *ortho*-attack, leads to rearranged product **3k** exclusively. The model reaction **b**), wherein analogous barriers have close values, yields the mixture of "normal" and rearranged products **3p** and **3q**. Finally, the reaction **c**), wherein the barrier of the *ortho*-attack is 3.8 kcal/mol lower than that for the *ipso*-attack, affords "normal" product **3v** only.

Figure S4. IRC scan for C1-to-P1 transformation

Figure S5. IRC scan for for C1-to-P2 transformation

a) C1 as a starting point

C1

- $E = -771.2293 E_h$
- $E_{ZPE}=0.3184\ E_h$
- $H^{298} = -770.8933 E_h$

С	2.244164000	-0.617121000	-1.036401000
С	0.877567000	-0.741494000	-0.725358000
С	0.104292000	0.438309000	-0.671891000
С	0.674185000	1.684584000	-0.886525000
С	2.048779000	1.795063000	-1.194021000
С	2.832245000	0.626656000	-1.263360000
С	0.237571000	-2.108062000	-0.456945000
С	0.507510000	-2.450709000	1.006050000
Η	2.869093000	-1.509535000	-1.121995000
Н	0.077986000	2.598582000	-0.852803000
Н	3.889062000	0.677629000	-1.523746000
С	1.109968000	-1.515006000	1.691999000
0	2.509843000	3.034105000	-1.415489000
С	3.858024000	3.225555000	-1.821933000
Η	4.563557000	2.916783000	-1.031758000
Η	4.081087000	2.670850000	-2.748964000
Η	3.973697000	4.300015000	-2.010072000
С	0.638370000	-3.216367000	-1.437104000
Н	1.709751000	-3.462945000	-1.377104000

Η	0.067831000	-4.138985000	-1.254988000
Н	0.420718000	-2.885697000	-2.464837000
Η	-0.967354000	0.371220000	-0.460137000
Н	-0.859382000	-1.985136000	-0.523408000
С	0.083539000	-3.768364000	1.616273000
Н	-0.989458000	-3.939137000	1.431261000
Н	0.642943000	-4.581358000	1.127517000
Н	0.276927000	-3.815106000	2.696706000
С	1.709641000	-0.619912000	2.555722000
С	0.948533000	0.442316000	3.144253000
С	3.094430000	-0.760234000	2.893893000
С	1.550741000	1.313434000	4.037719000
С	3.669354000	0.101214000	3.813818000
С	2.903345000	1.136893000	4.378514000
Н	-0.101762000	0.557982000	2.869584000
Η	3.675173000	-1.562888000	2.435242000
Н	0.975435000	2.127371000	4.483705000
Н	4.715229000	-0.022381000	4.103003000
Н	3.369620000	1.819334000	5.094603000

TS1

$$\begin{split} & \text{Imaginary frequency } 210i \text{ cm}^{-1} \\ & \text{E} = -771.2158 \text{ E}_h \\ & \text{E}_{\text{ZPE}} = 0.3182 \text{ E}_h \\ & \text{H}^{298} = -770.8802 \text{ E}_h \\ & \text{C} \qquad -0.588245000 \quad -0.150329000 \quad -2.956476000 \\ & \text{C} \qquad -1.078457000 \quad -0.674195000 \quad -1.763800000 \end{split}$$

С	-1.255187000	0.208463000	-0.657384000
С	-0.900181000	1.571344000	-0.759339000
С	-0.377479000	2.079109000	-1.955095000
С	-0.254946000	1.205506000	-3.062187000
С	-1.198047000	-2.159758000	-1.446487000
С	-0.280722000	-2.308448000	-0.240870000
Η	-0.424892000	-0.795115000	-3.821444000
Η	-1.069925000	2.261906000	0.069702000
Η	0.138624000	1.576060000	-4.009502000
С	0.057018000	-1.195140000	0.396263000
0	-0.047476000	3.378655000	-1.977586000
С	0.368100000	3.994519000	-3.190953000
Η	1.296662000	3.542264000	-3.578749000
Η	-0.420755000	3.935787000	-3.960213000
Η	0.558883000	5.046818000	-2.947363000
С	-0.895210000	-3.116213000	-2.598289000
Η	0.143839000	-3.026799000	-2.952784000
Η	-1.065956000	-4.158944000	-2.292495000
Η	-1.565867000	-2.913390000	-3.446383000
Η	-1.930453000	-0.078515000	0.154668000
Η	-2.231950000	-2.367353000	-1.102588000
С	0.246146000	-3.650938000	0.208622000
Η	-0.597111000	-4.334906000	0.400280000
Η	0.862826000	-4.100769000	-0.585633000
Η	0.853106000	-3.578358000	1.120530000
С	0.625640000	-0.570699000	1.533082000
С	0.041321000	-0.807515000	2.808460000
С	1.771050000	0.262519000	1.435666000
С	0.618974000	-0.263534000	3.949940000
С	2.319180000	0.826023000	2.580637000
С	1.749261000	0.558916000	3.836344000
Η	-0.849500000	-1.435296000	2.882813000
Η	2.207670000	0.463833000	0.455384000
Η	0.184550000	-0.472886000	4.930176000
Η	3.198564000	1.469324000	2.505753000

P1

 $E = -771.2385 E_h$

 $E_{ZPE}=0.3182\;E_h$

 $H^{298} = \text{-}770.9020 \ E_h$

С	-1.062573000	-0.053568000	-3.097790000
С	-0.902700000	-0.683632000	-1.878830000
С	-0.443020000	0.083910000	-0.717202000
С	0.017797000	1.456390000	-0.925961000
С	-0.152061000	2.064040000	-2.168450000
С	-0.695856000	1.297132000	-3.236611000
С	-1.008271000	-2.129752000	-1.492087000
С	-0.270640000	-2.186275000	-0.154442000
Н	-1.425245000	-0.595728000	-3.973228000
Н	0.394657000	2.047897000	-0.089207000
Н	-0.825684000	1.764302000	-4.215002000
С	0.054443000	-0.945761000	0.298063000
0	0.230841000	3.340413000	-2.271063000
С	0.116229000	4.047251000	-3.503649000
Н	0.727442000	3.578400000	-4.292212000
Н	-0.934559000	4.111899000	-3.832589000
Н	0.495374000	5.056775000	-3.305883000
С	-0.556518000	-3.113385000	-2.586410000
Н	0.502279000	-2.965458000	-2.849179000
Н	-0.690131000	-4.148852000	-2.241435000
Н	-1.163057000	-2.991690000	-3.495844000
Н	-1.457921000	0.386471000	-0.293357000

Η	-2.081670000	-2.347618000	-1.291970000
С	0.012362000	-3.494267000	0.518294000
Η	-0.920767000	-4.006160000	0.813262000
Н	0.545609000	-4.177730000	-0.163229000
Н	0.625818000	-3.363850000	1.418917000
С	0.617591000	-0.545366000	1.604246000
С	0.047848000	-1.028198000	2.799391000
С	1.703221000	0.350034000	1.690445000
С	0.548671000	-0.628124000	4.039847000
С	2.201722000	0.750099000	2.931665000
С	1.622858000	0.265009000	4.109193000
Н	-0.806118000	-1.708555000	2.752815000
Н	2.181858000	0.722234000	0.780799000
Н	0.090260000	-1.012142000	4.954310000
Н	3.048884000	1.438529000	2.981906000
Н	2.011084000	0.588007000	5.078243000

TS2

Imaginary frequency $176i \text{ cm}^{-1}$ $E = -771.2281 E_h$ $E_{ZPE} = 0.3181 E_h$ $H^{298} = -770.8923 E_h$ C 0.182960000 -1.151689000 -1.315371000 C -0.805797000 -1.849442000 -0.566355000C -1.654516000 -1.073379000 -0.282020000

С	-1.654516000	-1.073379000	0.282029000
С	-1.431567000	0.269487000	0.479177000

С	-0.372235000	0.926445000	-0.204826000
С	0.424922000	0.199754000	-1.122060000
С	-1.063535000	-3.359980000	-0.754304000
С	-0.088003000	-3.870927000	0.288466000
Н	0.796365000	-1.698087000	-2.034844000
Н	-2.058832000	0.866215000	1.144063000
Н	1.214941000	0.691971000	-1.689144000
С	0.480226000	-2.795065000	0.807136000
0	-0.221976000	2.214029000	0.074455000
С	0.806567000	2.989543000	-0.537910000
Η	1.801175000	2.575890000	-0.302692000
Η	0.666592000	3.041415000	-1.629782000
Η	0.719295000	3.994964000	-0.110304000
С	-0.880106000	-3.905782000	-2.171345000
Η	0.164036000	-3.835769000	-2.513266000
Η	-1.180030000	-4.963359000	-2.223893000
Η	-1.510369000	-3.343801000	-2.877148000
Н	-2.475458000	-1.567850000	0.808336000
Н	-2.090792000	-3.585228000	-0.415592000
С	0.149943000	-5.303385000	0.667591000
Η	-0.793911000	-5.765043000	1.003461000
Н	0.500971000	-5.874449000	-0.207906000
Η	0.893446000	-5.403065000	1.470097000
С	1.305096000	-2.006196000	1.636808000
С	0.801277000	-1.487485000	2.860575000
С	2.630478000	-1.680167000	1.237229000
С	1.604496000	-0.680639000	3.659126000
С	3.424880000	-0.878063000	2.047563000
С	2.910738000	-0.374017000	3.252123000
Η	-0.214707000	-1.741493000	3.169288000
Η	3.017665000	-2.076171000	0.296170000
Η	1.216992000	-0.284463000	4.600097000
Η	4.444530000	-0.632491000	1.742071000
Η	3.537670000	0.261836000	3.882808000

E = -771.2365 E_h $E_{ZPE} = 0.3192 E_{h}$ $H^{298} = -770.9001 E_h$ С 0.482924000 -0.743049000 -0.982154000 С -0.250533000 -1.612736000 -0.051061000 С -1.344047000 -0.938426000 0.671387000 С -1.689850000 0.359235000 0.451740000 С -0.947145000 1.139373000 -0.492492000 С 0.152581000 0.562914000 -1.208672000 С -0.783292000-3.033257000 -0.726644000 С 0.143452000 -3.728811000 0.237882000 Η 1.332408000 -1.177569000 -1.515534000 Η 0.846284000 -2.512545000 0.978398000 Η 0.728297000 1.163096000 -1.913826000 С 0.616838000 -2.592136000 0.801376000 0 -1.341262000 2.373642000 -0.627204000 С -0.724427000 3.307455000 -1.531950000 Η 0.335341000 3.448400000 -1.272106000 Η -0.832243000 2.957305000 -2.569645000 Η -1.269813000 4.247272000 -1.394939000 -0.591129000С -3.235990000 -2.222603000 Η 0.465665000 -3.180849000 -2.522972000 Η -0.957470000 -4.240726000 -2.489972000 Η -1.171511000 -2.512504000 -2.814260000 Η -1.902959000 -1.535115000 1.398645000

Η	-1.850811000	-3.152567000	-0.469255000
С	0.359878000	-5.192431000	0.409057000
Η	-0.539403000	-5.758529000	0.117779000
Н	1.184991000	-5.552973000	-0.230368000
Η	0.609671000	-5.456306000	1.446995000
С	1.574174000	-2.223067000	1.844194000
С	1.724037000	-0.882176000	2.250643000
С	2.375837000	-3.203715000	2.467249000
С	2.633833000	-0.532572000	3.251262000
С	3.277485000	-2.852601000	3.471445000
С	3.410127000	-1.516828000	3.869397000
Η	1.118204000	-0.100708000	1.785573000
Η	2.300857000	-4.245945000	2.153244000
Η	2.734971000	0.511538000	3.558001000
Η	3.884194000	-3.627091000	3.945826000
Н	4.116107000	-1.243770000	4.657489000

TS3

Imaginary frequency 259*i* cm⁻¹

$$\begin{split} & E = -771.2302 \; E_h \\ & E_{ZPE} = 0.3183 \; E_h \end{split}$$

 $H^{298} = -770.8935 \ E_h$

С	0.535134000	-0.594072000	-0.832580000
С	-0.029193000	-1.283777000	0.293544000
С	-1.089403000	-0.599742000	1.003803000
С	-1.609815000	0.579709000	0.545902000
С	-1.062072000	1.205322000	-0.618975000

С	0.023546000	0.601843000	-1.301431000
С	-0.685628000	-2.885319000	-0.734196000
С	0.334549000	-3.496212000	0.148284000
Н	1.389036000	-1.049712000	-1.340441000
Н	-2.432323000	1.086140000	1.054532000
Н	0.469467000	1.076156000	-2.174985000
С	0.704895000	-2.444120000	0.925530000
0	-1.632015000	2.337825000	-0.974074000
С	-1.242301000	3.032306000	-2.165371000
Н	-0.193376000	3.360036000	-2.102322000
Н	-1.390512000	2.390175000	-3.047737000
Н	-1.897511000	3.907515000	-2.229874000
С	-0.665828000	-3.019742000	-2.223262000
Н	0.347546000	-3.082524000	-2.643874000
Н	-1.199088000	-3.957398000	-2.473697000
Н	-1.226980000	-2.212510000	-2.715911000
Н	-1.496965000	-1.066551000	1.904456000
Η	-1.695896000	-2.781092000	-0.319761000
С	0.797633000	-4.914576000	0.031205000
Н	0.216036000	-5.581927000	0.690026000
Η	0.660271000	-5.288489000	-0.995533000
Η	1.858979000	-5.019985000	0.301056000
С	1.621566000	-2.304190000	2.057857000
С	2.094480000	-1.030480000	2.439977000
С	2.040628000	-3.429151000	2.803316000
С	2.958780000	-0.885313000	3.526110000
С	2.914337000	-3.280896000	3.879464000
С	3.376709000	-2.010537000	4.243896000
Н	1.796613000	-0.146635000	1.870135000
Н	1.655970000	-4.419667000	2.555811000
Н	3.317629000	0.106263000	3.812597000
Н	3.230696000	-4.158696000	4.447689000
Н	4.057839000	-1.895905000	5.090760000

- $E = -771.2818 \ E_h$
- $E_{ZPE}=0.3198\;E_h$
- $H^{298} = \text{-}770.9430 \ E_h$

С	0.911525000	-0.492658000	-1.341004000
С	0.662528000	-0.727802000	0.045571000
С	0.285718000	0.402538000	0.841684000
С	0.147028000	1.653851000	0.288410000
С	0.402498000	1.861657000	-1.093793000
С	0.798337000	0.767139000	-1.900861000
С	-0.455046000	-3.236385000	-1.086599000
С	0.581377000	-3.232509000	-0.191966000
Η	1.264290000	-1.314888000	-1.964660000
Η	-0.177534000	2.509152000	0.883844000
Н	1.044382000	0.912323000	-2.952570000
С	0.790349000	-2.035533000	0.618798000
0	0.249193000	3.100992000	-1.531624000
С	0.444645000	3.432368000	-2.908509000
Н	1.493272000	3.271292000	-3.206354000
Н	-0.224629000	2.842655000	-3.553584000
Η	0.196168000	4.496155000	-3.000016000
С	-0.911928000	-4.399149000	-1.894788000
Н	-0.159671000	-5.191826000	-2.000502000
Н	-1.807647000	-4.843891000	-1.419659000
Н	-1.240973000	-4.070128000	-2.894016000
Н	0.043722000	0.255562000	1.895045000
Н	-1.074536000	-2.336804000	-1.157529000
С	1.437777000	-4.465739000	0.032164000
Н	0.872696000	-5.291019000	0.493651000

Η	1.821509000	-4.838877000	-0.930789000
Η	2.301819000	-4.250933000	0.673002000
С	1.140494000	-2.196241000	2.031456000
С	2.070715000	-1.333172000	2.664101000
С	0.567094000	-3.246808000	2.790794000
С	2.427943000	-1.531670000	3.996437000
С	0.905937000	-3.421987000	4.127794000
С	1.847732000	-2.574140000	4.728826000
Н	2.552948000	-0.541714000	2.087843000
Н	-0.172350000	-3.903959000	2.328683000
Η	3.167748000	-0.878050000	4.464427000
Η	0.439420000	-4.220637000	4.708676000
Н	2.136904000	-2.734967000	5.770527000

TS4

Imaginary frequency 330*i* cm⁻¹

 $E = -771.2530 E_h$ $E_{ZPE}=0.3188\ E_h$ $H^{298} = \text{-}770.9162 \ E_h$ С 0.269095000 -0.662414000 -0.965758000 С 0.456426000 -0.7734270000.470916000 С -0.065050000 0.246991000 1.306002000 С -0.8477220001.240720000 0.760395000 С -1.1123930001.315265000 -0.650226000С -0.5333260000.387967000-1.507654000С -0.318390000 -2.582129000 -1.041987000 С 0.649798000 -3.027467000 -0.058383000Η 1.107371000 -0.967284000 -1.599303000

Η	-1.324004000	1.993713000	1.393208000
Η	-0.608523000	0.495168000	-2.589993000
С	0.936521000	-2.055007000	0.911428000
0	-1.876675000	2.341885000	-1.016081000
С	-2.229779000	2.525140000	-2.384278000
Н	-1.337448000	2.733815000	-2.997068000
Н	-2.755148000	1.638845000	-2.778491000
Н	-2.900167000	3.392188000	-2.414572000
С	-0.419345000	-3.192617000	-2.408044000
Η	0.559735000	-3.368062000	-2.877346000
Н	-0.932043000	-4.168682000	-2.331829000
Η	-1.032805000	-2.569658000	-3.074540000
Η	0.069541000	0.187167000	2.387990000
Н	-1.281186000	-2.273444000	-0.623931000
С	1.337231000	-4.351987000	-0.202657000
Η	0.616366000	-5.185976000	-0.232994000
Н	1.889941000	-4.383626000	-1.158334000
Η	2.056187000	-4.532329000	0.605594000
С	1.631131000	-2.271503000	2.191170000
С	2.592045000	-1.343462000	2.647804000
С	1.346387000	-3.401870000	2.986710000
С	3.257385000	-1.548872000	3.857658000
С	2.005182000	-3.597408000	4.200253000
С	2.965076000	-2.675268000	4.634808000
Н	2.840155000	-0.472998000	2.034542000
Н	0.584395000	-4.116093000	2.664889000
Η	4.008165000	-0.829876000	4.194363000
Н	1.765223000	-4.468168000	4.814884000
Н	3.484075000	-2.835170000	5.582784000

- $E = -771.2666 E_h$
- $E_{ZPE}=0.3201\ E_h$
- $H^{298} = -770.9283 E_h$

С	0.050385000	-0.853526000	-0.933793000
С	0.434419000	-0.784056000	0.497412000
С	0.171446000	0.385306000	1.239010000
С	-0.622764000	1.362522000	0.671847000
С	-1.175510000	1.269969000	-0.662325000
С	-0.884406000	0.178854000	-1.440700000
С	-0.172606000	-2.388318000	-1.167056000
С	0.633916000	-2.994560000	-0.040952000
Н	1.001316000	-0.642251000	-1.481023000
Н	-0.896442000	2.253320000	1.245448000
Н	-1.235976000	0.098777000	-2.470055000
С	0.934540000	-2.052521000	0.937867000
0	-1.934547000	2.316514000	-1.006576000
С	-2.479648000	2.391325000	-2.318363000
Н	-1.677555000	2.410322000	-3.076066000
Н	-3.158890000	1.545159000	-2.518248000
Н	-3.045745000	3.329400000	-2.363327000
С	0.105434000	-2.898258000	-2.580334000
Н	1.168799000	-2.796555000	-2.849906000
Н	-0.180233000	-3.954912000	-2.689610000
Н	-0.485003000	-2.330470000	-3.314031000
Н	0.510325000	0.478872000	2.272241000
Н	-1.234782000	-2.576610000	-0.920356000
С	1.047333000	-4.420748000	-0.065309000
Н	0.169319000	-5.082836000	-0.164798000
			S40

Η	1.667611000	-4.611399000	-0.958889000
Η	1.620053000	-4.711490000	0.822816000
С	1.624433000	-2.286872000	2.227831000
С	2.714270000	-1.477416000	2.603987000
С	1.214568000	-3.320657000	3.091499000
С	3.387508000	-1.709585000	3.806121000
С	1.888060000	-3.548277000	4.293326000
С	2.977825000	-2.747085000	4.649947000
Η	3.057309000	-0.680407000	1.937713000
Η	0.353082000	-3.940389000	2.830414000
Η	4.240266000	-1.084278000	4.081359000
Η	1.557453000	-4.350282000	4.957763000
Η	3.507867000	-2.932516000	5.587043000

b) C1' as a starting point

C1′

 $E = -999.9730 E_h$

 $E_{ZPE}=0.3822\;E_h$

 $H^{298} = -999.5692 \ E_h$

С	-0.911334000	-1.425922000	-2.670027000
С	0.347146000	-0.928283000	-2.269526000
С	1.504273000	-1.581739000	-2.713649000
С	1.426650000	-2.709718000	-3.536107000
С	0.161570000	-3.244830000	-3.904919000
С	-1.016923000	-2.585528000	-3.443652000
С	0.424493000	0.315458000	-1.367310000
С	0.283731000	-0.189668000	0.063340000
Н	-1.816061000	-0.908758000	-2.349816000
С	0.154362000	-1.487342000	0.167789000
0	0.199988000	-4.377268000	-4.623327000
С	-0.858964000	-4.862889000	-5.451989000
Н	-1.643845000	-5.342977000	-4.852828000
Н	-1.302404000	-4.057423000	-6.055335000
Н	-0.388869000	-5.603712000	-6.112908000
Н	2.502907000	-1.225014000	-2.460082000
С	0.300621000	0.735261000	1.257113000
Н	1.290588000	1.208630000	1.352177000
Н	-0.437822000	1.538631000	1.103523000
Н	0.068554000	0.211131000	2.193856000
С	-0.076985000	-2.817937000	0.453831000
С	1.011382000	-3.738518000	0.577002000

С	-1.418239000	-3.289334000	0.631173000
С	0.758757000	-5.068356000	0.873429000
С	-1.648978000	-4.619447000	0.938842000
С	-0.564108000	-5.505997000	1.055159000
Н	2.031457000	-3.377767000	0.429722000
Н	-2.244614000	-2.582043000	0.537633000
Н	1.585288000	-5.774720000	0.972173000
Н	-2.667043000	-4.983062000	1.095464000
Н	-0.754780000	-6.554679000	1.298812000
0	-2.194573000	-3.165540000	-3.782286000
С	-3.420215000	-2.546044000	-3.443373000
Н	-3.557948000	-2.487941000	-2.348421000
Н	-3.496292000	-1.532293000	-3.872292000
Н	-4.211480000	-3.175325000	-3.869671000
0	2.590590000	-3.277754000	-3.918854000
С	2.819068000	-3.599847000	-5.294021000
Η	2.285507000	-2.901470000	-5.958477000
Η	3.900283000	-3.492993000	-5.460839000
Н	2.507567000	-4.628376000	-5.523813000
Η	-0.459806000	0.946061000	-1.570720000
С	1.677749000	1.181487000	-1.554958000
Η	1.792141000	1.451870000	-2.615699000
Н	1.606524000	2.114630000	-0.977529000
Н	2.591296000	0.657047000	-1.236082000

P1′

$$\begin{split} E &= \text{-}1000.0207 \ E_h \\ E_{ZPE} &= 0.3851 \ E_h \end{split}$$

 $H^{298} = -999.6125 E_h$

С	-0.603013000	0.079947000	-3.158026000
С	-0.799769000	-0.458132000	-1.927736000
С	-0.498949000	0.292069000	-0.675539000
С	0.052988000	1.672942000	-0.856957000
С	0.309504000	2.186638000	-2.131570000
С	-0.046264000	1.400170000	-3.270668000
С	-1.002237000	-1.909113000	-1.577172000
С	0.039559000	-2.018694000	-0.457581000
Н	-0.762828000	-0.516819000	-4.055857000
С	0.363784000	-0.800711000	0.040458000
0	0.955036000	3.368622000	-2.272656000
С	0.333280000	4.468735000	-2.948586000
Н	0.521946000	4.424168000	-4.030624000
Н	-0.753554000	4.494278000	-2.759549000
Н	0.793462000	5.378413000	-2.539343000
Н	-1.429635000	0.430729000	-0.086425000
С	0.547535000	-3.353113000	-0.007892000
Н	-0.284561000	-4.001645000	0.317085000
Н	1.051012000	-3.880028000	-0.837943000
Н	1.256673000	-3.266941000	0.825824000
С	1.346555000	-0.499325000	1.105337000
С	0.954073000	0.051443000	2.340740000
С	2.707198000	-0.794701000	0.898200000
С	1.895458000	0.277543000	3.346201000
С	3.649270000	-0.559100000	1.902079000
С	3.244476000	-0.026312000	3.129742000
Н	-0.096106000	0.294841000	2.521789000
Н	3.026734000	-1.213325000	-0.059573000
Н	1.572714000	0.693434000	4.303963000
Н	4.700409000	-0.800308000	1.723624000
Н	3.978888000	0.154777000	3.918135000
0	0.227938000	1.957472000	-4.428924000
С	-0.025841000	1.307962000	-5.685366000
Η	0.602938000	0.411339000	-5.786283000

Η	-1.089728000	1.044996000	-5.783678000
Η	0.250667000	2.039338000	-6.453054000
0	0.207276000	2.296354000	0.284079000
С	0.551649000	3.685549000	0.456515000
Η	-0.168821000	4.325310000	-0.070562000
Η	0.478897000	3.855909000	1.536925000
Η	1.568579000	3.880219000	0.097487000
Η	-0.737097000	-2.553971000	-2.432920000
С	-2.440569000	-2.248970000	-1.127048000
Η	-3.152363000	-2.124385000	-1.957235000
Η	-2.497340000	-3.292423000	-0.782521000
Н	-2.766307000	-1.607173000	-0.294044000

TS2'

Imaginary frequency 190*i* cm⁻¹ $E = -999.9726 E_h$ $E_{ZPE} = 0.3817 \ E_h$ $H^{298} = \textbf{-999.5701} \ E_h$ С 0.007153000 -0.589530000-2.641023000 С -0.768411000 -0.924277000-1.578546000 С -1.389321000 0.381694000 -0.889296000С -0.865249000 1.653269000 -1.134196000 С 0.069274000 1.824384000 -2.192928000 С 0.516351000 0.667019000 -2.927933000 С -1.553205000 -2.156000000 -1.311393000 С -0.697370000 -2.517800000 -0.116603000 Η 0.341340000 -1.461389000 -3.202153000 S45

С	0.102382000	-1.475389000	0.053639000
0	0.533527000	3.054312000	-2.408996000
С	0.899754000	3.560231000	-3.705831000
Н	1.951787000	3.342175000	-3.927691000
Η	0.259919000	3.131349000	-4.488613000
Н	0.741658000	4.645701000	-3.649765000
Н	-2.158636000	0.306486000	-0.119781000
С	-0.722494000	-3.799313000	0.659733000
Н	-1.732023000	-3.987860000	1.059951000
Η	-0.470491000	-4.642240000	-0.006040000
Η	-0.012311000	-3.789558000	1.497590000
С	1.203444000	-0.806341000	0.648570000
С	1.010926000	0.207872000	1.622510000
С	2.524368000	-1.185170000	0.292071000
С	2.107812000	0.794184000	2.244022000
С	3.614103000	-0.594084000	0.924064000
С	3.406791000	0.392052000	1.899148000
Н	-0.001670000	0.523783000	1.881874000
Н	2.674742000	-1.960638000	-0.462609000
Η	1.954024000	1.565676000	3.002063000
Η	4.627616000	-0.905498000	0.660438000
Η	4.263267000	0.854951000	2.395329000
0	1.456840000	0.914721000	-3.860096000
С	2.048030000	-0.156227000	-4.579428000
Η	2.548154000	-0.864447000	-3.896568000
Η	1.303229000	-0.695601000	-5.188828000
Η	2.795561000	0.297552000	-5.242247000
0	-1.283552000	2.623778000	-0.298454000
С	-1.417271000	3.997606000	-0.672761000
Η	-1.869704000	4.099905000	-1.671543000
Η	-2.091454000	4.439051000	0.072487000
Η	-0.450396000	4.517951000	-0.648051000
Η	-1.293953000	-2.824617000	-2.151710000
С	-3.066761000	-2.186853000	-1.095038000
Η	-3.591063000	-1.803350000	-1.984698000
			0.46

Η	-3.412416000	-3.216570000	-0.915802000
Η	-3.376943000	-1.581084000	-0.230723000

P2′

- $E = -999.9809 E_h$
- $E_{ZPE}=0.3833\;E_h$

 $H^{298} = \textbf{-999.5749} \; E_h$

С	-0.405504000	0.754468000	-1.273308000
С	-0.702251000	-0.316266000	-0.305781000
С	-1.454078000	0.115713000	0.876997000
С	-1.834594000	1.411146000	1.091843000
С	-1.493905000	2.424769000	0.113066000
С	-0.856582000	2.041447000	-1.132714000
С	-1.371362000	-1.611950000	-1.099774000
С	-0.162349000	-2.392976000	-0.645294000
Н	0.143437000	0.467304000	-2.171874000
С	0.422824000	-1.359464000	0.004409000
0	-1.818621000	3.634458000	0.454442000
С	-1.518566000	4.879720000	-0.225821000
Н	-0.450635000	4.935208000	-0.466559000
Н	-2.118627000	4.962180000	-1.138912000
Н	-1.799497000	5.654429000	0.496365000
Н	-1.697010000	-0.616916000	1.649380000
С	0.163505000	-3.822581000	-0.908675000
Н	-0.279969000	-4.484010000	-0.143553000
Н	-0.245186000	-4.143865000	-1.880284000

S47

Η	1.247968000	-4.005869000	-0.915243000
С	1.615766000	-1.158873000	0.830438000
С	2.055496000	0.134022000	1.177009000
С	2.331601000	-2.266837000	1.335554000
С	3.177487000	0.316763000	1.988261000
С	3.451804000	-2.080933000	2.145166000
С	3.879279000	-0.790030000	2.475087000
Н	1.514085000	1.007542000	0.805691000
Н	1.994454000	-3.280031000	1.112109000
Н	3.507295000	1.325591000	2.249324000
Н	3.990419000	-2.949220000	2.531900000
Н	4.755575000	-0.646325000	3.111837000
0	-0.765622000	3.019009000	-2.056994000
С	-0.395153000	2.681043000	-3.391900000
Н	0.666988000	2.392693000	-3.455768000
Н	-1.025145000	1.860477000	-3.774480000
Н	-0.565010000	3.582176000	-3.993699000
0	-2.422644000	1.772392000	2.248792000
С	-3.782280000	2.222824000	2.226523000
Н	-4.446384000	1.429011000	1.845258000
Η	-4.044355000	2.449081000	3.267445000
Η	-3.902191000	3.131503000	1.618584000
Η	-1.353508000	-1.394571000	-2.182034000
С	-2.770733000	-2.066610000	-0.710045000
Η	-3.525195000	-1.303341000	-0.955973000
Η	-3.022557000	-2.970902000	-1.287905000
Н	-2.854635000	-2.320953000	0.356778000

Imaginary frequency 269*i* cm⁻¹

 $E = -999.9752 \ E_h$

 $E_{ZPE}=0.3821\;E_h$

 $H^{298} = -999.5698 E_h$

С	-0.186340000	0.878588000	-1.052134000
С	-0.534490000	-0.152958000	-0.102016000
С	-1.505300000	0.185087000	0.904138000
С	-2.118736000	1.424918000	0.957758000
С	-1.716627000	2.445280000	0.040292000
С	-0.804332000	2.112048000	-1.037250000
С	-1.512960000	-1.701551000	-0.864678000
С	-0.371869000	-2.384928000	-0.206984000
Н	0.565759000	0.648887000	-1.807861000
С	0.392961000	-1.321917000	0.160211000
0	-2.240817000	3.631044000	0.252203000
С	-1.789801000	4.894491000	-0.277998000
Η	-0.703627000	4.997115000	-0.152595000
Η	-2.063383000	4.993046000	-1.334887000
Η	-2.311496000	5.645445000	0.325679000
Η	-1.767372000	-0.545043000	1.672351000
С	-0.267780000	-3.861290000	0.010565000
Η	0.452267000	-4.103099000	0.803978000
Η	-1.245205000	-4.280325000	0.302174000
Н	0.045789000	-4.391690000	-0.905909000
С	1.733943000	-1.191779000	0.734398000

С	2.139694000	0.013812000	1.345141000
С	2.663367000	-2.254016000	0.664252000
С	3.428138000	0.154254000	1.863958000
С	3.944162000	-2.114808000	1.196447000
С	4.331915000	-0.910461000	1.795732000
Н	1.433584000	0.843775000	1.432417000
Η	2.393346000	-3.183781000	0.162016000
Η	3.727754000	1.092361000	2.337260000
Η	4.649492000	-2.947283000	1.133637000
Η	5.336756000	-0.802562000	2.210887000
0	-0.620928000	3.087104000	-1.942696000
С	0.316560000	2.909333000	-2.997930000
Η	1.334166000	2.760512000	-2.599506000
Η	0.036745000	2.054201000	-3.635799000
Η	0.285618000	3.829885000	-3.593262000
0	-2.977811000	1.693617000	1.963331000
С	-4.331833000	2.032560000	1.648240000
Η	-4.821245000	1.209616000	1.099801000
Η	-4.839678000	2.176716000	2.609611000
Н	-4.395598000	2.959372000	1.059993000
Η	-1.327306000	-1.362597000	-1.891131000
С	-2.948890000	-2.049424000	-0.618526000
Η	-3.626126000	-1.242335000	-0.934053000
Η	-3.187937000	-2.920303000	-1.258767000
Н	-3.160693000	-2.328477000	0.423182000

P3′

 $E = -1000.0254 E_h$

 $E_{ZPE}=0.3833\ E_h$

 $H^{298} = -999.6181 E_h$

С	0.526259000	1.162606000	-0.973877000
С	-0.243960000	0.313041000	-0.123380000
С	-1.465304000	0.814293000	0.402413000
С	-1.956884000	2.063685000	0.039819000
С	-1.273182000	2.823999000	-0.957364000
С	0.023168000	2.385055000	-1.398467000
С	-1.964316000	-2.053156000	-0.324876000
С	-0.784447000	-2.089162000	0.374812000
Н	1.480338000	0.806048000	-1.354565000
С	0.188218000	-1.028798000	0.150507000
0	-1.888329000	3.922330000	-1.380677000
С	-1.712606000	4.513047000	-2.680230000
Н	-2.586727000	5.161570000	-2.819215000
Н	-0.789606000	5.102163000	-2.729753000
Н	-1.701049000	3.734803000	-3.457000000
Н	-2.037575000	0.246803000	1.135530000
С	-0.456751000	-3.236537000	1.314394000
Н	-1.292238000	-3.412238000	2.008951000
Н	-0.282578000	-4.180045000	0.772302000
Н	0.435684000	-3.028074000	1.916845000
С	1.618506000	-1.352931000	0.208233000
С	2.520046000	-0.499904000	0.887920000
С	2.117621000	-2.544385000	-0.370728000
С	3.864866000	-0.847277000	1.011463000
С	3.469598000	-2.863187000	-0.282311000
С	4.342314000	-2.024774000	0.425253000
Н	2.145181000	0.410043000	1.360983000
Η	1.440632000	-3.206081000	-0.915254000
Н	4.543063000	-0.200089000	1.572137000
Н	3.848249000	-3.773002000	-0.753986000
Н	5.395562000	-2.299051000	0.526716000
0	0.664531000	3.222436000	-2.239356000

С	1.984252000	2.919905000	-2.671458000
Η	2.672756000	2.836219000	-1.813804000
Η	2.014891000	1.987416000	-3.260598000
Η	2.297392000	3.756365000	-3.308214000
0	-3.126305000	2.444689000	0.583739000
С	-3.357839000	3.792523000	1.009734000
Η	-3.707107000	4.422723000	0.181079000
Н	-4.136643000	3.733572000	1.781699000
Н	-2.447291000	4.232117000	1.447704000
Н	-2.109250000	-1.240329000	-1.042856000
С	-3.066360000	-3.047098000	-0.258520000
Н	-3.325853000	-3.406098000	-1.269388000
Н	-2.852997000	-3.911165000	0.382309000
Н	-3.980285000	-2.550482000	0.119734000

TS4'

Imaginary frequency 270*i* cm⁻¹

 $E = -1000.0074 \ E_h$

 $E_{ZPE}=0.3831\ E_h$

 $H^{298} = -999.6006 E_h$

C 0.113527000 0.239953000 -0.39169900 C -1.247373000 0.648234000 -0.16895300 C -1.818344000 1.719582000 -0.92113000 C -1.026404000 2.377115000 -1.86863600 C 0.371654000 2.039356000 -1.98519400 C -1.789617000 -1.499942000 -0.4763160	С	0.932671000	0.985047000	-1.254996000
C-1.2473730000.648234000-0.16895300C-1.8183440001.719582000-0.92113000C-1.0264040002.377115000-1.86863600C0.3716540002.039356000-1.98519400C-1.789617000-1.499942000-0.4763160	С	0.113527000	0.239953000	-0.391699000
C-1.8183440001.719582000-0.9211300C-1.0264040002.377115000-1.8686360C0.3716540002.039356000-1.98519400C-1.789617000-1.499942000-0.4763160	С	-1.247373000	0.648234000	-0.168953000
C-1.0264040002.377115000-1.8686360C0.3716540002.039356000-1.98519400C-1.789617000-1.499942000-0.4763160	С	-1.818344000	1.719582000	-0.921130000
C0.3716540002.039356000-1.98519400C-1.789617000-1.499942000-0.4763160	С	-1.026404000	2.377115000	-1.868636000
C -1.789617000 -1.499942000 -0.4763160	С	0.371654000	2.039356000	-1.985194000
	С	-1.789617000	-1.499942000	-0.476316000

С	-0.646736000	-1.891588000	0.290701000
Н	1.957409000	0.664215000	-1.432746000
С	0.470608000	-1.050878000	0.163055000
0	-1.523267000	3.382307000	-2.623639000
С	-1.841618000	3.060931000	-3.984558000
Η	-2.219137000	3.983542000	-4.443429000
Η	-0.950818000	2.717210000	-4.532839000
Η	-2.625189000	2.284703000	-4.030422000
Η	-1.730131000	0.445896000	0.786888000
С	-0.742152000	-3.055113000	1.240914000
Н	-1.513516000	-2.849931000	2.002961000
Н	-1.041502000	-3.983541000	0.727672000
Н	0.203756000	-3.230278000	1.767510000
С	1.848145000	-1.401341000	0.539463000
С	2.668938000	-0.470887000	1.213979000
С	2.377980000	-2.675181000	0.237454000
С	3.965193000	-0.815055000	1.596617000
С	3.681737000	-3.007552000	0.602837000
С	4.474203000	-2.083419000	1.293478000
Н	2.273996000	0.515518000	1.467741000
Н	1.769211000	-3.398131000	-0.310137000
Н	4.580604000	-0.092289000	2.137480000
Н	4.083747000	-3.990344000	0.345842000
Н	5.488532000	-2.353077000	1.597162000
0	1.034237000	2.773198000	-2.877287000
С	2.420971000	2.550625000	-3.117134000
Н	3.010862000	2.700693000	-2.198952000
Н	2.596802000	1.536790000	-3.514344000
Н	2.720311000	3.290316000	-3.868404000
0	-3.091106000	2.006276000	-0.611109000
С	-3.668164000	3.304127000	-0.819761000
Н	-3.969887000	3.449824000	-1.866050000
Н	-4.554786000	3.334990000	-0.174470000
Н	-2.964537000	4.096985000	-0.529620000
Н	-1.607256000	-1.220229000	-1.516085000

С	-3.187768000	-1.925271000	-0.184390000
Η	-3.381996000	-2.885593000	-0.699475000
Η	-3.392405000	-2.069517000	0.885541000
Η	-3.905126000	-1.202309000	-0.600258000

P4′

 $E = -1000.0452 E_h$

 $E_{ZPE}=0.3856\;E_h$

 $H^{298} = -999.6376 \ E_h$

С	1.060731000	1.176091000	-1.125841000
С	0.259920000	0.362539000	-0.357175000
С	-1.186804000	0.667369000	-0.157317000
С	-1.806641000	1.578357000	-1.171474000
С	-0.995253000	2.368573000	-1.969237000
С	0.439438000	2.187141000	-1.907709000
С	-1.833184000	-0.702874000	0.184954000
С	-0.622548000	-1.538187000	0.568186000
Н	2.127279000	0.972417000	-1.219791000
С	0.561514000	-0.902146000	0.271504000
0	-1.505962000	3.339327000	-2.771120000
С	-1.524983000	3.087826000	-4.179892000
Н	-1.901481000	4.003416000	-4.653814000
Н	-0.518847000	2.866378000	-4.565905000
Н	-2.200522000	2.248950000	-4.420600000
Н	-1.224496000	1.268481000	0.778363000
С	-0.775327000	-2.891503000	1.170348000
Н	-1.346657000	-2.838987000	2.112985000
Н	-1.355826000	-3.547902000	0.497758000

Η	0.192598000	-3.364672000	1.377001000
С	1.940998000	-1.414669000	0.483734000
С	2.784782000	-0.772790000	1.409203000
С	2.419695000	-2.543193000	-0.205958000
С	4.067323000	-1.265881000	1.659976000
С	3.708367000	-3.027204000	0.038160000
С	4.529404000	-2.396045000	0.977734000
Η	2.423739000	0.104007000	1.953742000
Н	1.779074000	-3.045535000	-0.935718000
Н	4.705829000	-0.770674000	2.395648000
Н	4.069966000	-3.904978000	-0.503035000
Н	5.527778000	-2.788870000	1.184820000
0	1.110449000	3.002411000	-2.692133000
С	2.542669000	2.985165000	-2.759317000
Н	2.980206000	3.143309000	-1.762567000
Н	2.899671000	2.035639000	-3.186894000
Н	2.818178000	3.813239000	-3.421503000
0	-3.122061000	1.582082000	-1.095148000
С	-3.996117000	2.527571000	-1.739805000
Н	-3.997593000	2.370459000	-2.827110000
Η	-4.990220000	2.311326000	-1.330951000
Η	-3.696164000	3.556195000	-1.505154000
Η	-2.254742000	-1.123726000	-0.747304000
С	-2.944047000	-0.643926000	1.238417000
Η	-3.752860000	0.013978000	0.893687000
Η	-3.376272000	-1.637738000	1.425380000
Н	-2.561359000	-0.250836000	2.195032000

c) C1" as a starting point C1"

 $E = -1420.2355 E_h$

Ezpe	$E = 0.5007 E_h$		
H ²⁹⁸	$^{3} = -1419.7069 E_{h}$		
С	-1.017582000	-0.278852000	-1.989392000
С	-1.111252000	-0.679834000	-0.646260000
С	-0.801909000	0.231067000	0.362045000
С	-0.346782000	1.530090000	0.067672000
С	-0.221315000	1.933875000	-1.277105000
С	-0.570919000	1.011480000	-2.303510000
С	-1.383864000	-2.141723000	-0.291777000
С	-0.023372000	-2.830344000	-0.034380000
Η	-1.268240000	-0.983600000	-2.782067000
С	1.048628000	-2.087299000	-0.171001000
0	0.332547000	3.139887000	-1.589149000
С	-0.495283000	4.120167000	-2.213769000
Η	-0.865341000	3.775620000	-3.190184000
Н	-1.353924000	4.380264000	-1.569755000
Н	0.131678000	5.011340000	-2.352382000
Н	-0.872906000	-0.033722000	1.418172000
С	2.148364000	-1.307722000	-0.382515000
С	2.781497000	-0.606548000	0.700555000
С	2.628790000	-1.066700000	-1.721262000
С	3.798529000	0.290360000	0.470695000
С	3.633203000	-0.163104000	-1.952585000
С	4.224826000	0.541644000	-0.865168000

Н	2.424846000	-0.785656000	1.717266000
Н	2.158051000	-1.600623000	-2.548384000
Н	4.255875000	0.816318000	1.308119000
Н	3.995840000	0.057611000	-2.958022000
0	-0.383854000	1.465688000	-3.564692000
С	-0.573455000	0.595703000	-4.662811000
Н	0.107384000	-0.272742000	-4.612142000
Н	-1.612702000	0.227580000	-4.725541000
Η	-0.343865000	1.182647000	-5.561943000
0	0.018545000	2.252809000	1.150418000
С	0.123942000	3.670632000	1.149776000
Η	-0.797446000	4.143657000	0.770705000
Η	0.259488000	3.956294000	2.201811000
Η	0.978130000	4.021112000	0.555122000
С	0.105976000	-4.262575000	0.346631000
С	-0.685575000	-5.258125000	-0.251611000
С	1.052067000	-4.654104000	1.320056000
С	-0.540856000	-6.601870000	0.100024000
С	1.202875000	-5.984001000	1.679009000
С	0.411575000	-6.978565000	1.068588000
Η	-1.424364000	-4.991309000	-1.011199000
Η	1.657336000	-3.894281000	1.819217000
Η	-1.171994000	-7.347498000	-0.383665000
Η	1.922513000	-6.291358000	2.440466000
0	0.637461000	-8.236091000	1.479179000
С	-0.081413000	-9.321594000	0.919248000
Η	-1.162625000	-9.243002000	1.128467000
Η	0.080852000	-9.392385000	-0.170527000
Η	0.311147000	-10.225850000	1.400341000
0	5.155593000	1.415604000	-1.191967000
С	5.823398000	2.213353000	-0.208892000
Η	5.101609000	2.829862000	0.349485000
Η	6.397907000	1.577452000	0.482597000
Н	6.507284000	2.861679000	-0.768989000
Н	-1.801021000	-2.640171000	-1.184772000
			0.77

С	-2.363714000	-2.338313000	0.871647000
Η	-3.304766000	-1.812986000	0.645575000
Н	-2.590416000	-3.401517000	1.033903000
Η	-1.965550000	-1.933527000	1.813918000

TS1″

Imaginary frequency 114i cm⁻¹

E =	-1420.2354 E _h		
E _{ZPI}	$E = 0.5008 E_h$		
H^{298}	$^{3} = -1419.7058 E_{h}$		
С	-1.574115000	-0.253158000	-2.122675000
С	-1.409142000	-0.677879000	-0.807196000
С	-0.795922000	0.174175000	0.129588000
С	-0.302960000	1.451811000	-0.245614000
С	-0.452036000	1.884057000	-1.571812000
С	-1.109682000	1.020889000	-2.502328000
С	-1.627721000	-2.118345000	-0.364296000
С	-0.224333000	-2.582021000	0.039353000
Η	-2.009713000	-0.925160000	-2.861234000
С	0.718522000	-1.647182000	0.062609000
0	0.110532000	3.050012000	-1.989037000
С	-0.751594000	4.104815000	-2.421054000
Η	-1.329663000	3.816318000	-3.310066000
Η	-1.443292000	4.403192000	-1.613723000
Η	-0.098030000	4.951293000	-2.670147000
Н	-0.807805000	-0.045464000	1.197531000 \$58

С	1.977681000	-1.066823000	-0.031911000
С	2.592961000	-0.393522000	1.066253000
С	2.668751000	-1.076326000	-1.288351000
С	3.825677000	0.217308000	0.931860000
С	3.892074000	-0.462733000	-1.427024000
С	4.490115000	0.195760000	-0.320707000
Н	2.073570000	-0.358687000	2.026044000
Н	2.206474000	-1.580684000	-2.138880000
Н	4.273584000	0.717107000	1.790514000
Н	4.428932000	-0.460123000	-2.377472000
0	-1.177264000	1.495980000	-3.753057000
С	-1.638917000	0.681575000	-4.821219000
Н	-1.023063000	-0.227479000	-4.920616000
Н	-2.695907000	0.394713000	-4.690073000
Η	-1.535833000	1.289808000	-5.728730000
0	0.340124000	2.092343000	0.746973000
С	0.739354000	3.462293000	0.699079000
Н	-0.123108000	4.121171000	0.514118000
Η	1.149296000	3.678390000	1.695133000
Н	1.503646000	3.639391000	-0.068320000
С	0.099612000	-3.993504000	0.363545000
С	-0.556490000	-5.057129000	-0.281919000
С	1.092897000	-4.310195000	1.318065000
С	-0.231968000	-6.386995000	-0.004093000
С	1.421396000	-5.624744000	1.605220000
С	0.766771000	-6.683972000	0.943134000
Н	-1.329268000	-4.855518000	-1.027741000
Н	1.598742000	-3.506973000	1.857216000
Η	-0.761672000	-7.181477000	-0.529139000
Н	2.179530000	-5.873857000	2.350386000
0	1.159811000	-7.920999000	1.289236000
С	0.559564000	-9.057170000	0.690412000
Н	-0.524119000	-9.097448000	0.897269000
Η	0.727331000	-9.074855000	-0.400734000
Н	1.043480000	-9.931630000	1.142084000
			S59

0	5.665020000	0.766433000	-0.554265000
С	6.363422000	1.470586000	0.469698000
Η	5.754816000	2.296690000	0.871323000
Η	6.654424000	0.789664000	1.285039000
Η	7.262404000	1.879418000	-0.006243000
Η	-1.931384000	-2.712930000	-1.242550000
С	-2.691327000	-2.292315000	0.729401000
Η	-3.659157000	-1.908679000	0.370009000
Η	-2.818113000	-3.350936000	0.999644000
Η	-2.425469000	-1.742079000	1.644775000

P1″

 $E = -1420.2660 \ E_h$

 $E_{ZPE}=0.5030\;E_h$

 $H^{298} = \text{-}1419.7334 \ E_h$

С	-2.054583000	-0.182528000	-2.158021000
С	-1.653593000	-0.642195000	-0.942022000
С	-0.694488000	0.105984000	-0.089553000
С	-0.247676000	1.432799000	-0.615690000
С	-0.669520000	1.893633000	-1.862096000
С	-1.544726000	1.066766000	-2.638349000
С	-1.782139000	-2.044539000	-0.407874000
С	-0.312594000	-2.262057000	-0.014178000
Н	-2.673757000	-0.804993000	-2.804760000
С	0.348258000	-1.067038000	0.069958000
0	-0.181867000	3.046037000	-2.391908000
С	-1.082081000	4.139522000	-2.603450000
Н	-1.855459000	3.890601000	-3.343582000

Η	-1.562253000	4.447686000	-1.657921000
Н	-0.469969000	4.966444000	-2.986223000
Н	-1.128334000	0.314871000	0.909153000
С	1.800946000	-0.844699000	0.164534000
С	2.412444000	-0.098112000	1.188043000
С	2.635517000	-1.419163000	-0.823618000
С	3.800884000	0.055871000	1.247220000
С	4.011158000	-1.265098000	-0.783125000
С	4.612929000	-0.530072000	0.258825000
Η	1.799214000	0.358585000	1.968080000
Н	2.183880000	-1.999879000	-1.631130000
Η	4.241524000	0.625038000	2.066235000
Η	4.656653000	-1.708339000	-1.543778000
0	-1.804087000	1.526672000	-3.843567000
С	-2.582554000	0.789355000	-4.796019000
Η	-2.091217000	-0.166101000	-5.033127000
Η	-3.602453000	0.613443000	-4.421592000
Η	-2.618567000	1.417829000	-5.692787000
0	0.524386000	2.058730000	0.241751000
С	1.055746000	3.389057000	0.096814000
Η	0.237985000	4.124105000	0.095411000
Н	1.682713000	3.537375000	0.983775000
Н	1.651329000	3.478611000	-0.817817000
С	0.222618000	-3.609674000	0.248736000
С	-0.329719000	-4.749073000	-0.368191000
С	1.292840000	-3.821975000	1.153931000
С	0.170096000	-6.033798000	-0.136203000
С	1.787852000	-5.090550000	1.405642000
С	1.242430000	-6.216664000	0.754577000
Η	-1.166073000	-4.644001000	-1.063353000
Η	1.732117000	-2.974865000	1.679941000
Η	-0.282590000	-6.880615000	-0.651530000
Η	2.607115000	-5.250958000	2.109619000
0	1.806425000	-7.401118000	1.056171000
С	1.324259000	-8.594005000	0.465114000
			S61

Η	0.259162000	-8.761027000	0.702205000
Η	1.460035000	-8.587746000	-0.630878000
Η	1.918389000	-9.410097000	0.894433000
0	5.954697000	-0.448645000	0.219200000
С	6.655996000	0.232535000	1.240931000
Η	6.381367000	1.301723000	1.277634000
Η	6.474239000	-0.224556000	2.229547000
Η	7.721999000	0.142848000	0.993578000
Η	-2.083799000	-2.724348000	-1.220809000
С	-2.786882000	-2.190218000	0.750521000
Η	-3.802910000	-1.921015000	0.420293000
Η	-2.803862000	-3.229898000	1.109364000
Н	-2.517997000	-1.550259000	1.605199000

TS2''

Imaginary frequency 236*i* cm⁻¹

 $E = -1420.2280 E_h$

 $E_{ZPE}=0.5000\ E_h$

 $H^{298} = \text{-}1419.6998 \ E_h$

С	-0.679499000	-0.001887000	-2.002260000
С	-1.039161000	-0.630340000	-0.766273000
С	-1.241196000	0.211019000	0.368423000
С	-0.918982000	1.562135000	0.344051000
С	-0.458085000	2.153224000	-0.869218000
С	-0.357191000	1.342284000	-2.056574000

С	-1.539268000	-2.101344000	-0.748778000
С	-0.254888000	-2.668602000	-0.167445000
Η	-0.598553000	-0.620235000	-2.896086000
С	0.515560000	-1.574555000	-0.093613000
0	-0.110304000	3.430250000	-0.787623000
С	-0.060258000	4.370148000	-1.872261000
Н	0.854658000	4.241252000	-2.463002000
Η	-0.938703000	4.267511000	-2.523163000
Η	-0.063360000	5.354688000	-1.387092000
Η	-1.614035000	-0.195390000	1.308825000
С	1.803233000	-1.004719000	0.117366000
С	2.200211000	-0.474044000	1.369713000
С	2.758635000	-1.010861000	-0.938475000
С	3.498399000	-0.029118000	1.586042000
С	4.049077000	-0.562246000	-0.734284000
С	4.442145000	-0.078107000	0.536237000
Η	1.476743000	-0.431022000	2.187250000
Η	2.469692000	-1.412951000	-1.912125000
Н	3.776922000	0.359972000	2.565256000
Н	4.794740000	-0.584106000	-1.531752000
0	0.082458000	1.981178000	-3.161939000
С	0.250353000	1.259302000	-4.373207000
Н	0.982724000	0.442309000	-4.255340000
Η	-0.706392000	0.840084000	-4.729573000
Η	0.627054000	1.980064000	-5.109650000
0	-1.018072000	2.241611000	1.505912000
С	-1.598993000	3.546328000	1.580001000
Η	-2.397485000	3.677371000	0.832585000
Η	-2.037285000	3.627138000	2.584632000
Η	-0.838484000	4.327916000	1.445923000
С	0.088050000	-4.053287000	0.177684000
С	-0.580552000	-5.139350000	-0.415719000
С	1.121948000	-4.338343000	1.100640000
С	-0.231274000	-6.460377000	-0.122703000
С	1.470795000	-5.642062000	1.407930000

С	0.804078000	-6.723676000	0.793761000
Н	-1.383621000	-4.958199000	-1.134592000
Н	1.647828000	-3.518156000	1.591734000
Η	-0.769770000	-7.272983000	-0.609724000
Η	2.261661000	-5.868525000	2.125944000
0	1.228196000	-7.947734000	1.152666000
С	0.627956000	-9.105882000	0.598715000
Η	-0.448105000	-9.157988000	0.839645000
Η	0.762305000	-9.146997000	-0.496430000
Η	1.138377000	-9.962690000	1.055318000
0	5.715367000	0.308164000	0.648613000
С	6.225745000	0.772685000	1.892755000
Н	5.668045000	1.652663000	2.252580000
Н	6.194473000	-0.023595000	2.655175000
Н	7.267914000	1.059158000	1.706164000
Η	-1.649105000	-2.430499000	-1.796318000
С	-2.849617000	-2.372091000	-0.011220000
Η	-3.664373000	-1.770690000	-0.443965000
Н	-3.128009000	-3.432622000	-0.100430000
Н	-2.781451000	-2.140608000	1.062346000

P2''

$$\begin{split} & E = -1420.2318 \; E_h \\ & E_{ZPE} = 0.5015 \; E_h \end{split}$$

 $H^{298} = -1419.7021 \ E_h$

С	-0.032932000	0.048304000	-1.837464000
С	-0.729181000	-0.594871000	-0.716452000
С	-1.590902000	0.293295000	0.066073000
С	-1.635025000	1.645617000	-0.132271000
С	-0.792227000	2.246547000	-1.145261000
С	-0.003077000	1.407559000	-2.023599000
С	-1.289328000	-2.079747000	-0.992017000
С	-0.253717000	-2.611488000	-0.015880000
Η	0.551936000	-0.601293000	-2.489574000
С	0.314227000	-1.399349000	0.214561000
0	-0.834133000	3.547218000	-1.160810000
С	-0.079396000	4.468484000	-1.978307000
Η	0.996170000	4.305717000	-1.842341000
Η	-0.354346000	4.352173000	-3.033595000
Н	-0.371853000	5.457508000	-1.607146000
Н	-2.193536000	-0.120299000	0.876331000
С	1.510608000	-0.872323000	0.864599000
С	1.489492000	0.252045000	1.709567000
С	2.756722000	-1.509615000	0.645300000
С	2.645166000	0.710254000	2.346412000
С	3.909184000	-1.067745000	1.273470000
С	3.866254000	0.040268000	2.146174000
Н	0.547817000	0.772674000	1.902093000
Н	2.807305000	-2.372308000	-0.023429000
Н	2.581251000	1.575524000	3.006501000
Н	4.867865000	-1.564560000	1.110480000
0	0.700316000	2.059824000	-2.973107000
С	1.521079000	1.311857000	-3.863874000
Η	2.273107000	0.724147000	-3.310953000
Η	0.912945000	0.638632000	-4.491665000
Н	2.028468000	2.043999000	-4.503773000
0	-2.370103000	2.442483000	0.675494000
С	-3.502172000	3.112448000	0.106341000
Н	-4.204142000	2.383972000	-0.334759000
			S65

Η	-3.996320000	3.637071000	0.933922000
Η	-3.201361000	3.845459000	-0.657658000
С	-0.025852000	-3.962727000	0.482339000
С	-0.663938000	-5.071478000	-0.106776000
С	0.823881000	-4.211394000	1.589829000
С	-0.470848000	-6.371879000	0.367081000
С	1.027717000	-5.494523000	2.065999000
С	0.383953000	-6.595944000	1.461336000
Η	-1.321709000	-4.926804000	-0.967057000
Н	1.321712000	-3.379537000	2.089640000
Η	-0.987629000	-7.198329000	-0.120229000
Н	1.678375000	-5.686910000	2.921346000
0	0.649561000	-7.797896000	2.003997000
С	0.049220000	-8.969199000	1.480529000
Н	-1.048047000	-8.951644000	1.603742000
Н	0.297380000	-9.108980000	0.414081000
Н	0.461109000	-9.806971000	2.056490000
0	5.028522000	0.378210000	2.731355000
С	5.084059000	1.515656000	3.572558000
Η	4.802722000	2.432064000	3.024162000
Η	4.429907000	1.399883000	4.453694000
Н	6.123605000	1.602413000	3.912255000
Н	-1.047213000	-2.345979000	-2.036010000
С	-2.772909000	-2.324865000	-0.736432000
Н	-3.396302000	-1.652095000	-1.345497000
Н	-3.037586000	-3.355896000	-1.013783000
Н	-3.042864000	-2.193633000	0.321698000

Imaginary frequency 265*i* cm⁻¹

 $E = -1420.2252 \ E_h$

 $E_{ZPE}=0.4998\ E_h$

 $H^{298} = -1419.6973 E_h$

С	0.452253000	0.492490000	-1.357369000
С	-0.186712000	-0.170072000	-0.243985000
С	-1.270265000	0.530340000	0.388902000
С	-1.792155000	1.705969000	-0.127299000
С	-1.223644000	2.269208000	-1.316757000
С	-0.049544000	1.654474000	-1.901827000
С	-1.123369000	-1.806247000	-0.771280000
С	-0.136217000	-2.362660000	0.195197000
Н	1.351172000	0.034065000	-1.769141000
С	0.591103000	-1.245740000	0.486914000
0	-1.812374000	3.359766000	-1.762960000
С	-1.658718000	3.948445000	-3.069893000
Н	-0.685865000	4.443778000	-3.163526000
Н	-1.769375000	3.184358000	-3.850977000
Η	-2.469539000	4.683354000	-3.142542000
Η	-1.732033000	0.119266000	1.288725000
С	1.845283000	-0.988358000	1.188628000
С	2.188521000	0.312354000	1.606025000
С	2.805599000	-2.014202000	1.379363000

С	3.435665000	0.601169000	2.162846000
С	4.047677000	-1.738662000	1.924250000
С	4.385398000	-0.423981000	2.316436000
Н	1.461261000	1.122849000	1.505954000
Н	2.579004000	-3.032003000	1.056034000
Н	3.657216000	1.619227000	2.483066000
Н	4.795716000	-2.523483000	2.055448000
0	0.514637000	2.328490000	-2.923833000
С	1.812325000	1.956248000	-3.376464000
Н	2.541967000	1.998405000	-2.549817000
Н	1.814144000	0.946056000	-3.819352000
Н	2.087619000	2.685529000	-4.147554000
0	-2.773129000	2.331478000	0.558422000
С	-4.033866000	2.627873000	-0.052107000
Н	-4.415321000	1.758166000	-0.614400000
Н	-4.721966000	2.850506000	0.773342000
Н	-3.972524000	3.500099000	-0.716900000
С	-0.121130000	-3.757046000	0.652599000
С	-0.323000000	-4.805947000	-0.263466000
С	0.091785000	-4.098775000	2.008317000
С	-0.276219000	-6.144207000	0.130467000
С	0.130988000	-5.423454000	2.414831000
С	-0.034454000	-6.465674000	1.477764000
Н	-0.491718000	-4.578708000	-1.320472000
Н	0.224574000	-3.307443000	2.749925000
Н	-0.419812000	-6.926237000	-0.615063000
Н	0.297655000	-5.692674000	3.459890000
0	0.054915000	-7.716362000	1.961361000
С	-0.053824000	-8.827005000	1.088261000
Н	-1.044740000	-8.869009000	0.602862000
Н	0.727796000	-8.806865000	0.308827000
Н	0.080713000	-9.719971000	1.711651000
0	5.621360000	-0.252004000	2.815691000
С	6.038880000	1.031803000	3.248029000
Н	6.066675000	1.749186000	2.409433000
			S68

Η	5.382579000	1.424565000	4.042888000
Η	7.052287000	0.908508000	3.650673000
Η	-0.795439000	-1.750573000	-1.817046000
С	-2.601550000	-2.008327000	-0.622200000
Η	-3.176091000	-1.267564000	-1.196917000
Η	-2.850298000	-2.998452000	-1.046631000
Н	-2.928884000	-2.005296000	0.426491000

P3''

- $E = -1420.2756 E_h$
- $E_{ZPE}=0.5009\;E_h$

 $H^{298} = -1419.7451 \ E_h$

С	0.130867000	1.163590000	-0.722750000
С	-0.566871000	0.286202000	0.149273000
С	-1.819782000	0.688472000	0.659147000
С	-2.399891000	1.906301000	0.285245000
С	-1.758382000	2.719995000	-0.686789000
С	-0.458340000	2.352050000	-1.150574000
С	-2.011069000	-2.124511000	-0.313868000
С	-0.829859000	-2.206194000	0.396120000
Η	1.103149000	0.865657000	-1.108757000
С	0.015834000	-1.020568000	0.462086000
0	-2.397578000	3.829864000	-1.084825000
С	-2.429799000	4.249056000	-2.455712000
Н	-1.534209000	4.824828000	-2.720920000
Η	-2.522591000	3.380853000	-3.126977000
Н	-3.323436000	4.880145000	-2.551910000

Н	-2.360121000	0.076709000	1.382004000
С	1.413835000	-1.061104000	0.829715000
С	2.000003000	0.065859000	1.475373000
С	2.263972000	-2.184524000	0.590787000
С	3.330544000	0.086992000	1.861014000
С	3.595792000	-2.162776000	0.944595000
С	4.152629000	-1.030188000	1.593195000
Η	1.371415000	0.922423000	1.722052000
Η	1.867783000	-3.062478000	0.083498000
Н	3.722959000	0.956178000	2.388477000
Η	4.252723000	-3.008405000	0.732210000
0	0.115523000	3.219521000	-2.013421000
С	1.423351000	2.968175000	-2.501422000
Η	2.156769000	2.924415000	-1.677735000
Η	1.469373000	2.029744000	-3.080911000
Η	1.673477000	3.808187000	-3.161483000
0	-3.599639000	2.190938000	0.826285000
С	-3.995466000	3.525468000	1.156086000
Η	-4.449985000	4.034981000	0.295498000
Η	-4.737350000	3.427730000	1.960530000
Η	-3.141355000	4.118046000	1.518936000
С	-0.441284000	-3.500152000	1.039482000
С	-0.360230000	-4.670183000	0.265938000
С	-0.163711000	-3.606824000	2.417709000
С	-0.010907000	-5.903040000	0.823099000
С	0.174404000	-4.827652000	2.988877000
С	0.262039000	-5.992497000	2.198858000
Η	-0.561695000	-4.620343000	-0.807624000
Η	-0.223103000	-2.720528000	3.054634000
Η	0.049098000	-6.781363000	0.179967000
Η	0.388833000	-4.914509000	4.055990000
0	0.613228000	-7.124319000	2.837870000
С	0.811091000	-8.319723000	2.101134000
Η	-0.121468000	-8.662788000	1.619400000
Η	1.589870000	-8.195266000	1.328403000
			S 70

Η	1.140886000	-9.076522000	2.824056000
0	5.439698000	-1.110287000	1.915298000
С	6.108763000	-0.015270000	2.535595000
Н	6.120264000	0.865776000	1.873267000
Н	5.639615000	0.247768000	3.497281000
Н	7.136396000	-0.353212000	2.714395000
Н	-2.177100000	-1.230519000	-0.919837000
С	-3.114608000	-3.117083000	-0.346420000
Н	-4.058807000	-2.594114000	-0.104258000
Н	-3.258048000	-3.516019000	-1.367361000
Н	-2.974523000	-3.956819000	0.344670000

TS4''

Imaginary frequency 286*i* cm⁻¹

 $E = -1420.2600 \ E_h$

 $E_{ZPE}=0.5008\ E_h$

 $H^{298} = -1419.7313 \ E_h$

С	0.682323000	1.249610000	-0.864413000
С	0.010739000	0.244905000	-0.150975000
С	-1.417580000	0.302016000	-0.034405000
С	-2.170933000	1.333238000	-0.678630000
С	-1.496678000	2.310969000	-1.422534000
С	-0.056545000	2.262187000	-1.487892000
С	-1.405789000	-1.759577000	-0.781263000
С	-0.304374000	-2.076073000	0.095156000
Н	1.760663000	1.186026000	-1.000172000
С	0.601116000	-1.008531000	0.289420000
			S71

0	-2.181509000	3.349928000	-1.946775000
С	-2.064752000	3.699999000	-3.331388000
Н	-1.233164000	4.397075000	-3.497799000
Н	-1.925123000	2.803962000	-3.957386000
Н	-3.011331000	4.187601000	-3.604311000
Н	-1.913913000	-0.150672000	0.823681000
С	1.954205000	-1.090529000	0.832606000
С	2.515759000	-0.000243000	1.535079000
С	2.761011000	-2.247502000	0.669237000
С	3.810129000	-0.042435000	2.046883000
С	4.049816000	-2.299878000	1.166089000
С	4.596561000	-1.197089000	1.861646000
Η	1.914354000	0.894793000	1.710093000
Н	2.368016000	-3.106384000	0.124500000
Н	4.195208000	0.815295000	2.598503000
Н	4.676565000	-3.182681000	1.025579000
0	0.489168000	3.244526000	-2.211768000
С	1.898669000	3.329596000	-2.383336000
Н	2.411203000	3.440392000	-1.414556000
Н	2.289720000	2.444181000	-2.911330000
Н	2.076994000	4.222950000	-2.993918000
0	-3.484845000	1.250987000	-0.425310000
С	-4.492583000	2.076102000	-1.013293000
Н	-4.511666000	1.960977000	-2.108326000
Η	-5.436966000	1.708764000	-0.591513000
Η	-4.352454000	3.133203000	-0.752378000
С	-0.217105000	-3.391716000	0.762626000
С	-0.343656000	-4.581519000	0.022152000
С	0.028207000	-3.506049000	2.151184000
С	-0.194944000	-5.836047000	0.613869000
С	0.158719000	-4.746183000	2.756339000
С	0.074707000	-5.929686000	1.991678000
Η	-0.529506000	-4.530815000	-1.053899000
Η	0.113971000	-2.603160000	2.760248000
Η	-0.280753000	-6.729614000	-0.003556000
			S72
0.347026000	-4.839605000	3.827908000	
--------------	--	--	
0.269652000	-7.081791000	2.655029000	
0.235579000	-8.314397000	1.953685000	
-0.753850000	-8.493146000	1.497655000	
1.008407000	-8.353389000	1.166662000	
0.439079000	-9.095873000	2.696049000	
5.852045000	-1.342147000	2.302676000	
6.499389000	-0.277442000	2.982926000	
6.617585000	0.601141000	2.326380000	
5.950258000	0.016459000	3.892939000	
7.489172000	-0.653883000	3.268597000	
-1.153847000	-1.290215000	-1.735879000	
-2.739030000	-2.434586000	-0.755652000	
-3.518941000	-1.713232000	-1.047295000	
-2.777221000	-3.247082000	-1.503530000	
-2.983970000	-2.862679000	0.226139000	
	0.347026000 0.269652000 0.235579000 -0.753850000 1.008407000 0.439079000 5.852045000 6.499389000 6.617585000 5.950258000 7.489172000 -1.153847000 -2.739030000 -3.518941000 -2.777221000 -2.983970000	0.347026000-4.8396050000.269652000-7.0817910000.235579000-8.314397000-0.753850000-8.4931460001.008407000-8.3533890000.439079000-9.0958730005.852045000-1.3421470006.499389000-0.2774420006.6175850000.6011410005.9502580000.0164590007.489172000-0.653883000-1.153847000-1.290215000-2.739030000-2.434586000-3.518941000-1.713232000-2.983970000-2.862679000	

P4"

 $E = -1420.2955 E_h$

 $E_{ZPE}=0.5039\;E_h$

 $H^{298} = -1419.7622 \ E_h$

-0.633130000	1.516251000	0.626503000	С
-0.139780000	0.369999000	0.022670000	С
-0.231424000	0.172192000	-1.451870000	С
-1.211604000	1.048866000	-2.172620000	С
-1.739880000	2.157325000	-1.540153000	С
-1.421502000	2.397589000	-0.143770000	С
070			

С	-1.630592000	-1.378177000	-0.241107000
С	-0.314535000	-1.842695000	0.390477000
Н	1.696715000	1.670213000	-0.501009000
С	0.621571000	-0.806419000	0.411458000
0	-2.222805000	3.062465000	-2.490938000
С	-1.953388000	3.116879000	-3.893805000
Н	-0.932290000	3.473446000	-4.094948000
Н	-2.101640000	2.129338000	-4.364300000
Н	-2.671394000	3.830347000	-4.317174000
Н	-1.858188000	0.507745000	0.747986000
С	2.052807000	-0.898015000	0.796684000
С	2.577227000	-0.122159000	1.842470000
С	2.916411000	-1.806461000	0.148341000
С	3.898914000	-0.277703000	2.276552000
С	4.232562000	-1.961474000	0.559070000
С	4.732951000	-1.219454000	1.648739000
Н	1.933935000	0.593705000	2.362332000
Н	2.539385000	-2.411415000	-0.680058000
Η	4.261136000	0.324646000	3.110133000
Η	4.901639000	-2.669168000	0.065205000
0	0.344686000	3.492386000	-1.977207000
С	1.696314000	3.908927000	-1.755414000
Н	1.882654000	4.069206000	-0.682626000
Н	2.404731000	3.167413000	-2.154790000
Н	1.808868000	4.854639000	-2.297220000
0	-3.439454000	0.696848000	-1.364835000
С	-4.485603000	1.537592000	-1.882845000
Н	-4.394492000	1.662840000	-2.970335000
Н	-5.413827000	1.002306000	-1.645431000
Н	-4.475263000	2.518753000	-1.392594000
С	-0.111358000	-3.199440000	0.877128000
С	-0.752663000	-4.304375000	0.269789000
С	0.741816000	-3.472807000	1.981930000
С	-0.556984000	-5.608995000	0.715792000
С	0.931917000	-4.760569000	2.444409000

С	0.292241000	-5.852051000	1.815260000
Η	-1.392036000	-4.147654000	-0.601228000
Н	1.241191000	-2.652163000	2.495418000
Η	-1.059494000	-6.428449000	0.202834000
Η	1.574188000	-4.966746000	3.302549000
0	0.554954000	-7.058970000	2.331667000
С	-0.034129000	-8.227699000	1.781012000
Η	-1.131285000	-8.217834000	1.899005000
Η	0.224093000	-8.342606000	0.714642000
Η	0.381917000	-9.071298000	2.344519000
0	6.002476000	-1.484939000	2.012523000
С	6.546600000	-0.877313000	3.169971000
Η	6.644119000	0.215971000	3.050359000
Н	5.932202000	-1.092769000	4.061722000
Н	7.544440000	-1.312580000	3.306864000
Η	-1.636895000	-1.699046000	-1.299649000
С	-2.924710000	-1.854123000	0.429058000
Η	-3.784392000	-1.367389000	-0.049593000
Η	-3.057317000	-2.940246000	0.340574000
Н	-2.934073000	-1.599078000	1.501467000

Fluorescence properties

For all spectroscopic measurements a 1 cm four-sided Carl Zeiss quartz cuvette was used.

Absorption and fluorescence spectra were measured for solutions of indenes **3b-d,f,g** in dichloromethane (DCM).

Quantum yields (eq. s1) were determined using solution of quinine bisulfate in 0.5 M H₂SO₄ ($\Phi_q = 0.546^{[S21]}$) with A_q < 0.30 at the λ_{ex} as a standard:

$$\boldsymbol{\Phi}_{i} = \frac{I_{i}}{I_{q}} \cdot \frac{A_{q}}{A_{i}} \cdot \left(\frac{n_{i}}{n_{q}}\right)^{2} \cdot \boldsymbol{\Phi}_{q}$$
(s1)

In eq. s1, the subscripts i and q denote sample (indene) and standard (quinine bisulfate), Φ – quantum yield, I – integrated emission intensity, A – optical density at λ_{ex} , and n – refractive index (n_{water} = 1.333, n_{DCM} = 1.4242).

The main photophysical characteristics of indenes **3b-d,f,g** are summarized in Table S8.

Table S8

	absorption		emission		Stokes shifts (cm^{-1})
indene	λ_{\max} (nm)	$\mathcal{E} \times 10^3 \mathrm{M}^{-1} \mathrm{cm}^{-1}$	λ_{\max} (nm)	$\Phi_{\rm i}$	
3 b	325	11.3	427	0.29	7350
3c	330	8.5	431	0.34	7101
3d	293	2.1	-	-	-
3f	330	9.8	437	0.28	7420
3g	332	17.6	428	0.33	6756

Cell assays

The cytotoxicity of tested compounds was assessed using the MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay^[S22] with some modifications. 4000 cells per well were plated out in 100 mL of DMEM media containing 10% FBS in 96-well plate and incubated at 37 °C in 5% CO₂ incubator for 24 h. Then 10 mL of water-DMSO solution of tested compound was added to the cells (DMSO concentration in the media was kept below 1%) in such way that effective concentrations of studied compounds were in a range of 50 nM to 100 mM (eight dilutions). Doxorubicin (3 nM to 6 mM) was used as a control. After incubation for 72 h 10 mL MTT solution in PBS (5 mg/ml) was added, cells were incubated for 2 h. Medium was removed and 100 mL of DMSO was added. Samples were incubated for 15 min with shaking to completely solubilize formazan. Cell survival was measured spectrophotometrically at 565 nm.

Obtained results are summarized in Table S9.

Cell lines	IC ₅₀ (mM)			
	3a	3c	3g	3р
MCF7	n/o	n/o	n/o	0.25
HEK293	0.37	0.32	n/o	0.26
A549	0.30	0.33	0.24	n/o

Table S9

References

- [S1] Corey, E. J.; Chaykovsky M. J. Am. Chem. Soc. 1965, 87, 1353–1364.
- [S2] Fraser, W.; Suckling, C. J.; Wood, H. C. S. J. Chem. Soc., Perkin Trans. 1 1990, 3137– 3144.
- [S3] Sabourin, E. T.; Onopchenko, A. J. Org. Chem. 1983, 48, 5135-5137.
- [S4] Havens, S. J.; Hergenrother, P. M. J. Org. Chem. 1985, 50, 1763–1765.
- [S5] Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
- [S6] (a) Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974–12980. (b) Becke,
 A. D. Phys. Rev. A 1988, 38, 3098-3100. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
- [S7] Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577.
- [S8] Neese, F. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 73–78.
- [S9] Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Chem. Phys. 2009, 356, 98–109.
- [S10] Ishida, K.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153–2156.
- [S11] (a) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. *J. Comp. Chem.* 1993, *14*, 1347–1363. (b) Gordon, M. S.; Schmidt M. W. "Advances in electronic structure theory: GAMESS a decade later" in "Theory and Applications of Computational Chemistry: the first forty years" Dykstra, C. E.; Frenking, G.; Kim, K. S.; Scuseria, G. E. (editors), Elsevier, Amsterdam, 2005, pp. 1167–1189.
- [S12] Carpenter, P. D.; Humphreys, D. J.; Proctor, G. R.; Rees, L. G. J. Chem. Soc., Perkin Trans. 1 1974, 1527-1531.
- [S13] Lantano, B.; Aguirre, J. M.; Finkielsztein, L.; Alesso, E. N.; Brunet, E.; Moltrasio, G. Y. Synth. Commun. 2004, 34, 625-641.
- [S14] Karmarkar, P. G.; Chinchore, V. R.; Wadia, M. S. Synthesis 1981, 228-229.
- [S15]Chang, K.-J.; Rajabarapu, D. K.; Cheng, C.-H. J. Org. Chem. 2004, 69, 4781-4787.
- [S16] Muralirajan, K.; Partasarathy, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2011, 50, 4169-4172.
- [S17] Yang, M.; Zhang, X.; Lu, X. Org. Lett. 2007, 9, 5131-5133.
- [S18] Adcock, H. V.; Langer, T.; Davies, P. W. Chem. Eur. J. 2014, 20, 7262-7266.
- [S19] Shimamoto, Y.; Sunaba, H.; Ishida, N.; Murakami, M. Eur. J. Org. Chem. 2013, 1421-1424.

- [S20] Kametani, T.; Takahashi, K.; Sugahara, T.; Koizumi, M.; Fukumoto, K. J. Chem. Soc. (C) 1971, 1032-1043.
- [S21] Cappelli, A.; Paolino, M.; Grisci, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Boccia, A. C.; Botta, C.; Mroz, W.; Samperi, F.; Scamporrino, A.; Giorgi, G.; Vomero, S. J. Mater. Chem. 2012, 22, 9611-9623.
- [S22] Eaton, D. F. Pure Appl. Chem. 1988, 60, 1107-1114.
- [S23] Ferrari, M.; Fornasiero, M.C.; Isetta, A.M. J. Immunol. Methods 1990, 131, 165-172.

Dimethyl 2-[(7-methyl-8-phenyl-3,6-dihydro-2*H*-indeno[5,6-*b*][1,4]dioxin-6-yl)methyl]malonate (3a)

Dimethyl 2-[(7,8-diphenyl-3,6-dihydro-2H-indeno[5,6-b][1,4]dioxin-6-yl)methyl]malonate (3b)

Dimethyl 2-{[7,8-bis(4-methoxyphenyl)-3,6-dihydro-2*H***-indeno[5,6-***b***][1,4]dioxin-6-yl]methyl}malonate (3c) ¹H NMR (CDCl₃, 600 MHz)**

Dimethyl 2-[(6-methyl-7-phenyl-5H-indeno[5,6-d][1,3]dioxol-5-yl)methyl]malonate (3d)

Dimethyl 2-[(6-methyl-7-phenyl-5H-indeno[5,6-d][1,3]dioxol-5-yl)methyl]malonate (3d)

Dimethyl 2-[(6-ethyl-7-phenyl-5*H*-indeno[5,6-d][1,3]dioxol-5-yl)methyl]malonate (3e)

Dimethyl 2-[(6-ethyl-7-phenyl-5*H*-indeno[5,6-d][1,3]dioxol-5-yl)methyl]malonate (3e)

Dimethyl 2-[(6,7-diphenyl-5H-indeno[5,6-d][1,3]dioxol-5-yl)methyl]malonate (3f)

¹³C NMR (CDCl₃, 150 MHz) CO₂Me $<^{169.68}_{169.33}$ \sim 105.28 \sim 101.71 \sim 101.06 129.31 128.69 128.69 128.17 128.17 44 126.80 -52.33 48.07 47.82 MeO₂C⁻ -Ph Ρh

Ó

200

190

180

170

160

150

140

130

120

110

Dimethyl 2-[(6,7-diphenyl-5H-indeno[5,6-d][1,3]dioxol-5-yl)methyl]malonate (3f)

⊤ 100 ppm

80

70

60

50

40

30

20

10

-10

0

90

Dimethyl 2-{[6,7-bis(4-methoxyphenyl)-5*H*-indeno[5,6-*d*][1,3]dioxol-5-yl]methyl}malonate (3g)

Dimethyl 2-{[6,7-bis(4-methoxyphenyl)-5*H*-indeno[5,6-*d*][1,3]dioxol-5-yl]methyl}malonate (3g)

Dimethyl 2-[(2-ethyl-5,6-dimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3i)

Dimethyl 2-[(2-ethyl-5,6-dimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3i)

Dimethyl 2-[(5,6-dimethoxy-2,3-diphenyl-1*H*-inden-1-yl)methyl]malonate (3j)

Dimethyl 2-[(2-ethyl-6-methoxy-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3k)

Dimethyl 2-[(2-ethyl-6-methoxy-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3k)

¹H-¹³C HMBC (CDCl₃)

¹H-¹H NOESY (CDCl₃)

Dimethyl 2-[(6-ethoxy-5-methoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3m)

¹H-¹H NOESY (CDCl₃)

Dimethyl 2-[(6-ethoxy-5-methoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3m)

Dimethyl 2-[(6-ethoxy-5-methoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3m)

Dimethyl 2-[(6-ethoxy-5-methoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3m)

¹H-¹³C HMBC (CDCl₃)

Dimethyl 2-[(2-methyl-3-phenyl-8-tosyl-3,4-dihydrocyclopenta[*b*]indol-1-yl)methyl]malonate (3n)

Dimethyl 2-[(6-fluoro-2-methyl-1-phenyl-4-tosyl-3,4-dihydrocyclopenta[b]indol-3-yl)methyl]malonate (30)

Dimethyl 2-[(6-fluoro-2-methyl-1-phenyl-4-tosyl-3,4-dihydrocyclopenta[b]indol-3-yl)methyl]malonate (30)

¹H-¹H NOESY (CDCl₃)

Dimethyl 2-[(6-fluoro-2-methyl-1-phenyl-4-tosyl-3,4-dihydrocyclopenta[*b*]indol-3-yl)methyl]malonate (30)

¹H-¹³C HMBC (CDCl₃)

Dimethyl 2-[(4,5,6-trimethoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3p)

Dimethyl 2-[(4,5,6-trimethoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3p)

Dimethyl 2-[(4,5,6-trimethoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3p)

Dimethyl 2-[(5,6,7-trimethoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3q)

Dimethyl 2-[(5,6,7-trimethoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3q)

Dimethyl 2-[(5,6,7-trimethoxy-2-methyl-3-phenyl-1*H*-inden-1-yl)methyl]malonate (3q)

¹H-¹³C HMBC (CDCl₃)

Dimethyl 2-[(2-ethyl-4,5,6-trimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3r)

Dimethyl 2-[(2-ethyl-4,5,6-trimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3r)

Dimethyl 2-[(2-ethyl-4,5,6-trimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3r)

¹H-¹H NOESY (DMSO-d₆)

¹H-¹³C HMBC (CDCl₃)

Dimethyl 2-[(2-ethyl-5,6,7-trimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3s)

Dimethyl 2-[(2-ethyl-5,6,7-trimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3s)

S132

Dimethyl 2-[(2-ethyl-5,6,7-trimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3s)

¹H-¹H NOESY (CDCl₃)

Dimethyl 2-[(2-ethyl-5,6,7-trimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3s)

Dimethyl 2-[(2-ethyl-5,6,7-trimethoxy-3-phenyl-1H-inden-1-yl)methyl]malonate (3s)

¹H-¹³C HMBC (CDCl₃)

Dimethyl 2-[(4,5,6-trimethoxy-2,3-diphenyl-1H-inden-1-yl)methyl]malonate (3t)

Dimethyl 2-[(4,5,6-trimethoxy-2,3-diphenyl-1H-inden-1-yl)methyl]malonate (3t)

Dimethyl 2-[(4,5,6-trimethoxy-2,3-diphenyl-1H-inden-1-yl)methyl]malonate (3u)

Dimethyl 2-[(4,5,6-trimethoxy-2,3-diphenyl-1H-inden-1-yl)methyl]malonate (3u)

Dimethyl 2-[(4,5,6-trimethoxy-2,3-diphenyl-1H-inden-1-yl)methyl]malonate (3u)

¹H-¹³C HMBC (CDCl₃)

Dimethyl 2-{[4,5,6-trimethoxy-2,3-bis(4-methoxyphenyl)-1H-inden-1-yl]methyl}malonate (3v)

Dimethyl 2-{[4,5,6-trimethoxy-2,3-bis(4-methoxyphenyl)-1H-inden-1-yl]methyl}malonate (3v)

Dimethyl 4-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-methyl-2-phenylcyclopent-2-ene-1,1-dicarboxylate (4)

Dimethyl 4-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-methyl-2-phenylcyclopent-2-ene-1,1-dicarboxylate (4)

4-Methyl-5-phenyl-3,3a,8,9-tetrahydroacenaphtho[4,5-*b*][1,4]dioxin-1(2*H*)-one (5)

4-Methyl-5-phenyl-3,3a,8,9-tetrahydroacenaphtho[4,5-*b*][1,4]dioxin-1(2*H*)-one (5)