Supporting Information

O₂ and water migration pathways between the solvent and heme pockets of hemoglobin with open and closed conformations of the distal HisE7

Maria S. Shadrina, Gilles H. Peslherbe and Ann M. English

Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling and PPOTEO, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada, H4B 1R6

E-mails: ann.english@concordia.ca; gilles.peslherbe@concordia.ca

Contents

Table S1. Summary of simulations performed of the six HbA models S2
Figure S1. The HisE7 C-C _{α} -C _{β} -C _{γ} torsion angle vs simulation time for the R _c and R _o modelsS3
Figure S2. Maps of O_2 density within the kinetically accessible diffusion tunnels of the α -subunit of
the six HbA models
Figure S3. Maps of O_2 density within the kinetically accessible diffusion tunnels of the β -subunit of
the six HbA models
Figure S4. O ₂ and water distribution around the heme of the α -subunit (green) and β -subunit (blue) of
the R _c , R _o and R ₋ models viewed from the distal side
References for Supporting Information

TLES HbA model ^a	TLES O ₂ location ^b	Number of independent 2-ns simulations ^c	Number of simulated O ₂ trajectories	Total time of simulated O ₂ diffusion, ns
T _c + 15 TLES O ₂	α-subunit	32	480	960
T _o + 15 TLES O ₂	α-subunit	32	480	960
T_+15 TLES O2	α-subunit	32	480	960
R _c + 15 TLES O ₂	α-subunit	32	480	960
R _o + 15 TLES O ₂	α-subunit	32	480	960
R ₋ +15 TLES O ₂	α-subunit	32	480	960
T _c + 15 TLES O ₂	β-subunit	32	480	960
T _o + 15 TLES O ₂	β-subunit	32	480	960
T. + 15 TLES O ₂	β-subunit	32	480	960
R _c + 15 TLES O ₂	β-subunit	32	480	960
R ₀ + 15 TLES O ₂	β-subunit	32	480	960
R . + 15 TLES O ₂	β-subunit	32	480	960
Ligand-free HbA model Standard MD simulations ^a		Number of independent 32-ns simulations ^c	Number of simulated trajectories per subunit ^d	Total simulation time per subunit ns ^d
T _c		15	30	960
To		2	4	128
T.		2	4	128
T _{cw}		2	4	128
R _c		15	30	960
Ro		2	4	128
D.		2	4	128
R.		2	•	120

 Table S1. Summary of simulations performed of the six HbA models

^a Crystal structures PDB 2DXM (1) and 2DN3 (2) were used for the **T** and **R** models, respectively. Wild-type HbA with HisE7 in its neutral, *closed* (\mathbf{T}_{c} , \mathbf{R}_{c}) and protonated, *open* (\mathbf{T}_{o} , \mathbf{R}_{o}) conformations was modeled. The HbA(α,β HisE7Gly) variant represents models with no HisE7 barrier ($\mathbf{T}_{.}$, $\mathbf{R}_{.}$). \mathbf{T}_{c} and \mathbf{R}_{c} were also modeled with a single water molecule occupying their distal heme sites (\mathbf{T}_{cw} , \mathbf{R}_{cw}).

^b Fifteen TLES O₂ copies were placed in the distal heme site of the indicated subunit.

^c Number of independent simulations carried out for each HbA model.

^d Since HbA contains two α - and two β -subunits each ligand-free simulation of HbA provides two trajectories for the α -subunit and two for the β -subunit.

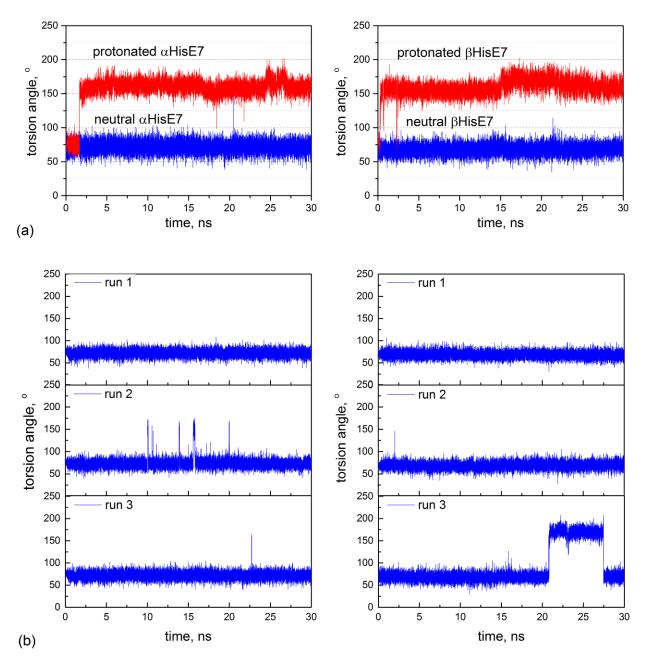


Figure S1. The HisE7 C-C_{α}-C_{β}-C_{γ} torsion angle vs simulation time for the R_c and R_o models. Torsion angles of ~70° and ~170° characterize the open and closed conformations of HisE7, respectively (see Figure 1 of the main text). Variation in the C-C_{α}-C_{β}-C_{γ} torsion angle during: (a) an arbitrary simulation of R_c (blue) and of R_o (red); and (b) three arbitrary simulations of the α -subunit (left panels) and β -subunit (right panels) of R_c. Note that run 3 for the β -subunit exemplifies spontaneous opening of the neutral HisE7. The data shown are derived from ligand-free standard MD simulations (Table S1).

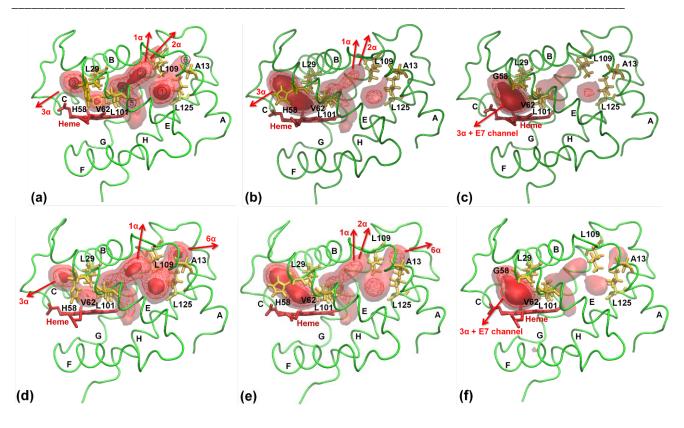


Figure S2. Maps of O_2 density within the kinetically accessible diffusion tunnels of the *a*-subunit of the six HbA models. Maps were plotted using 480 trajectories of TLES O_2 diffusion from the distal heme sites of the (a) T_c , (b) T_0 , (c) T. (d) R_c , (e) R_0 and (f) R. models. Isosurfaces define regions with $\geq 0.5\%$ (solid), $\geq 0.1\%$ (wireframe), $\geq 0.025\%$ (transparent) average occupancy during the simulations. Ribbons represent the backbone atoms of the *a*-subunit. The heme is shown as red stick, and the E7 residue (H58, α G58), the B10E11G8 barrier (residues α L29, α V62, α L101) and the *a*-barrier G16H8A11 (residues α L109, α L125, α A13) are shown as amber sticks. The yellow circle in (a) indicates the distal site, and the black circles locate the experimental Xe docking sites observed in the crystals of HbA and HbYQ.(*3*) The arrows locate the major O_2 exit portals from the α -subunit, including those from the interior tunnels (Table 1 of the main text).

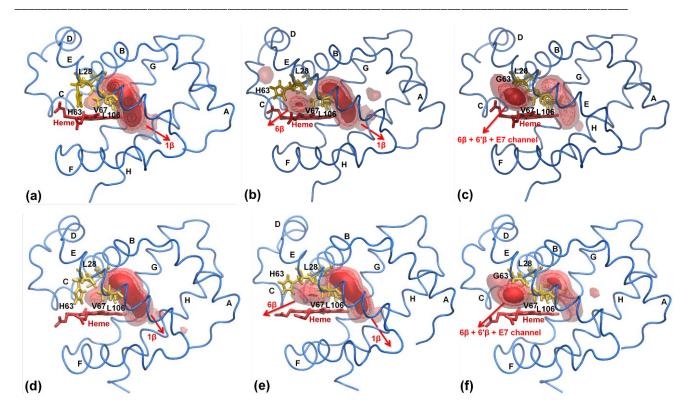


Figure S3. Maps of O_2 density within the kinetically accessible diffusion tunnels of the β -subunit of the six HbA models. Maps were plotted using 480 trajectories of TLES O_2 diffusion from the distal heme sites of the (a) T_c , (b) T_o , (c) T. (d) R_c , (e) R_o and (f) R. models. Isosurfaces define regions with $\geq 0.5\%$ (solid), $\geq 0.1\%$ (wireframe), $\geq 0.025\%$ (transparent) average occupancy during the simulations. Ribbons represent the backbone atoms of the β -subunit. The heme is shown as red sticks, and the E7 residue (H63, β G63) and the B10E11G8 barrier (residues β L28, β V67, β L106) are shown as amber sticks. The yellow circle in (a) indicates the distal site and the black circles locate the experimental Xe docking sites observed in the crystals of HbA and HbYQ.(3) The arrows locate the major O_2 exit portals (Table 2 of the main text).

Figure S4. O₂ and water distribution around the heme of the α-subunit (green) and β-subunit (blue) of the R_c, R_o and R. models viewed from the distal side. (a–c, g–i) Black dots represent O₂ positions derived from 480 trajectories of TLES O₂ diffusion from the α- and β-distal sites labeled in panels a and g. (d–f, j–l) represent the water positions observed during a 0.5-ns window of ligand-free standard MD simulations (Table S1). The key distal residues that control O₂ and water access to the heme, E7 (αH58, βH63, αG58 or βG63), PheCD4 (αF46, βF45) and LysE10 (αK61, βK66) as well as the B10E11G8 barrier between the heme and the interior tunnels (residues αL29, αV62, αL101 or βL28, βV67, βL106) are shown as amber sticks. Red arrows (panels a,g) indicate all observed O₂ escape routes from the heme distal pockets, and the frequency of portal use is summarized in Tables 1 and 2 of the main text. The rotation of HisE7 toward the solvent allows extensive water access via the E7 channel and minor paths, which are marked by purple arrows in panels e,k. Plots for the T_c, T_o and T. models are shown in Figure 2 of the main text.

References for Supporting Information

- 1. Chatake, T., Shibayama, N., Park, S. Y., Kurihara, K., Tamada, T., Tanaka, I., Niimura, N., Kuroki, R., and Morimoto, Y. (2007) Protonation states of buried histidine residues in human deoxyhemoglobin revealed by neutron crystallography, *J. Am. Chem. Soc.* 129, 14840-14841.
- 2. Park, S. Y., Yokoyama, T., Shibayama, N., Shiro, Y., and Tame, J. R. (2006) 1.25 A resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms, *J. Mol. Biol.* 360, 690-701.
- 3. Savino, C., Miele, A. E., Draghi, F., Johnson, K. A., Sciara, G., Brunori, M., and Vallone, B. (2009) Pattern of cavities in globins: the case of human hemoglobin, *Biopolymers 91*, 1097-1107.