Stereochemical Determination of the Leupyrrins and Total Synthesis of Leupyrrin \mathbf{A}_1

Daniel Herkommer,[†] Sebastian Thiede,[†] Paul R. Wosniok,[†] Sandra Dreisigacker,[†] Maoqun Tian,[†] Thomas Debnar,[†] Herbert Irschik,[⊥] and Dirk Menche^{*,†}

[†] Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany and [⊥]Helmholtz Centre for Infection Research (HZI), Microbial Drugs, Inhoffenstr. 7, D-38124 Braunschweig, Germany

Supporting Information

Table of Contents:

1	G	ENERAL METHODS	2							
2	ST									
	2.1	Fermentation and Isolation	4							
	2.2	Assignment of the relative configuration of the C-1 to C-6 subunit of Leupyrrin B $_1$	8							
	2.3	DERIVATIZATION	9							
	2.4	COPIES OF NMR SPECTRA	13							
	2.5	Molecular Modelling	23							
3	E)	XPERIMENTAL PROCEDURES AND CHARACTERIZATION DATA								
3	E) 3.1	Synthesis of Butyrolactone 7	33							
3		Synthesis of Butyrolactone 7	33 36							
3	3.1	Synthesis of Butyrolactone 7 Synthesis of Dihydrofuran 10 Synthesis of Pyrrole 8	33 36 58							
3	3.1 3.2	Synthesis of Butyrolactone 7	33 36 58							
3	3.1 3.2 3.3	Synthesis of Butyrolactone 7 Synthesis of Dihydrofuran 10 Synthesis of Pyrrole 8	33 36 58 61							

1 General Methods

All reactions with dry solvents were performed under an atmosphere of argon in flame-dried glassware which had been cooled under argon unless stated otherwise. All flasks were equipped with rubber septa and reactants were handled using standard Schlenk techniques.

Temperatures above room temperature (20 °C) refer to oil bath temperatures which were controlled by a temperature modulator. For cooling, the following baths were used: acetone/dry ice (-78 °C), H₂O/ice (0 °C) for other temperatures below 0 °C a Huber TC100E-F-NR cooler was used.

All reagents were purchased from commercial suppliers (Sigma-Aldrich, TCI, AlfaAesar, Strem) in the highest grade available and used without further purification unless otherwise stated.

Anhydrous solvents (THF, Et₂O, toluene, and CH₂Cl₂) were obtained from a solvent drying system MB SPS-800 (MBraun) and stored over molecular sieves or purchased over molecular sieves (dioxane, DMF, DMSO).

Reactions were monitored via TLC on silica gel 60 F_{254} precoated plates (0.2 mm SiO₂, Machery-Nagel) and visualized using UV light and/or staining with a solution of CAM (1.0 g Ce(SO₄)₂, 2.5 g (NH₄)₆Mo₇O₂₄, 8 mL conc. H₂SO₄ in 100 mL H₂O) or KMnO₄ (1.5 g KMnO₄, 10 g K₂CO₃, 1.25 mL 10% NaOH in 200 mL H₂O) or Ninhydrin (1.5 g ninhydrin, 3 mL HOAc in 100 mL H₂O and 100 mL *n*-butanol) or 4-anisaldehyde (3.7 mL 4-anisaldehyde, 1.5 mL HOAc, 5 mL H₂SO₄ in 135 mL abs. EtOH) respectively, and subsequent heating.

For column chromatography, silica gel (pore size 60 Å, 40-63 μ m) obtained from Aldrich or Merck was used and the size of the column was adjusted to the recommendations by Still *et al.*¹ Compounds were eluated using the stated mixtures under a positive pressure of air. Solvents were destilled prior to use.

Optical rotations were measured with a Perkin Elmer 241 or 341 polarimeter in a 10 mm cuvette and are uncorrected. Melting points were obtained using a Büchi melting point instrument B-540 or a microscope for determining the melting point of fibres (Reichert, Austria, type 7905) and are uncorrected.

¹H- and ¹³C-NMR spectra were recorded on Bruker AC-300, DRX-300, DPX-300, DPX-400, DRX-500 and Avance-III-600 spectrometers with ¹³C operating frequencies of 75, 100, 125 and 150 Mhz respectively. Spectra were measured at room temperature unless stated otherwise. Chemical shifts (δ) are reported in ppm relative to tetramethylsilane (δ = 0.00 ppm)

¹ Still, W. C.; Kahn, M.; Mitra A. J. Org. Chem. 1978, 43, 2923.

and the spectra were calibrated to the residual signal of undeuterated solvents.² Data for ¹H-NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants in Hertz, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), br. (broad).

Mass spectra (MS) and high-resolution-mass spectra (HRMS) were recorded at the Departments of Organic Chemistry in Heidelberg and Bonn on the following mass spectrometers: Bruker ICR APEX-QE, Vacuum Generators ZAB-2F, Finnigan MAT TSQ 700, JEOL JMS-700, Bruker Daltonics micrOTOF-Q and a Thermo Finnigan MAT 95 XL.

IR spectra were recorded on a Thermo Scientific Nicolet 380 FT-IR spectrometer. UV/Vis measurements were carried out using a Perkin Elmer Lambda 18 spectrometer.

The HPLC analytical and preparative analyses were performed by using a system of the company "Knauer Wissenschaftliche Geräte GmbH": Smartline series consisting of a twochannel degasser, two pumps S-1800 (100 mL pump head), an injection assistant 6000 with a feed pump S-100, a mixing chamber Smartmix 350, a UV-detector S-2550 and a fraction valves (16 port). The system was controlled by Chromgate software version 3.3.2. All solvents were purchased from the central chemical store of the University of Bonn in HPLC grade.

Boc	<i>tert</i> -butyloxycarbonyl
CSA	10-camphorsulfonic acid
DAST	diethylaminosulfur trifluoride
DiBAl	di-iso-butylaluminium hydride
DIPT	di- <i>iso</i> -propyltartrate
DMAP	4-(<i>N</i> , <i>N</i> -dimethylamino)pyridine
HATU	O-(7-azabenzotriazol-1-yl)- N , N , N , N ·-tetramethyluronium
	hexafluorophosphate
HWE	Horner-Wadsworth-Emmons
IBX	2-iodoxybenzoic acid
MS	molecular sieve
MW	microwave
pin	pinacole
PPTS	pyridinium-para-toluensulfonate
Ру	pyridine
rt	room temperature
SAE	Sharpless asymmetric epoxidation
Suc	succinimide
TASF	tris(dimethylamino)sulfonium difluorotrimethylsilicate

List of abbreviations:

² Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* **2010**, *29*, 2176.

TBAF	tetra-n-butylammoniumfluoride
TBS	tert-butyldimethylsilyl
TCBC	2,4,6-trichlorbenzoylchloride
Teoc	2-(trimethylsilyl)ethoxycarbonyl

2 Stereochemical Determination

2.1 Fermentation and Isolation

The Leupyrrins A₁ (1), A₂, B₁ (2), B₂, C and D were produced by the *Sorangium cellulosum* strain So ce690 in a 70 L fermentor (Giovanola Frères SA, Monthey, Switzerland) at 30 °C containing the following medium: Starch 8 g L⁻¹, soybean meal 1.5 g L⁻¹, skim milk 1.5 g L⁻¹, casitone 1 g L⁻¹, glucose × H₂O 2 g L⁻¹, fructose × H₂O 2 g L⁻¹, KH₂PO₄× H₂O 0.25 g L⁻¹, CaCl₂ × 2 H₂O 1 g L⁻¹, MgSO₄ × 7 H₂O 1 g L⁻¹, Na-Fe-EDTA 8 mg L⁻¹, at pH 7.3 in the presence of 1% of adsorber resin Amberlite XAD-16 (Rohm & Haas). The partial pressure was regulated to an oxygen concentration of 20%. After 14 days of cultivation, starch, glucose and fructose were used up and the culture broth was passed through a process filter to collect the absorber resin.

Residual cells were floated from the XAD-16 resin with water. The resin was eluted with acetone (12 L). The organic solvent was evaporated and the remaining water-layer (1 L) was adjusted to pH 10 with aqueous NH₃ and extracted with ice-cold Et₂O (3 portions of 2 L) after addition of saturated NaCl-solution (500 mL). The Et₂O-layer yielded an oily crude extract after evaporation.³ A MeOH/n-heptane partition was carried out to remove lipophilic byproducts in the *n*-heptane layer (700 mL). After evaporation the MeOH-layer yielded 9.80 gof an orange-brown material, which was fractionated into leupyrrins A_1 (1), A_2 , B_1 (2), B_2 (2.39 g), and Leupyrrins C, D (0.42 g) by silica gel flash-chromatography [solvent: t-buty] methyl ether/petrol ether, 2:1, with 2% MeOH]. The mixture of Leupyrrins C and D were purified by RP-HPLC [column 250×21 mm, 10 µm: Nucleosil C18 (Macherey-Nagel), solvents MeOH/H₂O 70:30 with 0.05 M NH₄OAc, pH 8.0, $FR = 22 \text{ mL min}^{-1}$, UV detection 277 nm]. The fractions at $R_t = 23$ min and $R_t = 27$ min were combined, respectively and neutralized with pure acetic acid and extracted with EtOAc before the organic solvent was dried with Na₂SO₄ and evaporated. This yielded pure compounds (leupyrrins C and D). The crude mixture of leupyrrins A_1 (1), A_2 , B_1 (2), B_2 were separated by normal-phase HPLC [column 250×21 mm, 10 µm: Nucleosil (Macherey-Nagel), solvents: t-butyl methyl

³ The water-layer was acidified to pH 3 using aqueous HCl and extracted with EtOAc (1 portion of 2L, 2 portions of 1L). Finally the EtOAc-layer was neutralized and yielded crude material of Sorangicin after evaporation, which was not further purified.

ether/petrol ether 18:82 mit 0.5% MeOH, $FR = 34 \text{ mL min}^{-1}$, UV detection 277 nm]. The fractions at $R_t = 27$ min and $R_t = 29$ min as well as the fractions of $R_t = 44$ min and $R_t = 50$ min were combined and evaporated to yield a mixture of leupyrrins A₁ and A₂ and a mixture of B₁ and B₂. Both mixed fractions were purified by chiral normal-phase HPLC [column 250×20 mm, 5 µm: Chiralpak-IB (Daicel), solvent A: petrol ether; solvent B: *i*-propanol, gradient: starting from 5% B and increasing to 22.5% B in 15 min, maintaining for 1 min, FR = 20 mL min⁻¹, UV detection 277 nm]. The retention was detected by $R_t = 7$ min for leupyrrin A₁, $R_t = 9$ min for leupyrrin A₂ and $R_t = 6$ min for leupyrrin B₁ and $R_t = 8$ min for leupyrrin B₂. The yields for the purified compounds are as follows:

	yield [mg]
leupA ₁	47.3
leupA ₂	27.1
leupB ₁	70.1
leupB ₂	73.0
leupC	18.4
leupD	143.9
leupMA ^b	22.9
leupMB ^b	26.6

Table S 1 Quantities of the leupyrrins after isolation

^{*a*} crude mixtures from in total (purified): leup A/B = 2.39 g (2.39 g), leup C/D = 0.42 g (0.42 g); ^{*b*} mixed fractions.

Leupyrrin A₁ (1)

C₄₁H₅₈N₂O₁₀, M = 738. 91 g/mol

Isolated material.

R_f = 0.60 (petroleum ether/EtOAc = 1/2); $[α]_D^{20}$ = +11.7 (c = 1.0, MeOH) [Lit: $[α]_D^{20}$ = +12 (c 4.06, MeOH)];⁴ **UV** (MeOH) $λ_{max}$ (log ε) 260 (1.09) nm, 286 (1.98) nm; **IR** (film) v_{max} 2955, 2872, 1782, 1741, 1649, 1159, 1115, 1068, 1036, 1003 cm⁻¹;¹**H-NMR** (600 MHz, CD₃OD): δ [ppm] = 6.80 (d, *J* = 3.7 Hz, 1 H), 6.07 (d, *J* = 3.7 Hz, 1 H), 5.90 (m, 1 H), 5.59 (d, *J* = 7.7 Hz, 1 H), 5.56 (d, *J* = 9.9 Hz, 1 H), 5.01 (m, 1 H), 4.78 (d, *J* = 7.7 Hz, 1 H), 4.71 (ddd, *J* = 8.1, 5.5, 2.6 Hz, 1 H), 4.61-4.55 (m, 4 H), 4.49 (d, *J* = 12.5 Hz, 1 H), 4.21 (dd, *J* = 12.1, 2.6 Hz, 1 H), 3.78 (d, *J* = 11.0 Hz, 1 H), 3.61 (d, *J* = 11.0 Hz, 1 H), 3.42-3.39 (m, 3 H), 3.36 (s, 3 H), 2.85-2.79 (m, 2 H), 2.72-2.67 (m, 1 H), 2.19-2.07 (m, 2 H), 1.98 (s, 3 H), 1.95-1.89 (m, 1 H), 1.82-1.59 (m, 5 H), 1.77 (s, 3 H), 1.49-1.44 (m, 2 H), 1.11 (s, 3 H), 1.08 (d, *J* = 6.6 Hz, 3 H), 1.03 (d, *J* = 6.6 Hz, 3 H), 0.94 (d, *J* = 6.0 Hz, 3 H), 0.93 (d, *J* = 6.0 Hz, 3 H); ¹³**C-NMR** (100 MHz, CD₃OD): δ [ppm] = 179.5, 175.6, 172.3, 160.8, 145.0, 136.6, 135.3, 134.1, 131.4, 128.6, 123.2, 119.5, 115.3, 109.7, 85.5, 84.7, 80.6, 75.6, 73.0, 70.3, 68.2, 66.1, 65.9, 58.9, 51.3, 44.5, 40.2, 40.0, 36.5, 35.0, 28.5, 27.0⁵, 26.3, 24.3, 23.0, 22.8, 22.2, 20.3, 14.7, 11.5; **HRMS** (ESI+): calculated for C₄₁H₅₉N₂O₁₀⁺ [M+H]⁺: 739.4164, found 739.4166.

⁴ Bode, H. B.; Irschik, H.; Wenzel, S. C.; Reichenbach, H.; R. Müller, R.; Höfle, G. J. Nat. Prod. 2003, 66, 1203.

⁵ Signal contains two carbon atoms.

Leupyrrin B₁ (2)

 $C_{41}H_{56}N_2O_{10}$, M = 736.89 g/mol

Isolated material.

 $\mathbf{R}_{f} = 0.60$ (silica, petroleum ether/EtOAc = 1/2); $[\alpha]_{D}^{20} = +2.7$ (c = 1.0, MeOH) [Lit: $[\alpha]_D^{20} = +11 \ (c = 4.6, \text{MeOH})]^6$; UV (MeOH) $\lambda_{\text{max}} \ (\log \varepsilon) \ 236 \ (0.82) \ \text{nm}, \ 260 \ (0.80) \ \text{nm}, \ 287$ (1.29) nm; **IR** (film) v_{max} 2954, 2868, 1780, 1725, 1653, 1209, 1132, 1116, 1038, 1008 cm⁻¹; ¹**H-NMR** (600 MHz, CD₃OD): δ [ppm] = 6.69 (d, J = 3.6 Hz, 1 H), 6.58 (s, 1 H), 5.96 (d, J = 3.6 Hz, 1 H), 5.86-5.81 (m, 1 H), 5.48 (d, J = 10.3 Hz, 1 H), 5.40 (d, J = 9.1 Hz, 1 H), 4.99-4.95 (m, 1 H), 4.70-4.64 (m, 3 H), 4.59 (dd, *J* = 10.2, 4.0 Hz, 1 H), 4.53 (d, *J* = 12.9 Hz, 1 H), 4.49 (dd, J = 12.4, 2.7 Hz, 1 H), 4.44 (d, J = 12.9 Hz, 1 H), 3.77 (d, J = 10.7 Hz, 1 H), 3.69 (d, J = 10.7 Hz, 1 H), 3.58 (dd, J = 14.4, 10.7 Hz, 1 H), 3.34 (t, J = 6.1 Hz, 2 H), 3.23 (dd, J = 14.5, 5.3 Hz, 1 H), 3.30 (s, 3 H), 2.57 (dd, J = 12.6, 7.3 Hz, 1 H), 2.50 (dd, J = 12.6, 7.3 Hz,7.3 Hz, 1 H), 2.13-2.00 (m, 2 H), 1.91 (s, 3 H), 1.88-1.82 (m, 1 H), 1.77-1.62 (m, 3 H), 1.74 (s, 3 H), 1.57 (ddd, J = 14.5, 11.0, 4.3 Hz, 1 H), 1.35 (ddd, J = 14.2, 9.5, 2.7 Hz, 1 H), 1.01 (s, 3 H), 1.00 (d, J = 6.8 Hz, 3 H), 0.96 (d, J = 6.8 Hz, 3 H), 0.82 (d, J = 1.5 Hz, 3 H), 0.81 (d, J = 1.5 Hz, 3 H); ¹³C-NMR (150 MHz, CD₃OD): δ [ppm] = 179.1, 167.7, 166.2, 161.4, 148.3, 144.6, 136.9, 134.1, 131.6, 131.3, 131.1, 128.1, 123.4, 119.6, 115.8, 109.3, 85.2, 84.3, 80.7, 74.8, 73.0, 70.5, 68.9, 66.9, 65.3, 58.9, 51.1, 44.8, 37.2, 35.1, 29.8, 28.5, 27.3, 26.3, 24.3, 23.0, 22.9, 22.1, 20.3, 13.7, 10.0; ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 9.0 (bs, 1 H), 6.70 (s, 1 H), 6.67 (d, J = 3.7 Hz, 1 H), 6.03 (d, J = 3.7 Hz, 1 H), 5.56 (d, J = 9.2 Hz, 1 H), 5.55-5.52 (m, 1 H), 5.46 (d, J = 9.9 Hz, 1 H), 4.89-4.85 (m, 1 H), 4.63-4.59 (m, 3 H), 4.57 (dd, J = 9.5, 3.7 Hz, 1 H), 4.57 (d, J = 9.2 Hz, 1 H), 4.53 (d, J = 12.1 Hz, 1 H), 4.47 (d,

⁶ Bode, H. B.; Irschik, H.; Wenzel, S. C.; Reichenbach, H.; R. Müller, R.; Höfle, G. J. Nat. Prod. 2003, 66, 1203.

J = 12.1 Hz, 1 H), 4.33 (dd, J = 12.7, 2.8 Hz, 1 H), 3.96 (d, J = 11.4 Hz, 1 H), 3.71 (d, J = 11.4 Hz, 1 H), 3.54 (dd, J = 15.4, 11.0 Hz, 1 H), 3.35-3.31 (m, 3 H), 3.33 (s, 3 H), 2.60 (dd, J = 12.7, 7.5 Hz, 1 H), 2.49 (dd, J = 12.7, 7.2 Hz, 1 H), 2.10-2.00 (m, 2 H), 1.89 (s, 3 H), 1.83-1.66 (m, 3 H), 1.81 (s, 3 H), 1.61 (ddd, J = 14.3, 10.5, 4.2 Hz, 1 H), 1.35 (ddd, J = 14.3, 9.4, 2.8 Hz, 1 H), 1.15 (s, 3 H), 0.97 (d, J = 6.2 Hz, 3 H), 0.99 (d, J = 6.2 Hz, 3 H), 0.85 (d, J = 6.6 Hz, 3 H), 0.82 (d, J = 6.6 Hz, 3 H); ¹³C-NMR (150 MHz, CDCl₃): δ [ppm] = 176.4, 166.0, 165.6, 161.7, 146.9, 143.8, 134.5, 132.9, 131.5, 129.9, 129.3, 126.8, 121.3, 119.1, 113.9, 108.5, 83.8, 82.7, 79.5, 72.8, 71.9, 69.4, 67.5, 66.4, 64.8, 58.6, 49.4, 43.3, 36.4, 34.1, 29.7, 28.5, 27.4, 26.8, 24.9, 23.7, 22.4, 22.3, 20.1, 13.2, 10.1; HRMS (ESI+): calculated for C₄₁H₅₇N₂O₁₀⁺ [M+H]⁺: 737.4008, found: 737.4007.

2.2 Assignment of the relative configuration of the C-1 to C-6 subunit of Leupyrrin B₁

As shown in Figure S 1 for the C-1 to C-6 subunit of leupyrrin B_1 , characteristic NOE correlations were observed from H-3 to H-22 and H-24 as well as from H-4 to H-6 and H-23. In combination with an antiperiplanar relationship of H-3 and H-4 as deduced from a large vicinal coupling constant between these protons (9.2 Hz) these data suggest an *anti-*, *anti-* configuration between H-2 and H-3 and between H-3 and Me-23, in agreement with the proposal of Bode and Höfle for leupyrrin A₁ and a partial synthesis from our laboratory.^{7,8}

Figure S 1: Rotamers determined for the C-1 to C-6 subunit of leupyrrin B_1 ; coupling constants, ${}^{3}J_{H,H}$ (Hz) in parentheses.

⁷ Bode, H. B.; Irschik, H.; Wenzel, S. C.; Reichenbach, H.; R. Müller, R.; Höfle, G. J. Nat. Prod. **2003**, 66, 1203.

⁸ Debnar, T.; Wang, T.; Menche, D. Org. Lett. 2013, 15, 2774.

2.3 Derivatization

For determination of the absolute configuration at C3 of leupyrrin B_1 , basic cleavage of the dicarboxylic acid (K₂CO₃/MeOH) yielded triol **S1**, which was subsequently transformed to *tris*-Mosher esters **S2** with MTPA-Cl (Scheme S 1, see below for further details).

Scheme S 1: Synthesis of tris-Mosher esters (S2).

(3R,4R,5S)-4-Hydroxy-3-(hydroxymethyl)-5-((E)-4-(5-((4R,5S)-5-(hydroxymethyl)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)-methyl)-4,5-dihydrooxazol-2-yl)-1H-pyrrol-2-yl)but-2-en-2-yl)-3-methyldihydrofuran-2(3H)-one (S1)

C₃₃H₄₈N₂O₈, M = 600.7 g/mol

To a stirred solution of leupyrrin B₁ 2 (16.0 mg, 21.7 μ mol) in MeOH (200 μ L) at room temperature K₂CO₃ (6.00 mg, 43.4 μ mol) was added. The mixture was stirred for 10 minutes until the conversion was completed. After addition of sat. aq. NaCl solution (3 mL), the aqueous portion was extracted with EtOAc (3 × 7 mL). The combined organic portions were dried over MgSO₄, filtered and concentrated at reduced pressure. Purification by flash column

chromatography (SiO₂, petroleum ether/EtOAc, 1:2) gave triol S1 (6.80 mg, 52%) as a colorless oil.

R_f = 0.23 (petroleum ether/EtOAc = 1/4), ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 9.79 (bs, 1H), 6.71 (d, J = 3.6 Hz, 1H), 6.00 (d, J = 3.3 Hz, 1H), 5.86-5.82 (m, 1H), 5.47 (d, J = 10.1 Hz, 1H), 4.90 (d, J = 10.2 Hz, 1H), 4.63 (d, J = 6.2 Hz, 1H), 4.60-4.56 (m, 1H), 4.54-4.47 (m, 3H), 4.42-4.38 (m, 1H), 3.95 (dd, J = 12.2, 2.9 Hz, 1H), 3.81 (d, J = 10.3 Hz, 1H), 3.74 (dd, J = 12.2, 4.6 Hz, 1H), 3.53-3.47 (m, 5H), 3.36 (t, 6.3 Hz, 2H), 3.34 (s, 3H), 2.12-2.02 (m, 2H), 1.93 (s, 3H), 1.91-1.84 (m, 2H), 1.76-1.69 (m, 2H), 1.72 (s, 3H), 1.62-1.56 (m, 1H), 1.25-1.22 (m, 1H), 1.17 (s, 3H), 0.97 (d, J = 6.3 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H); ¹³C-NMR (150 MHz, CDCl₃): δ [ppm] = 179.1, 159.6, 144.3, 135.6, 135.2, 133.2, 129.8, 122.2, 121.4, 116.9, 115.2, 107.3, 86.3, 79.1, 72.7, 71.9, 69.4, 65.7, 65.2, 62.7, 58.6, 50.8, 49.7, 43.7, 34.3, 27.4, 25.6, 24.9, 23.7, 21.4, 20.3, 13.5, 11.4; **HRMS** (ESI+): calculated for C₃₃H₄₉N₂O₈⁺ [M+H]⁺: 601.3483, found: 601.3481.

2-Methoxy-2-phenylpropanoyloxy)-4-(((S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyloxy)methyl)tetrahydrofuran-2-yl)but-2-enyl)-1*H*-pyrrol-2-yl)-4,5-dihydrooxazol-5yl)methyl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate ((S)-S2)

 $C_{63}H_{69}F_9N_2O_{14}$, M = 1249.2 g/mol

To a stirred solution of triol **S1** (2.00 mg, 3.40 μ mol) in CH₂Cl₂ (100 μ L) at room temperature were added pyridine (280 μ L, 3.40 mmol), DMAP (100 μ L of a stock solution containing 12.6 mg in 1 mL CH₂Cl₂) and (*R*)-MTPA-chloride (11.8 μ L, 68.6 μ mol). The reaction was stirred for 1 hour, diluted with EtOAc (2 mL), washed with aq. NaHCO₃ solution (1.5 mL, 1%) and H₂O (1.0 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. Flash column

chromatography (SiO₂, petroleum ether/EtOAc, 4:1) of the residue afforded the corresponding (*S*)-Mosher ester (*S*)-**S2** (3.30 mg, 94%) as a colorless oil.

R_{*f*} = 0.63 (petroleum ether/EtOAc 1:1); ¹**H-NMR** (600 MHz, CD₃OD): δ [ppm] = 7.50-7.47 (m, 2H), 7.45-7.39 (m, 8H), 7.38-7.34 (m, 2H), 7.33-7.29 (m, 1H), 7.25-7.21 (m, 2H), 6.63 (d, J = 3.6 Hz, 1H), 5.85 (d, J = 3.6 Hz, 1H), 5.64 (d, J = 8.5 Hz, 1H), 5.63-5.59 (m, 1H), 5.48 (d, J = 9.7 Hz, 1H), 4.91-4.88 (m, 2H), 4.74 (d, J = 8.4 Hz, 1H), 4.67 (d, J = 11.3 Hz, 1H), 4.62-4.54 (m, 2H), 4.52 (d, J = 12.2 Hz, 1H), 4.46 (dd, J = 12.5, 3.1 Hz, 1H), 4.43 (d, J = 12.2 Hz, 1H), 4.24 (d, J = 11.3 Hz, 1H), 3.52 (s, 3H), 3.47 (s, 3H), 3.44 (s, 3H), 3.40-3.27 (m, 2H), 3.33 (t, J = 6.2 Hz, 2H), 3.30 (s, 3H), 2.12-2.10 (m, 2H), 1.90 (s, 3H), 1.81-1.74 (m, 1H), 1.73-1.61 (m, 2H), 1.55-1.49 (m, 1H), 1.38 (s, 3H), 1.29-1.21 (m, 1H), 1.23, (s, 3H), 0.90 (d, J = 6.7 Hz, 3H), 0.86 (d, J = 6.7 Hz, 3H); **HRMS** (ESI+): calculated for C₆₃H₇₀F₉N₂O₁₄⁺ [M+H]⁺: 1249.4678, found: 1249.4617.

(R)-((4R,5S)-4-((Z)-((S,Z)-2-Isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)-2-(5-((E)-3-((2S,3R,4R)-4-methyl-5-oxo-3-((R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyloxy)-4-(((R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyloxy)methyl)tetrahydrofuran-2-yl)but-2-enyl)-1H-pyrrol-2-yl)-4,5-dihydrooxazol-5-yl)methyl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate ((R)-S2)

 $C_{63}H_{69}F_9N_2O_{14}$, M = 1249.2 g/mol

To a stirred solution of triol **S1** (2.30 mg, 4.00 μ mol) in CH₂Cl₂ (100 μ L) at room temperature were added pyridine (320 μ L, 4.00 mmol), DMAP (100 μ L of a stock solution containing 16.1 mg in 1 mL CH₂Cl₂) and (*S*)-MTPA-chloride (13.8 μ L, 78.9 μ mol). The reaction was stirred for 1 hour, diluted with EtOAc (2 mL), washed with aq. NaHCO₃ solution (1.5 mL,

1%) and H₂O (1.0 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. Flash column chromatography (SiO₂, petroleum ether/EtOAc, 4:1) of the residue afforded the corresponding (*R*)-Mosher ester (*R*)-22 (3.60 mg, 73%) as a colorless oil.

R_f = 0.63 (petroleum ether/EtOAc = 1/1),¹**H-NMR** (600 MHz, CD₃OD): δ = 7.52-7.48 (m, 2H), 7.45-7.36 (m, 10H), 7.35-7.31 (m, 1H), 7.24-7.20 (m, 2H), 6.70 (d, J = 3.6 Hz, 1H), 5.89 (d, J = 3.5 Hz, 1H), 5.79-5.75 (m, 1H), 5.53-5.49 (m, 1H), 5.35 (d, J = 8.6 Hz, 1H), 4.97-4.93 (m, 1H), 4.87-4.84 (m, 1H), 4.83 (d, J = 8.6 Hz, 1H), 4.68-4.64 (m, 2H), 4.53-4.49 (d, J = 12.2 Hz, 1H), 4.43 (d, J = 11.2 Hz, 1H), 4.42 (d, J = 12.2 Hz, 1H), 4.38 (dd, J = 12.6, 2.1 Hz, 1H), 4.24 (d, J = 11.2 Hz, 1H), 3.54 (s, 3H), 3.44 (s, 3H), 3.38-3.32 (m, 4H), 3.34 (s, 3H), 3.30 (s, 3H), 2.13-2.01 (m, 2H), 1.92 (s, 3H), 1.82-1.74 (m, 1H), 1.74-1.63 (m, 2H), 1.56-1.50 (m, 1H), 1.35-1.29 (m, 1H), 1.32 (s, 3H), 0.95 (s, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H) ppm; **HRMS** (ESI⁺): calculated for C₆₃H₇₀F₉N₂O₁₄⁺ [M+H]⁺: 1249.4678, found: 1249.4617.

	¹ H NMR (CD ₃ OD)			/
	$\delta(S)$	$\delta(R)$	$\Delta \delta^{S-R}$	ОМе
H4	4.76	4.83	-0.07	N, 14
Me23	1.24	0.95	0.29	
Н3	5.64	5.35	0.29^{a}	
H24	1.32	1.23	0.09	
H6	5.61	5.77	-0.16 ^a	F_3C OMe
H22b	4.67	4.4	0.24	ÓM* Tris-Mosher (S2)

^{*a*} high $\Delta \delta^{S-R}$ value for H3 indicates a gauche conformation between H3 and the CF₃-group. This conformational change also results in a negative $\Delta \delta^{S-R}$ value at H6.⁹

⁹ Seco, J. M.; Quiñoa, E.; Riguera, R. Chem. Rev. 2004, 104, 17.

2.4 Copies of NMR spectra

S17

2.5 Molecular Modelling

The molecules were built using the Maestro9.2 work suite.¹⁰ If possible, pre-assembled fragments were used to provide a more realistic picture of the angles and bond lengths. The structures were pre-minimized with 500 iterations using MacroModel9.7 (MM).¹¹ For conformational analysis the mixed torsion/low-mode sampling algorithm as implemented in MM was used. The torsional sampling option was set as "Extended" mode. Default values were used for the other parameters related to conformational sampling, exept that the number of steps was set to 10000. The conformational searches were done for aqueous solution with the Generalized Born/Solvent Accessible surface (GB/SA) continuum solvation model with water or chloroform as solvents. The energy minimization was carried out with the Polak-Ribiere conjugate gradient *algorithm* (PRCG),^{12,13} the minimization steps were set to 5000 and the final convergence was set as $0.05 \text{ kcal mol}^{-1} \text{ Å}^{-1}$.

For analysis of the conformers, all structures were superimposed and identical conformations of the macrocycle were clustered. The conformer with lowest energy of each cluster was taken as "cluster representative". The ensemble of all structures for each cluster is given in the appendix. Finally distances between selected atoms were measured and compared to experimental NOE-values.

Conformational Search

Typical INPUT-File (.com)

New_Ring07_OPLS2005_water_5000_1000.mae

_	-		_	_	-			
MMOD	0	1	0	0	0.0000	0.0000	0.0000	0.0000
FFLD	14	1	0	0	1.0000	0.0000	0.0000	0.0000
SOLV	3	1	0	0	0.0000	0.0000	0.0000	0.0000
EXNB	0	0	0	0	0.0000	0.0000	0.0000	0.0000
BDCO	0	0	0	0	89.4427	99999.0000	0.0000	0.0000
READ	0	0	0	0	0.0000	0.0000	0.0000	0.0000
FXTA	8	7	10	28	100.0000	-8.7921	0.0000	0.0000
FXTA	46	19	3	4	100.0000	-179.4274	0.0000	0.0000
CRMS	0	0	0	0	0.0000	0.5000	0.0000	0.0000
LMCS	1000	0	0	0	0.0000	0.0000	3.0000	6.0000
NANT	0	0	0	0	0.0000	0.0000	0.0000	0.0000

¹⁰ Maestro, version 9.2, Schrödinger, LLC, New York, NY, 2011.

¹¹ Macromodel, version 9.7, Schrödinger, LLC, New York, NY, 2009.

¹² E. Polak, G. Ribiere, Review Francaise Inf. Rech. Oper. 1969, 16 RI, 35-43.

¹³ R. Klessig, E. Polak, SIAM J. Control **1972**, 10, 524-529.

MCNV	1	5	0	0	0.0000	0.0000	0.0000	0.0000
MCSS	2	0	0	0	21.0000	0.0000	0.0000	0.0000
MCOP	1	0	0	0	0.5000	0.0000	0.0000	0.0000
DEMX	0	1666	0	0	21.0000	42.0000	0.0000	0.0000
COMP	1	2	3	4	0.0000	0.0000	0.0000	0.0000
COMP	5	б	7	8	0.0000	0.0000	0.0000	0.0000
COMP	9	10	11	12	0.0000	0.0000	0.0000	0.0000
COMP	13	14	15	16	0.0000	0.0000	0.0000	0.0000
COMP	17	18	19	20	0.0000	0.0000	0.0000	0.0000
COMP	21	22	23	24	0.0000	0.0000	0.0000	0.0000
COMP	25	26	27	28	0.0000	0.0000	0.0000	0.0000
COMP	29	30	31	32	0.0000	0.0000	0.0000	0.0000
COMP	33	34	35	52	0.0000	0.0000	0.0000	0.0000
COMP	62	68	0	0	0.0000	0.0000	0.0000	0.0000
MSYM	0	0	0	0	0.0000	0.0000	0.0000	0.0000
CHIG	11	12	18	19	0.0000	0.0000	0.0000	0.0000
CHIG	21	0	0	0	0.0000	0.0000	0.0000	0.0000
AUOP	0	0	0	0	10000.0000	0.0000	0.0000	0.0000
TORS	1	7	0	0	0.0000	180.0000	0.0000	0.0000
TORS	1	62	0	0	0.0000	180.0000	0.0000	0.0000
TORS	2	12	0	0	0.0000	180.0000	0.0000	0.0000
TORS	3	19	0	0	0.0000	180.0000	0.0000	0.0000
TORS	5	б	0	0	0.0000	180.0000	0.0000	0.0000
TORS	6	62	0	0	0.0000	180.0000	0.0000	0.0000
TORS	7	10	0	0	0.0000	180.0000	0.0000	0.0000
TORS	8	9	0	0	0.0000	180.0000	0.0000	0.0000
TORS	10	28	0	0	0.0000	180.0000	0.0000	0.0000
TORS	11	12	0	0	0.0000	180.0000	0.0000	0.0000
TORS	11	13	0	0	0.0000	180.0000	0.0000	0.0000
TORS	11	28	0	0	0.0000	180.0000	0.0000	0.0000
TORS	13	29	0	0	0.0000	180.0000	0.0000	0.0000
TORS	14	15	0	0	0.0000	180.0000	0.0000	0.0000
TORS	15	24	0	0	0.0000	180.0000	0.0000	0.0000
TORS	16	17	0	0	0.0000	180.0000	0.0000	0.0000
TORS	18	19	0	0	0.0000	180.0000	0.0000	0.0000
TORS	18	32	0	0	0.0000	180.0000	0.0000	0.0000
TORS	19	33	0	0	0.0000	180.0000	0.0000	0.0000
TORS	20	21	0	0	0.0000	180.0000	0.0000	0.0000
TORS	21	23	0	0	0.0000	180.0000	0.0000	0.0000
TORS	23	35	0	0	0.0000	180.0000	0.0000	0.0000
TORS	24	25	0	0	0.0000	180.0000	0.0000	0.0000
TORC	1	7	8	9	0.0000	90.0000	0.0000	0.0000
TORC	4	3	5	б	0.0000	90.0000	0.0000	0.0000
TORC	7	10	2	12	90.0000	180.0000	0.0000	0.0000
TORC	8	9	62	1	0.0000	90.0000	0.0000	0.0000

TORC	13	29	14	30	0.0000	90.0000	0.0000	0.0000
TORC	14	15	16	17	90.0000	180.0000	0.0000	0.0000
TORC	18	32	17	31	0.0000	90.0000	0.0000	0.0000
TORC	19	33	20	34	90.0000	180.0000	0.0000	0.0000
RCA4	1	7	8	9	0.5000	2.5000	0.0000	0.0000
RCA4	12	2	10	28	0.5000	2.5000	0.0000	0.0000
RCA4	19	3	5	б	0.5000	2.5000	0.0000	0.0000
RCA4	19	18	21	20	0.5000	2.5000	0.0000	0.0000
CONV	2	0	0	0	0.0500	0.0000	0.0000	0.0000
MINI	1	0	5000	0	0.0000	0.0000	0.0000	0.0000

Typical OUTPUT-File

Search initialized with

JobID: menche69-0-50435bfd BatchMin V9.9 Build 99109 Starting Time 02-Sep-2012 15:15:43 MacroModel. Copyright Schrodinger, LLC. All rights reserved. Input filename: New_Ring07_OPLS2005_water_5000_1000.mae Output filename: New_Ring07_OPLS2005_water_5000_1000-out.maegz Atom-type file: /opt/schrodinger/mmshare-v20109/bin/Linuxx86_64/../../data/atom.typ Force field: /opt/schrodinger/macromodel-v99109/bin/Linuxx86 64/../../data/OPLS 2005.fld Read 71 atoms. Structure name, if any, appears on next line: Ring07_fixNHNsyn_fixH24_H4 Low-frequency-Mode Conformational Search. Probability of TORS/MOLS steps: 0.5000000 Quality of Force Field Parameters in Use: Numbers of high, medium and low quality stretch parameters = 74 0 0 Numbers of high, medium and low quality bend parameters = 135 0 0 Numbers of high, medium and low quality torsion parameters = 183 11 0 Interactions examined: 403 of 403 total, including unused params. Stretch total= 74 constrained= 0 Bend total= 135 constrained= 0 linear= 0 Torsion total= 209 constrained= 2 out-of-plane= 13 2276 Nonbonded total= 2276 H-bonded= 0 ordinary= Nonbonded cutoffs: CutVdw= 8.00 ; CutEs= 20.0 Solvent file: /opt/schrodinger/macromodel-v99109/bin/Linuxx86_64/../../data/water.slv Block specifies desired NFIELD -- accepting block Starting conjugate gradient minimization. 1 New global minimum. E (kJ/mol) = Step 2.62 2.62 (0.041) is unique and stored as structureConf 1 E =1

1 structures from the input structure file

Conf	2 E =	8.83	(0.040) is unique and stored as structure	2
	Step	3 New	global minimum. E (kJ/mol) = 2.60	
Conf	3 E =	2.60	(0.046) replaces structure 1	
	Step	4 New	global minimum. E (kJ/mol) = -2.70	
Conf	4 E =	-2.70	(0.048) is unique and stored as structure	3
Conf	5 E =	-1.06	(0.037) is unique and stored as structure	4
Conf	6 E =	-1.05	(0.048) rejected by starting structure	4
	Step	7 New	global minimum. E (kJ/mol) = -2.73	
Conf	7 E =	-2.73	(0.038) replaces starting structure 3	
Conf	8 E =	-1.01	(0.049) rejected by starting structure	4
Conf	9 E =	3.51	(0.028) is unique and stored as structure	5
Conf	10 E =	3.51	(0.048) rejected by starting structure	5
Conf	11 E =	5.23	(0.040) is unique and stored as structure	6
Conf	12 E =	5.23	(0.047) rejected by starting structure	6
	:			
	:			
	:			
	:			
	:			
Conf	997 E =	-15.15	(0.045) rejected by starting structure	55
Conf	998 E =	-15.16	(0.047) rejected by starting structure	55
Conf	999 E =	-15.17	(0.036) rejected by starting structure	55
Conf	1000 E =	-14.94	(0.030) replaces structure 64	
Final	report:			
65	unique con:	formation	s found	
65	minimized v	with good	convergence	
Found	10 conf	s within	1.00 kcal/mol (4.18 kJ/mol) of glob. min.	
Found	17 conf	s within	2.00 kcal/mol (8.37 kJ/mol) of glob. min.	
Found	22 conf	s within	3.00 kcal/mol (12.55 kJ/mol) of glob. min.	
Found	65 conf	s within	5.00 kcal/mol (20.92 kJ/mol) of glob. min.	
Global	l minimum E	= -34	.23 found 3 times.	
			es processed = 1000	
Confo	ormations w	ith poor	convergence marked with a *	
Confo	ormation	1 (-34.23270 kJ/mol) was found 3 times	
Confo	ormation	2 (-33.05400 kJ/mol) was found 3 times	
	ormation	3 (-33.00788 kJ/mol) was found 6 times	
	ormation	4 (-32.83193 kJ/mol) was found 4 times	
Confo	ormation	5 (-32.53358 kJ/mol) was found 4 times	
Confo	ormation	6 (-32.51785 kJ/mol) was found 3 times	
Confo	ormation	7 (-32.22464 kJ/mol) was found 7 times	
Confo	ormation	8 (-31.55818 kJ/mol) was found 3 times	

Conformation	10 (-31.16801	kJ/mol)	was	found	3	times
Conformation	11 (-29.14901	kJ/mol)	was	found	2	times
Conformation	12 (-28.81111	kJ/mol)	was	found	4	times
Conformation	13 (-27.21439	kJ/mol)	was	found	4	times
Conformation	14 (-27.15058	kJ/mol)	was	found	1	times
Conformation	15 (-26.33642	kJ/mol)	was	found	4	times
Conformation	16 (-26.26876	kJ/mol)	was	found	3	times
Conformation	17 (-26.00729	kJ/mol)	was	found	3	times
Conformation	18 (-24.61562	kJ/mol)	was	found	15	times
Conformation	19 (-24.50722	kJ/mol)	was	found	4	times
Conformation	20 (-23.29960	kJ/mol)	was	found	3	times
Conformation	21 (-23.17010	kJ/mol)	was	found	11	times
Conformation	22 (-22.81053	kJ/mol)	was	found	3	times
Conformation	23 (-21.54195	kJ/mol)	was	found	1	times
Conformation	24 (-21.11463	kJ/mol)	was	found	2	times
Conformation	25 (-20.77334	kJ/mol)	was	found	2	times
Conformation	26 (-20.36103	kJ/mol)	was	found	2	times
Conformation	27 (-19.81793	kJ/mol)	was	found	1	times
Conformation	28 (-19.71051	kJ/mol)	was	found	1	times
Conformation	29 (-19.63368	kJ/mol)	was	found	5	times
Conformation	30 (-19.53134	kJ/mol)	was	found	4	times
Conformation	31 (-18.90831	kJ/mol)	was	found	5	times
Conformation	32 (-18.15746	kJ/mol)	was	found	3	times
Conformation	33 (-18.03578	kJ/mol)	was	found	1	times
Conformation	34 (-16.54380	kJ/mol)	was	found	1	times
Conformation	35 (-16.44508	kJ/mol)	was	found	2	times
Conformation	36 (-16.22871	kJ/mol)	was	found	3	times
Conformation	37 (-16.02226	kJ/mol)	was	found	1	times
Conformation	38 (-15.60071	kJ/mol)	was	found	5	times
Conformation	39 (-15.35244	kJ/mol)	was	found	2	times
Conformation	40 (-15.34888	kJ/mol)	was	found	5	times
Conformation	41 (-15.29989	kJ/mol)	was	found	1	times
Conformation	42 (-15.17048	kJ/mol)	was	found	1	times
Conformation	43 (-15.10410	kJ/mol)	was	found	3	times
Conformation	44 (-14.99823	kJ/mol)	was	found	1	times
Conformation	45 (-14.93663	kJ/mol)	was	found	2	times
Conformation	46 (-14.80637	kJ/mol)	was	found	2	times
Conformation	47 (-14.75907	kJ/mol)	was	found	1	times
Conformation	48 (-14.69354	kJ/mol)	was	found	1	times
Conformation	49 (-14.59277	kJ/mol)	was	found	4	times
Conformation	50 (-14.56575	kJ/mol)	was	found	3	times
Conformation	51 (-14.53808	kJ/mol)	was	found	7	times
Conformation	52 (-14.49261	kJ/mol)	was	found	1	times
Conformation	53 (-14.48515	kJ/mol)	was	found	4	times
Conformation	54 (-14.46269	kJ/mol)	was	found	2	times

Conformation	55 (-14.31369	kJ/mol) was	found 2	times
Conformation	56 (-14.18426	kJ/mol) was	found 1	times
Conformation	57 (-14.09200	kJ/mol) was	found 2	times
Conformation	58 (-13.93190	kJ/mol) was	found 1	times
Conformation	59 (-13.91110	kJ/mol) was	found 3	times
Conformation	60 (-13.76007	kJ/mol) was	found 1	times
Conformation	61 (-13.67810	kJ/mol) was	found 1	times
Conformation	62 (-13.64260	kJ/mol) was	found 2	times
Conformation	63 (-13.59640	kJ/mol) was	found 1	times
Conformation	64 (-13.54574	kJ/mol) was	found 4	times
Conformation	65 (-13.34747	kJ/mol) was	found 3	times
*** MC Statistics ***					
Percent of minimized structures within energetic window: 19.40000					
Average number of duplicates: 2.984615					
Duplication standard deviation: 2.381520					
2119 structures generated					
887 rejected by ring closure					
233 rejected by van der Waals					
181 duplicate minimised structures					
Time in Monte Carlo generation loop: 6.0 CPU sec					
Time in energy minimizations: 1382.0 CPU sec					
Time in geometry optimisation: 0.0 CPU sec					
BatchMin: normal termination				02-Sep-20)12 15:38:57

real 23m14.684s user 23m6.199s sys 0m3.567s

Analyses and Clustering

Table S 3 Structure Ensemble for each Cluster with identical conformations of the macrocyle. All conformers were superimposed and identical conformations of the macrocycle were clustered. This results in two to five families of macrocylic conformations (eg. *N*,*N*-*syn*-MC1_1, *N*,*N*-*syn*-MC1_2, *N*,*N*-*syn*-MC1_3 etc.). The conformer with lowest energy of each family was taken as "cluster representative".

name	Structure Ensemble	Representative
N,N-syn-MC1_1		(^{3.33} 287)
N,N-syn-MC1_2		73.82 6.01
N,N-syn-MC1_3	the second secon	
N,N-syn-MC2_1	A A A A A A A A A A A A A A A A A A A	4.70

N,N-syn-MC2_2

N,N-syn-MC2_3

N,N-syn-MC2_4

N,N-anti-MC1_1

N,N-anti-MC1_2

N,N-anti-MC1_3

N,N-anti-MC1_4

3 Experimental Procedures and Characterization Data

Acid **9**,¹⁴ lactol **11**,¹⁵ alkyne **16**¹⁶ and propargylic alcohol **17**¹⁷ were prepared according to literature procedures.

3.1 Synthesis of Butyrolactone 7

(*3R*,4*R*,5*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(hydroxymethyl)-3-methyl-5-(prop-1en-2-yl)dihydrofuran-2(*3H*)-one (14)

C₁₅H₂₈O₄Si, M = 300.5 g/mol

To a solution of **11** (59.2 mg, 194 μ mol, 1.0 eq) in dry toluene (4 mL) at 45 °C was added a solution *iso*propenylmagnesium bromide (0.80 mL, 400 μ mol, 2.06 eq, 0.5 M in THF) dropwise over 40 minutes. The reaction mixture was stirred at 40 °C for 11 hours before it was quenched with saturated solution of NH₄Cl (4 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 5 mL) and EtOAc (2 × 5 mL). The organic layers were combined, dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification of the obtained crude product was performed by column chromatography (SiO₂, cyclohexane/EtOAc, 6:1) to give **14** (43.3 mg, 144 µmol, 74%) as a colorless liquid.

R_f = 0.33 (cyclohexane/EtOAc = 4/1); $[\alpha]_D^{20} = -11.4$ (c = 1.00, EtOH); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 5.15 (s, 1H), 5.11 (s, 1H), 4.53–4.47 (m, 2H), 3.86 (d, J = 11.4 Hz, 1H), 3.46 (d, J = 11.4 Hz, 1H), 1.86 (s, 1H), 1.76 (s, 3H), 1.11 (s, 3H), 0.89 (s, 9H), 0.07 (s, 3H), 0.02 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 178.8, 139.5,

¹⁴ (a) Andruszkiewicz, R.; Franklin, L. C.; Schwindt, M. A.; Silverman, R. B.; Sobieray, D. M.; Yuen, P. W.; *Pat. WO1993023383 A1*, **1993**, (b) Hoekstra, M. S.; Sobieray, D. M.; Schwindt, M. A.; Mulhern, T. A.; Grote, T. M.; Huckabee, B. K.; Hendrickson, V. S.; Franklin, L. C.; Granger, E. J.; Karrick, G. L. *Org. Process Res. Dev.* **1997**, *1*, 26.

¹⁵ Fronza, G.; Fuganti, C.; Grasselli, P.; Malpezzi, L.; Mele, A. J. Org. Chem. **1994**, 59, 3487.

¹⁶ (a) Debnar, T.; Wang, T.; Menche, D. *Org. Lett.* **2013**, *15*, 2774. (b) Debnar, T.; Dreisigacker, S.; Menche, D. *Chem. Commun.* **2013**, *49*, 725.

¹⁷ Katukojvala, S.; Barlett, K. N.; Lotesta, S. D. Williams, L. J. J. Am. Chem. Soc. 2004, 126, 15348.

117.8, 86.1, 71.5, 64.2, 50.6, 25.8, 18.1, 16.3, 13.4, -4.3, -4.3; **HRMS** (ESI+) calculated for $C_{15}H_{28}O_4SiNa^+$ [M+Na]⁺: 323.1665, found: 323.1662.

(*3R*,4*R*,5*S*)-3-(((*tert*-Butyldimethylsilyl)oxy)methyl)-4-hydroxy-3-methyl-5-(prop-1en-2-yl)dihydrofuran-2(*3H*)-one (14a)

 $C_{15}H_{28}O_4Si, M = 300.5 \text{ g/mol}$

To a solution of **14** (850 mg, 2.83 mmol, 1.0 eq) in dry THF (45 mL) at room temperature was added a solution of TBAF (5.94 mL, 5.94 mmol, 2.1 eq, 1.0 M in THF) dropwise over 2 minutes. The reaction mixture was stirred at room temperature for 15 minutes before it was diluted with EtOAc (50 mL) and quenched with brine (50 mL). After extraction with EtOAc (3×80 mL), the combined organic phases were washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was dissolved in DMF (5.6 mL), Imidazol (385 mg, 5.66 mmol, 2.0 eq) and TBSC1 (469 mg, 3.11 mmol, 1.1 eq) were added subsequently and the mixture was stirred at room temperature for 75 minutes and concentrated *in vacuo*. Purification of the obtained crude product was performed by column chromatography (SiO₂, cyclohexane/EtOAc, 4:1) to give **14a** (771 mg, 2.57 mmol, 91%) as a colorless liquid.

R_f = 0.35 (cyclohexane/EtOAc = 4/1); $[\alpha]_D^{20}$ = -19.2 (c = 1.00, EtOH); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 5.16 (s, 1H), 5.05 (s, 1H), 4.52–4.45 (m, 2H), 3.82 (d, *J* = 9.8 Hz, 1H), 3.57 (d, *J* = 9.8 Hz, 1H), 1.79 (s, 3H), 1.16 (s, 3H), 0.87 (s, 9H), 0.07 (s, 6H); ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 177.6, 140.5, 115.0, 84.3, 73.0, 65.6, 49.8, 25.9, 18.3, 17.2, 13.2, -5.5; **HRMS** (ESI+) calculated for C₁₅H₂₈O₄SiNa⁺ [M+Na]⁺: 323.1665, found: 323.1652.

(2*S*,3*R*,4*R*)-4-(((*tert*-Butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxo-2-(prop-1-en-2yl)tetrahydrofuran-3-yl acetate (15)

 $C_{17}H_{30}O_5Si, M = 342.5 \text{ g/mol}$

To a solution of **14a** (702 mg, 2.34 mmol, 1.0 eq) in dry CH_2Cl_2 (15 mL) at room temperature, DMAP (29.0 mg, 237 µmol, 0.1 eq), pyridine (12.0 mL, 149 mmol, 64 eq) and Ac₂O (1.10 mL, 11.6 mmol, 5.0 eq) were added subsequently. The reaction mixture was stirred at room temperature for 45 minutes before it was quenched with a saturated solution of NaHCO₃ (25 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo*. Purification of the obtained crude product was performed by column chromatography (SiO₂, cyclohexane/EtOAc, 8:1) to give **15** (784 mg, 2.29 mmol, 98%) as a colorless liquid.

R_f = 0.44 (cyclohexane/EtOAc = 4/1); $[\alpha]_D^{20} = -42.5$ (c = 1.00, CH₃Cl); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 5.68 (d, J = 7.5 Hz, 1H), 5.10 (s, 1H), 5.01 (s, 1H), 4.61 (d, J = 7.5 Hz, 1H), 3.81 (d, J = 9.4 Hz, 1H), 3.60 (d, J = 9.4 Hz, 1H), 2.10 (s, 3H), 1.78 (s, 3H), 1.07 (s, 3H), 0.88 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 177.4, 169.9, 140.0, 115.4, 82.4, 73.2, 65.8, 50.1, 25.9, 20.7, 18.4, 17.0, 14.0, -5.5, -5.5 ; **HRMS** (ESI+) calculated for C₁₇H₃₀O₅SiNa⁺ [M+Na]⁺: 365.1755, found: 365.1745.

(2*S*,3*R*,4*R*)-4-(((*tert*-Butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxo-2-((*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl)tetrahydrofuran-3-yl acetate (7)

C₂₃H₄₁BO₇Si, M = 468.5 g/mol

A mixture of **15** (71.0 mg, 207 μ mol, 1.0 eq) and Hoveyda-Grubbs^{2nd} catalyst (23.0 mg, 45.1 μ mol, 0.22 eq) was dissolved in toluene (0.5 mL). 2,2-dimethylethenylboronic acid pinacol ester (110 μ L, 538 μ mol, 2.6 eq) was added and the mixture was boiled for 19 hours. After removal of the solvent *in vacuo* purification of the obtained crude product was performed by column chromatography (SiO₂, cyclohexane/EtOAc, 20:1 \rightarrow 6:1) to give **7** (74.1 mg, 173 μ mol, 84%, *E/Z* 9:1) as a colorless liquid.

R_f = 0.22 (cyclohexane/EtOAc = 7/1); $[\alpha]_D^{20} = -40.0$ (c = 1.00, CH₃Cl); ¹**H-NMR** (300 MHz, CDCl₃): δ [ppm] = 5.63 (d, J = 7.2 Hz, 1H), 5.46 (quin, J = 0.9 Hz, 1H), 4.60 (dd, J = 7.2, 0.9 Hz, 1H), 3.80 (d, J = 9.3 Hz, 1H), 3.63 (d, J = 9.3 Hz, 1H), 2.10 (s, 3H), 2.00 (d, J = 0.9 Hz, 3H), 1.27 (s, 12H), 1.05 (s, 3H), 0.88 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ [ppm] = 177.5, 170.0, 154.3, 84.5, 83.3, 74.0, 66.1, 50.2, 25.9, 25.0, 25.0, 20.8, 18.5, 15.8, 14.0, -5.5, -5.5; **HRMS** (ESI+) calculated for C₂₃H₄₁BO₇SiNa⁺ [M+Na]⁺: 491.2607, found: 491.2622.

3.2 Synthesis of Dihydrofuran 10

(S)-1-((tert-Butyldimethylsilyl)oxy)-6-methylhept-2-yn-4-ol (17)

C₁₄H₂₈O₂Si, M = 256.5 g/mol

To a mixture of activated Zn(OTf)² (9.50 g, 26.1 mmol, 1.1 eq) and (–)-*N*-methylephedrine (5.11 g, 28.5 mmol, 1.2 eq) in dry toluene (65 ml) Et₃N (3.95 mL, 28.5 mmol, 1.2 eq) was added dropwise and stirred under argon atmosphere at room temperature for 2 hours. To the resulting milky–white slurry a solution of TBS protected propargyl ether (5.78 mL, 28.5 mmol, 1.2 eq) in dry toluene (20 ml) was added dropwise and it was stirred for 15 min. Afterwards, freshly distilled isovaleraldehyde (2.55 mL, 23.8 mmol, 1.0 eq) was added dropwise and it was stirred at rt overnight before the reaction mixture was diluted with toluene (660 mL) and washed with saturated aqueous NH4Cl solution (3 × 120 mL) and dried over MgSO4. Evaporation of solvent gave a crude product that was purified by column chromatography (SiO₂, petroleum ether/EtOAc, 95:5) to yield **17** (5.13 g, 20.0 mmol, 84%) as a colourless liquid in an enantiomeric excess of 94% as determined by Mosher ester analysis.¹⁸

R_f = 0.30 (petroleum ether/EtOAc = 95/5); $[\alpha]_{D}^{20}$ = -10.0 (*c* = 1.0 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.13 (s, 6H), 0.92 (s, 9H), 0.93 (d, *J* = 6.4 Hz, 3H), 0.95 (d, *J* = 6.4 Hz, 3H), 1.51-1.59 (m, 1H), 1.60-1.67 (m, 1H), 1.73 (d, *J* = 5.6 Hz, 1H), 1.80-1.91 (m, 1H), 4.35 (d, *J* = 1.6 Hz, 2H), 4.45 (tdt, *J* = 7.2, 5.6, 1.6 Hz, 1H); ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = -5.1, 18.3, 22.4, 22.5, 24.7, 25.8, 46.7, 51.7, 61.1, 83.5, 86.0; **HRMS** (ESI+): calculated for C₁₄H₂₈NaO₂Si⁺ [M+Na]⁺: 279.1751, found: 279.1745.

Spectral data match those previously reported.¹⁸

(*S*)-10-*iso*-Butyl-15,15,16,16-tetramethyl-2,9,14-trioxa-15-silaheptadeca-6,11-diyne (16a)

C₂₁H₃₈O₃Si, M = 366.6 g/mol

To a cold (0 °C) suspension of sodium hydride (60% in mineral oil, 935 mg, 23.4 mmol, 1.6 eq) in MeCN (170 mL) a solution of alcohol **16** (3.75 g, 14.6 mmol, 1.0 eq) in MeCN

¹⁸ Katukojvala, S.; Barlett, K. N.; Lotesta, S. D. Williams, L. J. J. Am. Chem. Soc. 2004, 126, 15348.

(20 ml) was slowly added. The resulting mixture was warmed to room temperature and stirred for 1 hour. Afterwards a solution of **17** (4.13 g, 14.6 mmol, 1.0 eq) in MeCN (20 mL) was added. The mixture was stirred over night before it was quenched with a saturated solution of NH₄Cl (80 mL) and extracted with Et₂O (3×200 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 95:5) gave **16a** (4.55 g, 12.4 mmol, 85%) as a colorless oil.

R_f = 0.24 (petroleum ether/EtOAc = 95/5); $[\alpha]_D^{20} = -137.0$ (*c* = 1.0 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.13 (s, 6H), 0.92 (s, 9H), 0.92 (d, *J* = 6.7 Hz, 3H), 0.93 (d, *J* = 6.7 Hz, 3H), 1.54 (ddd, *J* = 13.6, 7.3, 6.3 Hz, 1H), 1.68 (ddd, *J* = 13.6, 8.0, 6.8 Hz, 1H), 1.77 (tt, *J* = 7.1, 6.2 Hz, 2H), 1.88 (virt. spt, *J* = 6.7 Hz, 1H), 2.31 (tt, *J* = 7.1, 2.2 Hz, 2H), 3.34 (s, 3H), 3.46 (t, *J* = 6.2 Hz, 2H), 4.21 (dt, *J* = 15.2, 2.2 Hz, 1H), 4.31 (dt, *J* = 15.2, 2.2 Hz, 1H), 4.34-4.41 (m, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = -5.1, 15.5, 18.3, 22.3, 22.6, 24.5, 25.8, 28.6, 44.4, 51.7, 56.2, 58.6, 66.4, 71.2, 76.0, 83.5, 84.5, 86.1; **HRMS** (ESI+) calculated for C₂₁H₃₈NaO₃Si⁺ [M+Na]⁺: 389.2482, found: 389.2468.

(S)-4-((6-Methoxyhex-2-yn-1-yl)oxy)-6-methylhept-2-yn-1-ol (16b)

 $C_{15}H_{24}O_3$, M = 252.3 g/mol

A stirred solution of TBS protected alcohol **16a** (5.18 g, 14.1 mmol, 1.0 eq) in MeOH (140 mL) was treated with CSA (984 mg, 4.24 mmol, 0.3 eq) at room temperature. After 10 minutes, TLC indicated complete conversion and a saturated solution of NaHCO₃ (400 mL) and EtOAc (1400 mL) were added. The layers were separated and the organic layer was washed with NaHCO₃ (400 ml) and with brine (400 mL) before it was dried over MgSO₄ and the solvent was evaporated *in vacuo* to give alcohol **16b** (3.52 g, 14.0 mmol, 99%).

R_f = 0.27 (petroleum ether/EtOAc = 70/30); $[\alpha]_D^{20} = -139.5$ (*c* = 1.0 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.93 (d, *J* = 6.7 Hz, 3H), 0.94 (d, *J* = 6.7 Hz, 3H), 1.55

(ddd, J = 13.6, 7.3, 6.4 Hz, 1H), 1.70 (ddd, J = 13.6, 7.8, 6.7 Hz, 1H), 1.78 (tt, J = 7.1, 6.2 Hz, 2H), 1.87 (virt. spt, J = 6.7 Hz, 1H), 2.32 (tt, J = 7.1, 2.2 Hz, 2H), 3.34 (s, 3H), 3.47 (t, J = 6.2 Hz, 2H), 4.22 (dt, J = 15.2, 2.2 Hz, 1H), 4.28-4.39 (m, 4H); ¹³C-NMR (75 MHz, CDCl₃): δ [ppm] = 15.5, 22.2, 22.6, 24.6, 28.5, 44.5, 51.1, 56.4, 58.6, 66.5, 71.2, 76.0, 84.0, 84.6, 86.3; **HR-MS** (ESI+) calculated for C₁₅H₂₄NaO₃⁺ [M+Na]⁺: 275.1618, found: 275.1620.

(S)-4-((6-Methoxyhex-2-yn-1-yl)oxy)-6-methylhept-2-ynal (18)

 $C_{15}H_{22}O_3$, M = 250.3 g/mol

To a solution of alcohol **16b** (3.15 g, 12.6 mmol, 1.0 eq) in DMSO (80 mL) IBX (8.80 g, 31.4 mmol, 2.5 eq) was added and the reaction mixture was stirred at room temperature for 2 hours before TLC indicated complete formation of the aldehyde and CH₂Cl₂ (800 mL) was added. After stirring for 30 minutes, a white precipitate had formed which was removed by filtration. The remaining clear solution was washed with H₂O (2×700 mL) and dried over MgSO₄. Removal of the solvent under reduced pressure afforded a crude product that was purified by column chromatography (SiO₂, petroleum ether/EtOAc, 93:7) to give **18** (2.93 g, 11.7 mmol, 93%) as a colorless oil.

R_f = 0.24 (petroleum ether/EtOAc = 93/7); $[\alpha]_D^{20} = -217.2$ (*c* = 1.0 in CHCl₃);¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.95 (d, *J* = 6.6 Hz, 3H), 0.96 (d, *J* = 6.6 Hz, 3H), 1.61 (ddd, *J* = 13.6, 7.5, 6.0 Hz, 1H), 1.74-1.82 (m, 3H), 1.83-1.95 (m, 1H), 2.33 (tt, *J* = 7.1, 2.2 Hz, 2H), 3.34 (s, 3H), 3.45 (t, *J* = 6.2 Hz, 2H), 4.23 (dt, *J* = 15.4, 2.2 Hz, 1H), 4.34 (dt, *J* = 15.4, 2.2 Hz, 1H), 4.54 (dd, *J* = 8.1, 6.0 Hz, 1H), 9.25 (d, *J* = 0.4 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 15.5, 22.0, 22.6, 24.5, 28.5, 43.6, 57.0, 58.6, 66.0, 71.1, 75.2, 85.0, 87.2, 95.1, 176.3; **HRMS** (ESI+) calculated for C₁₅H₂₂NaO₃⁺ [M+Na]⁺: 273.1461, found: 273.1472.

 $C_{19}H_{28}O_4$, M = 320.4 g/mol

Triethyl phosphonoacetate **19** (5.7 mL, 11.5 mol, 2.5 eq) was dissolved in dry THF (180 ml). After cooling to -78 °C, NaHMDS (1.0 M in THF, 23.0 ml, 23.0 mmol, 2.0 eq) was added dropwise over a period of 15 minutes. Stirring was continued for 1 hour at -78 °C. Afterwards, a solution of aldehyde **18** (2.89 g, 11.5 mmol, 1.0 eq) in THF (15 mL) was added over a period of 20 minutes. The reaction mixture was stirred for 2 hours at -78 °C before it was quenched by addition of buffer (pH 7, 150 ml). Et₂O (150 mL) was added and the organic layer was separated. The aqueous layer was extracted with Et₂O (2×150 mL) and the combined organic extracts were dried over MgSO₄. The solvent was removed under reduced pressure and after purification by column chromatography (SiO₂, petroleum ether/EtOAc, 93:7) **18a** was yielded (3.43 g, 10.7 mmol, 93%) as a colorless liquid.

R_f = 0.26 (petroleum ether/EtOAc = 93/7); $[\alpha]_D^{20} = -216.3$ (*c* = 1.0 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.94 (d, *J* = 6.6 Hz, 3H), 0.95 (d, *J* = 6.6 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.58 (ddd, *J* = 13.6, 7.3, 6.4 Hz, 1H), 1.69-1.82 (m, 3H), 1.87 (virt. spt, *J* = 6.6 Hz, 1H), 2.33 (tt, *J* = 7.1, 2.1 Hz, 2H), 3.34 (s, 3H), 3.46 (t, *J* = 6.2 Hz, 2H), 4.18-4.26 (m, 3H), 4.32 (dt, *J* = 15.3, 2.1 Hz, 1H), 4.49 (ddd, *J* = 7.9, 6.4, 1.7 Hz, 1H), 6.23 (d, *J* = 15.9 Hz, 1H), 6.78 (dd, *J* = 15.9, 1.7 Hz, 1H); ¹³**C-NMR** (100 MHz, CDCl₃): δ [ppm] = 14.2, 15.5, 22.2, 22.6, 24.6, 28.6, 44.2, 56.5, 58.6, 60.8, 66.8, 71.1, 75.7, 82.6, 86.6, 97.4, 124.5, 130.8, 165.7; **HRMS** (ESI+): calculated for C₁₉H₂₈NaO₄⁺ [M+Na]⁺: 343.1880, found: 343.1887.

 $C_{17}H_{26}O_3$, M = 278.4 g/mol

To a cold (-78 °C) solution of ester **18a** (3.33 g, 10.4 mmol, 1.0 eq) in CH₂Cl₂ (110 mL) a solution of DIBAL-H (1 M in CH₂Cl₂, 31 mL, 31.0 mmol, 3.0 eq) was added over a period of 20 minutes. The resulting solution was stirred at -78 °C for 20 hours before it was warmed to 0 °C. The solution was diluted with CH₂Cl₂ (100 mL) and H₂O (1.3 mL) was slowly added followed by slow addition of an aqueous NaOH solution (15%, 1.3 mL) and finally H₂O (3.1 mL). The mixture was allowed to warm to room temperature and it was stirred for additional 30 minutes. Then it was dried (MgSO₄), filtered and the solvent evaporated *in vacuo* to give **18b** (2.87 g, 10.3 mmol, 99%) as a colorless liquid.

R_f = 0.28 (petroleum ether/EtOAc = 70/30); $[\alpha]_D^{20} = -258.8$ (*c* = 1.0 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.92-0.96 (m, 6H), 1.52-1.61 (m, 2H), 1.71 (ddd, *J* = 13.6, 7.5, 6.7 Hz, 1H), 1.78 (tt, *J* = 7.0, 6.3 Hz, 2H), 1.87 (virt. spt, *J* = 6.9 Hz, 1H), 2.32 (tt, *J* = 7.0, 2.1 Hz, 2H), 3.34 (s, 3H), 3.46 (t, *J* = 6.3 Hz, 2H), 4.19-4.26 (m, 3H), 4.31 (dt, *J* = 15.3, 2.1 Hz, 1H), 4.40-4.46 (m, 1H), 5.78 (dq, *J* = 15.9, 1.8 Hz, 1H), 6.26 (dt, *J* = 15.9, 5.2 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 15.5, 22.3, 22.6, 24.6, 28.6, 44.5, 56.3, 58.6, 62.8, 67.0, 71.2, 76.1, 83.6, 86.2, 88.7, 109.9, 142.1; **HRMS** (ESI+): calculated for C₁₇H₂₆NaO₃⁺ [M+Na]⁺: 301.1774, found: 301.1770.

((2*S*,3*S*)-3-((*S*)-3-((6-Methoxyhex-2-yn-1-yl)oxy)-5-methylhex-1-yn-1-yl)oxiran-2yl)methanol (20)

 $C_{17}H_{26}O_4$, M = 294.4 g/mol

To a flask containing freshly activated MS (4 Å) and CH_2Cl_2 (25 mL) L-(+)-di-*iso*-propyl tartrate (187 mg, 168 µL, 0.797 mmol, 0.15 eq) was added and the mixture was cooled to -23 °C before Ti(O*i*Pr)₄ (227 mg, 236 µL, 0.797 mmol, 0.15 eq) and *t*-BuOOH (~5.5 M in decane, 1.93 mL, 10.6 mmol, 2.0 eq) were added successively. The mixture was stirred for 30 minutes before a solution of alcohol **18b** (1.48 g, 5.32 mmol) in CH₂Cl₂ (15 mL), which had been pre-dried over MS (4 Å) for 3 hours, was slowly added. The reaction mixture was stirred at -23 °C overnight.

When TLC indicated complete conversion, the reaction mixture was filtered and an aqueous solution of FeSO₄ (3.60 g) and citric acid (1.35 g) in H₂O (25 mL) was added. After it was stirred for 30 minutes it was cooled to 0 °C and treated with 1 M NaOH (12.5 mL) for 1 hour before it was diluted with H₂O (20 mL) and the phases were separated and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were dried over MgSO₄ and evaporated *in vacuo*. The crude product was purified by flash column chromatography (SiO₂, petroleum ether/EtOAc, 6:4) to afford epoxyalcohol **20** as a colorless oil (1.46 g, 4.94 mmol, dr > 15:1, 93%).

R_f = 0.24 (petroleum ether/EtOAc = 70/30); $[\alpha]_{D}^{20} = -138.9$ (*c* = 1.0 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.92 (d, *J* = 6.7 Hz, 3H), 0.93 (d, *J* = 6.7 Hz, 3H), 1.53 (ddd, *J* = 13.7, 7.4, 6.3 Hz, 1H), 1.69 (ddd, *J* = 13.7, 7.8, 6.7 Hz, 1H), 1.77 (tt, *J* = 7.1, 6.2 Hz, 2H), 1.80-1.91 (m, 2H), 2.31 (tt, *J* = 7.1, 2.2 Hz, 2H), 3.30 (dt, *J* = 3.3, 2.3 Hz, 1H), 3.33 (s, 3H), 3.45 (t, *J* = 6.2 Hz, 2H), 3.47-3.48 (m, 1H), 3.72 (ddd, *J* = 13.0, 8.1, 3.3 Hz, 1H), 3.93 (ddd, *J* = 13.0, 4.8, 2.3 Hz, 1H), 4.18 (dt, *J* = 15.3, 2.2 Hz, 1H), 4.29 (dt, *J* = 15.3, 2.2 Hz, 1H), 4.33 (ddd, *J* = 7.8, 6.3, 1.1 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 15.5, 22.2, 22.6, 24.5, 28.5, 42.5, 44.3, 56.4, 58.6, 60.0, 60.1, 66.3, 71.2, 75.8, 81.6, 83.3, 86.4; **HRMS** (ESI+): calculated for C₁₇H₂₆NaO₄⁺ [M+Na]⁺: 317.1723, found: 317.1726.

(2*R*,3*R*,6*S*)-3-Amino-6-((6-methoxyhex-2-yn-1-yl)oxy)-8-methylnon-4-yne-1,2-diol (20a)

 $C_{17}H_{29}NO_4$, M = 311.4 g/mol

Epoxyalcohol **20** (2.00 g, 6.79 mmol) was shared in portions of 70 to 80 mg in high pressure microwave tubes equipped with a magnetic stirring bar. To each tube NH₄OH (25% in H₂O, 1 mL per 10 mg of **20** was added and the resulting mixture was dispersed by magnetic stirring and in an ultrasonic bath until a milky white emulsion was obtained. The tube was immediately placed into a microwave reactor (Cem Discover) were it was irradiated for 10 minutes between 20 and 30 W at 110 °C. Afterwards the solvent was removed *in vacuo* to give crude **20a** (2.03 g, max. 6.52 mmol) that was used without further purification. An analytical sample was purified by flash column chromatography (SiO₂, EtOAc/MeOH/*i*PrNH₂, 100:5:5) to afford **20a** as an orange gum.

R_f = 0.22 (EtOAc/MeOH/*i*PrNH₂ = 100/4/4); $[\alpha]_D^{20} = -131.9$ (*c* = 1.0 in CHCl₃); ¹**H-NMR** (500 MHz, CD₃OD): δ [ppm] = 0.96 (virt. t, *J* = 6.8 Hz, 6H), 1.54 (ddd, *J* = 13.6, 7.5, 6.2 Hz, 1H), 1.67 (ddd, *J* = 13.6, 7.9, 6.7 Hz, 1H), 1.76 (tt, *J* = 7.1, 6.2 Hz, 2H), 1.90 (virt. spt, *J* = 6.8 Hz, 1H), 2.32 (tt, *J* = 7.1, 2.1 Hz, 2H), 3.35 (s, 3H), 3.50 (t, *J* = 6.2 Hz, 2H), 3.64-3.69 (m, 3H), 3.76-3.78 (m, 1H), 4.30 (t, *J* = 2.1 Hz, 2H), 4.42 (ddd, *J* = 7.9, 6.2, 1.9 Hz, 1H); ¹³C-NMR (125 MHz, CD₃OD): δ [ppm] = 16.2, 22.8, 23.3, 25.9, 29.9, 46.0, 47.3, 57.0, 59.0, 64.9, 67.6, 72.3, 75.6, 77.3, 84.0, 86.5, 87.1; **HRMS** (ESI+): calculated for C₁₇H₃₀NO₄⁺ [M+H]⁺: 312.2169 found: 312.2165.

2-(Trimethylsilyl)ethyl ((2*R*,3*R*,6*S*)-1,2-dihydroxy-6-((6-methoxyhex-2-yn-1-yl)oxy)-8-methylnon-4-yn-3-yl)carbamate (20b)

 $C_{23}H_{41}NO_6Si, M = 455.7 \text{ g/mol}$

Crude amine **20a** (2.03 g, max. 6.52 mmol, 1.0 eq) was dissolved in a mixture of acetone and H₂O (2:1 ν/ν , 30 mL). NaHCO₃ (1.64 g, 19.6 mmol, 3.0 eq) was added followed by TeocOSuc (2.20 g, 8.48 mmol, 1.3 eq). The resulting solution was stirred at room temperature for 2 hours before H₂O (30 mL) was added followed by EtOAc (75 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed under reduced pressure. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 1:1) yielded **20b** (2.51 g, 5.50 mmol, 81% over 2 steps) as a yellow gum.

R_f = 0.23 (petroleum ether/EtOAc = 60/40); $[\alpha]_{D}^{20}$ = -131.8 (*c* = 2.0 in CHCl₃); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 0.02 (s, 9H), 0.89 (d, *J* = 6.6 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 3H), 0.94-1.01 (m, 2H), 1.50 (ddd, *J* = 13.6, 7.4, 6.3 Hz, 1H), 1.67 (ddd, *J* = 13.6, 7.9, 6.6 Hz, 1H), 1.75 (tt, *J* = 7.1, 6.2 Hz, 2H), 1.82 (virt. spt, *J* = 6.6 Hz, 1H), 2.29 (tt, *J* = 7.1, 2.1 Hz, 2H), 3.10 (br. s, 1H), 3.31 (s, 3H), 3.34 (br. s, 1H), 3.44 (t, *J* = 6.2 Hz, 2H), 3.65-3.77 (m, 3H), 4.11-4.22 (m, 3H), 4.26 (dt, *J* = 15.4, 2.1 Hz, 1H), 4.31 (ddd, *J* = 7.9, 6.3, 1.5 Hz, 1H), 4.56-4.64 (m, 1H), 5.43-5.52 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = -1.6, 15.4, 17.6, 22.1, 22.6, 24.5, 28.4, 44.3, 46.1, 56.3, 58.5, 63.3, 63.8, 66.4, 71.1, 73.4, 75.8, 81.8, 83.9, 86.4, 156.5; **HRMS** (ESI+): calculated for C₂₃H₄₁NNaO₆Si⁺ [M+Na]⁺: 478.2595, found: 478.2597.

2-(Trimethylsilyl)ethyl ((10*S*,13*R*,14*R*)-14-hydroxy-10-isobutyl-17,17,18,18-tetramethyl-2,9,16-trioxa-17-silanonadeca-6,11-diyn-13-yl)carbamate (20c)

 $C_{29}H_{55}NO_6Si_2$, M = 569.9 g/mol

A solution of diol **20b** (8.08 g, 17.7 mmol, 1.0 eq) in DMF (27 mL) was treated at room temperature with imidazole (3.02 g, 44.3 mmol, 2.5 eq). When the solution had turned clear, it was cooled to 0 $^{\circ}$ C and TBSCl (2.80 g, 18.6 mmol, 1.05 eq) was added. The mixture was warmed to ambient temperature again and stirred for 1 hour.

The reaction was quenched by addition of H₂O (100 mL) and Et₂O (200 mL). The layers were separated and the product was extracted into Et₂O (3×200 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 9:1 \rightarrow 8:2) yielded **20c** (9.38 g, 16.5 mmol, 93%) as a yellow oil.

R_f = 0.33 (petroleum ether/EtOAc = 80/20); $[\alpha]_{JD}^{20} = -115.9$ (*c* = 1.0 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.04 (s, 9H), 0.10 (s, 6H), 0.89-0.95 (m, 6H), 0.92 (s, 9H) 0.95-1.03 (m, 2H), 1.52 (ddd, *J* = 13.7, 7.4, 6.5 Hz, 1H), 1.68 (ddd, *J* = 13.7, 7.8, 6.7 Hz, 1H), 1.73-1.81 (m, 2H), 1.85 (virt. spt, *J* = 6.7 Hz, 1H), 2.31 (tt, *J* = 7.1, 2.1 Hz, 2H), 2.55 (br. s, 1H), 3.34 (s, 3H), 3.45 (t, *J* = 6.2 Hz, 2H), 3.69 (dd, *J* = 9.9, 4.8 Hz, 1H), 3.73-3.81 (m, 1H), 3.85 (dd, *J* = 9.9, 5.1 Hz, 1H), 4.14-4.22 (m, 3H), 4.29 (dt, *J* = 15.3, 2.1 Hz, 1H), 4.33 (ddd, *J* = 7.8, 6.5, 1.5 Hz, 1H), 4.65-4.76 (m, 1H), 5.38-5.49 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = -5.5, -1.5, 15.5, 17.7, 18.2, 22.2, 22.6, 24.6, 25.8, 28.6, 44.5, 46.5, 56.3, 58.6, 63.5, 64.4, 66.4, 71.2, 72.5, 75.9, 81.8, 83.8, 86.3, 156.1; **HRMS** (ESI+): calculated for C₂₉H₅₅NNaO₆Si₂⁺ [M+Na]⁺: 592.3460, found: 592.3462.

To confirm the absolute configuration at C13, alcohol **20c** was converted to the corresponding Mosher esters **S3** and **S4** (Scheme S 2)

Scheme S 2: Attempts to determine the absolute configuration of 20c at C13

Since determination of the absolute configuration at C13 using **S3** and **S4**, led to ambiguous results, **20** was reductively opened in a regioselective fashion to give **S5** after TBS-protection. Mosher ester analysis thereof clearly showed the indicated configuration (Scheme S 3).

Scheme S 3: Determination of the absolute configuration at C13 using alcohol S5.

(8*R*,9*R*)-8-((*S*)-3-((6-Methoxyhex-2-yn-1-yl)oxy)-5-methylhex-1-yn-1-yl)-2,2,12,12,13,13-hexamethyl-6-oxo-5,11-dioxa-7-aza-2,12-disilatetradecan-9-yl (*S*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (S3)

 $C_{39}H_{62}F_{3}NO_{8}Si_{2}, M = 786.1 \text{ g/mol}$

Alcohol **20c** (6.8 mg, 11.9 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (200 μ L) before pyridine (8 μ L, 99.3 μ mol, 8.3 eq) and (*R*)-MTPA-Cl (9 μ L, 48.1 μ mol, 4.0 eq) were added successively. The solution was stirred for 1 hour at room temperature before further (*R*)-MTPA-Cl (9 μ L, 48.1 μ mol, 4.0 eq) was added. After 3 hours, when TLC indicated complete consumption of the starting material, a saturated solution of NaHCO₃ (1 mL) was added and the reaction mixture was extracted with Et₂O (3 × 2 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 88:12) gave **S3** (8.9 mg, 11.3 μ mol, 95%) as a colorless oil.

R_f = 0.25 (petroleum ether/EtOAc = 90/10); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.04 (s, 9H), 0.05 (s, 3H), 0.88 (s, 9H), 0.90-0.93 (m, 6H), 0.94-1.00 (m, 2H), 1.49 (ddd, J = 13.7, 7.3, 6.5 Hz, 1H), 1.66 (ddd, J = 13.7, 7.8, 7.0 Hz, 1H), 1.72-1.89 (m, 3H), 2.31 (tt, J = 7.1, 2.1 Hz, 2H), 3.34 (s, 3H), 3.45 (t, J = 6.2 Hz, 2H), 3.52-3.55 (m, 3H), 3.76 (dd, J = 10.8, 4.9 Hz, 1H), 4.00-4.06 (m, 1H), 4.07-4.21 (m, 3H), 4.24 (dt, J = 15.3, 2.1 Hz, 1H), 4.31 (ddd, J = 7.8, 6.5, 1.4 Hz, 1H), 4.98-5.07 (m, 1H), 5.14-5.23 (m, 1H), 5.33-5.43 (m, 1H), 7.36-7.46 (m, 3H), 7.52-7.60 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = -5.9, -5.8, -1.5, 15.5, 17.6, 18.1, 22.2, 22.5, 24.5, 25.7, 28.6, 44.3, 44.5, 55.3, 56.3, 58.6, 61.8, 63.5, 66.2, 71.1, 75.8, 75.8, 80.6, 84.1, 84.9, 86.3, 123.1 (q, J = 288.2 Hz), 127.5, 128.5, 129.7, 131.7, 155.6, 165.9; ¹⁹F-NMR (282 MHz, CDCl₃): δ [ppm] = -71.9.

(8*R*,9*R*)-8-((*S*)-3-((6-Methoxyhex-2-yn-1-yl)oxy)-5-methylhex-1-yn-1-yl)-2,2,12,12,13,13-hexamethyl-6-oxo-5,11-dioxa-7-aza-2,12-disilatetradecan-9-yl (*R*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (S4)

 $C_{39}H_{62}F_{3}NO_{8}Si_{2}, M = 786.1 \text{ g/mol}$

Alcohol **20c** (6.6 mg, 11.6 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (200 μ L) before pyridine (8 μ L, 99.3 μ mol, 8.6 eq) and (*S*)-MTPA-Cl (9 μ L, 48.1 μ mol, 4.2 eq) were added successively. The solution was stirred for 1 hour at room temperature before further (*S*)-MTPA-Cl (9 μ L, 48.1 μ mol, 4.2 eq) was added. After 3 hours, when TLC indicated complete consumption of the starting material, a saturated solution of NaHCO₃ (1 mL) was added and the reaction mixture was extracted with Et₂O (3 × 2 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 88:12) gave **S4** (8.6 mg, 10.9 μ mol, 94%) as a colorless oil.

R_f = 0.25 (petroleum ether/EtOAc = 90/10); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.05 (s, 9H), 0.10 (s, 3H), 0.10 (s, 3H), 0.87-0.91 (m, 6H), 0.91 (s, 9H), 0.98 (dd, J = 9.8, 7.3 Hz, 2H), 1.46 (dt, J = 13.7, 7.0 Hz, 1H), 1.62 (ddd, J = 13.7, 7.5, 7.0 Hz, 1H), 1.73-1.84 (m, 3H), 2.31 (tt, J = 7.1, 2.1 Hz, 2H), 3.34 (s, 3H), 3.45 (t, J = 6.2 Hz, 2H), 3.56-3.58 (m, 3H), 3.84 (dd, J = 10.7, 5.1 Hz, 1H), 4.02 (dd, J = 10.7, 5.6 Hz, 1H), 4.10 (dt, J = 15.2, 2.1 Hz, 1H), 4.13-4.19 (m, 2H), 4.22 (dt, J = 15.2, 2.1 Hz, 1H), 4.28 (t, J = 7.0 Hz, 1H), 4.91-5.05 (m, 2H), 5.20-5.26 (m, 1H), 7.39-7.45 (m, 3H), 7.53-7.61 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = -5.7, -5.6, -1.5, 15.5, 17.7, 18.1, 22.3, 22.5, 24.5, 25.7, 28.6, 44.2, 44.3, 55.5, 56.2, 58.6, 61.9, 63.6, 66.2, 71.2, 75.8, 76.2, 80.3, 84.1, 84.8, 86.3, 123.3 (q, J = 288.2 Hz), 127.3, 128.5, 129.7, 132.2, 155.4, 165.9; ¹⁹F-NMR (282 MHz, CDCl₃): δ [ppm] = -71.8.

# of H	δ_{S}	δ_R	$\Delta \delta_{S-R}$
1	0.90	0.88	+0.02
1'	0.92	0.90	+0.02
2	1.82	1.80	+0.02
3a	1.49	1.46	+0.03
3b	1.66	1.62	+0.04
4	4.31	4.28	+0.03
5	5.03	4.95	+0.08
6	5.38	4.98	+0.40
10a	3.76	3.84	-0.08
10b	4.03	4.02	$+0.01^{20}$
11	0.03	0.10	-0.07
11'	0.05	0.10	-0.05
12	0.88	0.91	-0.03

 Table S 4: Mosher ester analysis of alcohol 20c.¹⁹

(2*R*,6*S*)-6-((6-Methoxyhex-2-yn-1-yl)oxy)-8-methylnon-4-yne-1,2-diol (20d)

C₁₇H₂₈O₄, M = 296.4 g/mol

 ¹⁹ Seco, J. M.; Quiñoa, E.; Riguera, R. *Chem. Rev.* 2004, *104*, 17.
 ²⁰ not in accordance with the expected configuration

To a suspension of LAH (23.3 mg, 0.613 mmol, 2.0 eq) in dry THF (2.5 mL) a solution of epoxide **20** (90.2 mg, 0.306 mmol, 1.0 eq) in THF (2.5 mL) was added. The reaction mixture was stirred for 2 hours at room temperature before it was cooled down to 0 °C and H₂O (25 μ L), NaOH (3 M, 25 μ L) and further H₂O (75 μ L) were added in this order with an interval of 5 minutes each to give a white precipitate. The mixture was filtered and the precipitate was washed with Et₂O (5 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated *in vacuo* to give crude **20d** (71.3 mg, 0.240 mmol, 79%) that was used without further purification.

R_f = 0.24 (petroleum ether/EtOAc = 50/50); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.93 (virt. t, J = 6.4 Hz, 6H), 1.52 (dt, J = 13.7, 7.1 Hz, 1H), 1.68 (dt, J = 13.7, 7.5 Hz, 1H), 1.78 (virt. quin, J = 6.7 Hz, 2H), 1.82-1.88 (m, 1H), 2.20 (br. s, 1H), 2.32 (tt, J = 7.1, 2.1 Hz, 2H), 2.45-2.51 (m, 2H), 2.56 (br. s, 1H), 3.34 (s, 3H), 3.46 (t, J = 6.2 Hz, 2H), 3.59 (dt, J = 11.0, 5.6 Hz, 1H), 3.71-3.79 (m, 1H), 3.83-3.91 (m, 1H), 4.21 (dt, J = 15.3, 2.1 Hz, 1H), 4.25-4.34 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 15.5, 22.3, 22.6, 23.8, 24.6, 28.5, 44.7, 56.2, 58.6, 65.5, 66.7, 70.3, 71.2, 76.1, 81.7, 81.7, 86.2; HRMS (ESI+): calculated for C₁₇H₂₈NaO₄⁺ [M+Na]⁺: 319.1880, found: 319.1877.

(10*S*,14*R*)-10-*iso*-Butyl-17,17,18,18-tetramethyl-2,9,16-trioxa-17-silanonadeca-6,11diyn-14-ol (S5)

C₂₃H₄₂O₄Si, M = 410.7 g/mol

To a solution of diol **20d** (50.0 mg, 0.172 mmol, 1.0 eq) in DMF (0.35 mL) imidazole (25.8 mg, 0.378 mmol, 2.2 eq) was added followed by TBSCl (28.6 mg, 0.191 mmol, 1.1 eq). The reaction mixture was stirred at room temperature for 4 hours before it was quenched by addition of H₂O (1 mL). Et₂O (2 mL) was added, the organic layer was separated and the aqueous layer extracted with Et₂O (3×2 mL). The combined organic layers were dried (MgSO₄) and the solvent was removed *in vacuo* to give a crude product

that was purified by column chromatography (SiO₂, petroleum ether/EtOAc, 85:15) to give **S5** (57.2 mg, 0.139 mmol, 81%) as a colorless oil.

R_f = 0.33 (petroleum ether/EtOAc = 85/15); $[\alpha]_D^{20} = -128.0$ (*c* = 0.5 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.09 (s, 6H), 0.92 (s, 9H), 0.89-0.96 (m, 6H), 1.52 (ddd, *J* = 13.6, 7.2, 6.6 Hz, 1H), 1.67 (ddd, *J* = 13.6, 7.7, 7.0 Hz, 1H), 1.78 (tt, *J* = 7.1, 6.3 Hz, 2H), 1.86 (virt. spt, *J* = 6.7 Hz, 1H), 2.32 (tt, *J* = 7.1, 2.2 Hz, 2H), 2.40-2.53 (m, 3H), 3.34 (s, 3H), 3.46 (t, *J* = 6.3 Hz, 2H), 3.62 (dd, *J* = 9.9, 5.9 Hz, 1H), 3.72 (dd, *J* = 9.9, 4.0 Hz, 1H), 3.75-3.84 (m, 1H), 4.20 (dt, *J* = 15.2, 2.2 Hz, 1H), 4.27-4.33 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = -5.4, -5.4, 15.6, 18.3, 22.3, 22.6, 23.4, 24.7, 25.9, 28.6, 44.8, 56.1, 58.6, 65.6, 66.7, 70.3, 71.2, 76.1, 81.0, 82.1, 86.1; **HRMS** (ESI+): calculated for C₂₃H₄₂NaO₄Si⁺ [M+Na]⁺: 433.2745, found: 433.2741.

(10*S*,14*R*)-10- *iso*-Butyl-17,17,18,18-tetramethyl-2,9,16-trioxa-17-silanonadeca-6,11diyn-14-yl (*R*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (S6)

 $C_{33}H_{49}F_{3}O_{6}Si, M = 626.8 \text{ g/mol}$

Alcohol **S5** (16.4 mg, 39.9 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (600 μ L) before pyridine (26 μ L, 322 μ mol, 8.1 eq) and (*S*)-MTPA-Cl (30 μ L, 160 μ mol, 4.0 eq) were added successively. The solution was stirred for 3 hours at room temperature until TLC indicated complete consumption of the starting material. A saturated solution of NaHCO₃ (1.5 mL) was added and the reaction mixture was extracted with Et₂O (3 × 3 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 92:8) gave **S6** (23.9 mg, 38.1 μ mol, 96%) as a colorless oil.

R_f = 0.24 (petroleum ether/EtOAc = 93/7); $[\alpha]_D^{20} = -43.9$ (*c* = 1.0 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.07 (s, 3H), 0.08 (s, 3H), 0.90 (s, 9H), 0.87-0.94 (m, 6H),

1.46 (ddd, J = 13.7, 7.2, 6.6 Hz, 1H), 1.63 (ddd, J = 13.7, 7.7, 7.0 Hz, 1H), 1.77 (tt, J = 7.1, 6.3 Hz, 2H), 1.84 (virt. spt, J = 6.7 Hz, 1H), 2.31 (tt, J = 7.1, 2.1 Hz, 2H), 2.56 (ddd, J = 16.8, 5.4, 1.6 Hz, 1H), 2.64 (ddd, J = 16.8, 7.0, 2.0 Hz, 1H), 3.34 (s, 3H), 3.45 (t, J = 6.3 Hz, 2H), 3.57-3.59 (m, 3H), 3.84 (dd, J = 11.0, 5.8 Hz, 1H), 3.90 (dd, J = 11.0, 4.0 Hz, 1H), 4.14 (dt, J = 15.2, 2.1 Hz, 1H), 4.22-4.28 (m, 2H), 5.20 (dddd, J = 7.0, 5.8, 5.4, 4.0 Hz, 1H), 7.38-7.43 (m, 3H), 7.55-7.61 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = -5.6, 15.5, 18.2, 20.4, 22.3, 22.5, 24.6, 25.7, 28.6, 44.6, 55.4 (q, J = 1.2 Hz), 56.1, 58.6, 62.8, 66.5, 71.2, 75.1, 76.0, 80.4, 81.4, 84.7 (q, J = 27.8 Hz), 86.1, 123.3(q, J = 288.4 Hz), 127.4 (q, J = 1.0 Hz), 128.4, 129.6, 132.2, 166.0; ¹⁹F-NMR (282 MHz, CDCl₃): δ [ppm] = -72.0; **HRMS** (ESI+): calculated for C₃₃H₄₉F₃NaO₆Si⁺ [M+Na]⁺: 649.3143, found: 649.3147.

(10*S*,14*R*)-10- *iso*-Butyl-17,17,18,18-tetramethyl-2,9,16-trioxa-17-silanonadeca-6,11diyn-14-yl (*S*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (*S*7)

 $C_{33}H_{49}F_{3}O_{6}Si, M = 626.8 \text{ g/mol}$

Alcohol **S5** (18.9 mg, 46.2 µmol, 1.0 eq) was dissolved in CH_2Cl_2 (700 µL) before pyridine (30 µL, 372 µmol, 8.1 eq) and (*R*)-MTPA-Cl (35 µL, 185 µmol, 4.0 eq) were added successively. The solution was stirred for 3 hours at room temperature until TLC indicated complete consumption of the starting material. A saturated solution of NaHCO₃ (1.5 mL) was added and the reaction mixture was extracted with Et₂O (3 × 3 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 92:8) gave **S7** (26.5 mg, 42.3 µmol, 92%) as a colorless oil.

R_f = 0.24 (petroleum ether/EtOAc = 93/7); $[\alpha]_D^{20} = -91.2$ (*c* = 1.0 in CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.01 (s, 3H), 0.01 (s, 3H), 0.86 (s, 9H), 0.89-0.94 (m, 6H),

1.49 (ddd, J = 13.6, 7.2, 6.7 Hz, 1H), 1.65 (ddd, J = 13.6, 7.7, 7.0 Hz, 1H), 1.77 (tt, J = 7.1, 6.2 Hz, 2H), 1.84 (virt. spt, J = 6.7 Hz, 1H), 2.31 (tt, J = 7.1, 2.1 Hz, 2H), 2.64 (ddd, J = 17.0, 6.0, 1.7 Hz, 1H), 2.75 (ddd, J = 17.0, 6.0, 2.1 Hz, 1H), 3.33 (s, 3H), 3.45 (t, J = 6.2 Hz, 2H), 3.58-3.60 (m, 3H), 3.74 (dd, J = 10.9, 5.0 Hz, 1H), 3.77 (dd, J = 10.9, 5.0 Hz, 1H), 4.16 (dt, J = 15.3, 2.1 Hz, 1H), 4.23-4.32 (m, 2H), 5.20 (tt, J = 6.0, 5.0 Hz, 1H), 7.38-7.43 (m, 3H), 7.55-7.60 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = -5.7, -5.7, 15.5, 18.2, 20.7, 22.3, 22.5, 24.6, 25.7, 28.6, 44.6, 55.5 (q, J = 1.2 Hz), 56.1, 58.6, 62.6, 66.5, 71.2, 75.0, 76.0, 80.7 (q, J = 27.6 Hz), 81.4, 84.6, 86.1, 123.2(q, J = 288.6 Hz), 127.4 (q, J = 1.0 Hz), 128.4, 129.5, 132.2, 166.0; ¹⁹F-NMR (282 MHz, CDCl₃): δ [ppm] = -71.9; **HRMS** (ESI+): calculated for C₃₃H₄₉F₃NaO₆Si⁺ [M+Na]⁺: 649.3143, found: 649.3157.

# of H	δ_{S}	δ_R	$\Delta \delta_{S-R}$
1	0.90	0.89	+0.01
1'	0.92	0.91	+0.01
2	1.84	1.84	+0.00
3a	1.49	1.46	+0.03
3b	1.65	1.63	+0.02
4	4.29	4.26	+0.03
5a	2.64	2.56	+0.08
5b	2.75	2.64	+0.11
6a	3.74	3.84	-0.10
6b	3.77	3.90	-0.13
7	0.01	0.07	-0.06
7'	0.01	0.08	-0.07
8	0.86	0.90	-0.04

2-(Trimethylsilyl)ethyl (4*R*,5*R*)-5-(((*tert*-butyldimethylsilyl)oxy)methyl)-4-((*S*)-3-((6-methoxyhex-2-yn-1-yl)oxy)-5-methylhex-1-yn-1-yl)-2,2-dimethyloxazolidine-3-carboxylate (21)

 $C_{32}H_{59}NO_6Si_2$, M = 610.0 g/mol

To a solution of alcohol **20c** (950 mg, 1.67 mmol, 1.0 eq) in dry toluene (42 mL) PPTS (41 mg, 0.167 mmol, 0.1 eq) and 2-methoxypropene (6.3 mL, 67.3 mmol, 40 eq) were added and the mixture stirred at 110 °C overnight.

The next day, the reaction was quenched by addition of NaHCO₃ (40 mL). The organic layer was separated and the aqueous was extracted with Et_2O (3 × 50 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 93:7) yielded **21** (961 mg, 1.58 mmol, 95%) as a slightly yellow oil.

R_f = 0.25 (petroleum ether/EtOAc = 93/7); $[α]_D^{20} = -105.4$ (*c* = 1.0 in CH₂Cl₂); ¹**H-NMR** (500 MHz, CD₂Cl₂): δ [ppm] = 0.06 (s, 9H), 0.09 (s, 3H), 0.09 (s, 3H), 0.89-0.92 (m, 3H), 0.91 (s, 9H), 0.92 (d, *J* = 6.7 Hz, 3H), 0.99-1.06 (m, 2H), 1.48-1.55 (m, 1H), 1.51 (s, 3H), 1.59 (s, 3H), 1.61-1.67 (m, 1H), 1.73 (tt, *J* = 7.1, 6.2 Hz, 2H), 1.80-1.89 (m, 1H), 2.28 (tt, *J* = 7.1, 2.2 Hz, 2H), 3.29 (s, 3H), 3.41 (t, *J* = 6.2 Hz, 2H), 3.84-3.91 (m, 2H), 4.09 (td, *J* = 6.1, 5.1 Hz, 1H), 4.14-4.22 (m, 3H), 4.26 (dt, *J* = 15.3, 2.2 Hz, 1H), 4.34 (t, *J* = 6.8 Hz, 1H), 4.61-4.72 (m, 1H); ¹³C-NMR (125 MHz, CD₂Cl₂): δ [ppm] = -5.1, -5.0, -1.3, 16.0, 18.4, 18.7, 22.7*, 22.8, 22.9, 22.9*, 24.8, 25.3, 25.8*, 26.2, 26.8, 27.9*, 29.3, 45.0, 51.5, 52.0*, 56.6, 58.9, 63.1, 63.8, 64.2*, 67.0, 71.6, 76.4, 77.0*, 77.3, 82.3*, 82.4, 83.8*, 84.0, 86.7, 95.0, 152.6 (*Note: extra signals due to amide resonance, distinguishable signals of the minor rotamer are denoted with an asterisk*); **HRMS** (ESI+): calculated for C₃₂H₅₉NNaO₆Si₂⁺ [M+Na]⁺: 632.3773, found: 632.3776.

2-(Trimethylsilyl)ethyl (4*R*,5*R*)-4-((*Z*)-((*S*,*E*)-4-(1-bromo-4-methoxybutylidene)-2*iso*butyldihydrofuran-3(2*H*)-ylidene)methyl)-5-(((*tert*butyldimethylsilyl)oxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (23)

 $C_{32}H_{60}BrNO_6Si_2$, M = 690.9 g/mol

Zirconocene dichloride was heated under vacuum until sublimation started, then the heating was stopped and it was stored under vacuum overnight. Diyne **21** was coevaporated with dry toluene (2 mL) under argon three times and it was stored under vacuum overnight. NBS was recrystallized from CHCl₃ prior to use.

Zirconocene dichloride (98.6 mg, 0.337 mmol, 1.5 eq) was dissolved in dry THF (1.4 mL) and the mixture was cooled to -78 °C. Afterwards, *n*-BuLi (2.5 M in hexanes, 270 μ L, 0.675 mmol, 3.0 eq) was added dropwise and the resulting light green solution was stirred at -78 °C for 30 minutes. Afterwards a solution of diyne (137 mg, 0.225 mmol, 1.0 eq) in THF (3.6 mL) was added. The mixture was allowed to warm up to room temperature and was stirred for 80 minutes. The resulting dark red solution was cooled again to -78 °C and NBS (80.1 mg, 0.450 mmol, 2.0 eq) was added in one portion (NOTE: *addition in one portion is crucial for regioselectivity!*). The mixture was stirred at -78 °C for 2 hours before further NBS (80.1 mg, 0.450 mmol, 2.0 eq) was added in one portion. After stirring for further 90 minutes at -78 °C the reaction mixture was quenched by addition of a saturated solution of NH₄Cl (4 mL). Afterwards the mixture was filtered and extracted with Et₂O (3 × 5 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 95:5) yielded **23** (107 mg, 0.155 mmol, 69%, regioisomeric ratio >20:1) as a slightly yellow oil.

R_f = 0.27 (petroleum ether/EtOAc = 93/7); $[\alpha]_D^{20} = -56.9$ (*c* = 1.0 in CH₂Cl₂); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 0.04 (s, 9H), 0.06 (s, 3H), 0.06 (s, 3H), 0.90 (s, 9H), 0.93-1.04 (m, 9H), 1.45-1.56 (m, 1H), 1.60 (s, 3H), 1.69 (s, 3H), 1.79-1.94 (m, 3H), 2.43-2.57 (m, 2H), 3.33 (s, 3H), 3.34-3.39 (m, 2H), 3.65 (dd, *J* = 10.0, 8.5 Hz, 1H), 3.77 (dd, *J* =

10.0, 4.6 Hz, 1H), 4.12-4.25 (m, 3H), 4.45-4.52 (m, 3H), 4.92-4.98 (m, 1H), 6.44-6.58 (m, 1H); **HRMS** (ESI+): calculated for $C_{32}H_{60}BrNNaO_6Si_2^+$ [M+Na]⁺: 712.3035, found: 712.3033.

NOTE: no ¹³C-NMR-spectrum could be obtained for this compound due to line broadening caused by amide resonances.

2-(Trimethylsilyl)ethyl (4*R*,5*R*)-5-(((*tert*-butyldimethylsilyl)oxy)methyl)-4-((*Z*)-((*S*,*Z*)-2-*iso*butyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2*H*)-ylidene)methyl)-2,2dimethyloxazolidine-3-carboxylate (23a)

 $C_{33}H_{63}NO_6Si_2$, M = 626.0 g/mol

To a solution of **23** (107 mg, 0.154 mmol, 1.0 eq) in dry THF (0.8 mL) at room temperature $Pd(P'Bu_3)_2$ (stored and weighed out in a glove box, 7.9 mg, 15.4 µmol, 0.1 eq) was added followed by slow addition of Me₂Zn (1.2 M in toluene, 1.0 mL, 1.2 mmol, 7.8 eq). The resulting yellow solution was stirred at room temperature for 18 h. Afterwards the reaction was quenched by slow addition of H₂O (1 mL) before a saturated solution of NH₄Cl (1 mL) was added dropwise. Phases were separated and the aqueous layer was extracted with Et₂O (3 × 3 mL). The organic phases were combined, dried over MgSO₄ and concentrated *in vacuo*. Purification of the obtained crude product was performed by column chromatography (SiO₂, petroleum ether/EtOAc, 95:5) to give **23a** (74.6 mg, 0.119 mmol, 78%) as a colorless oil.

R_f = 0.26 (petroleum ether/EtOAc = 93/7); $[α]_D^{20} = -131.3$ (*c* = 0.5 in CH₂Cl₂); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 0.02 (s, 9H), 0.06 (s, 3H), 0.06 (s, 3H), 0.89 (s, 9H), 0.94 (d, *J* = 6.6 Hz, 3H), 0.97 (d, *J* = 6.6 Hz, 3H), 0.99-1.04 (m, 2H), 1.36-1.46 (m, 1H), 1.46-1.55 (m, 1H), 1.59 (s, 3H), 1.66 (s, 3H), 1.65-1.77 (m, 2H), 1.80-1.87 (m, 1H), 1.86 (s, 3H), 1.97-2.12 (m, 2H), 3.30-3.38 (m, 2H), 3.33 (s, 3H), 3.67 (dd, *J* = 10.2, 7.7 Hz, 1H), 3.74 (dd, *J* = 10.2, 4.9 Hz, 1H), 4.11-4.20 (m, 3H), 4.41 (m, 1H), 4.44-4.57 (m, 2H), 4.83

(d, J = 10.9 Hz, 1H), 5.31 (d, J = 9.9 Hz, 1H); ¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = -5.6, -5.6, -1.6, 17.8*, 18.4, 18.8, 19.7, 21.4, 24.0 (2C), 24.7, 25.1*, 26.0, 27.3, 27.4, 28.3*, 29.7*, 33.9, 41.1, 41.9*, 58.5, 58.5, 59.0*, 61.7, 62.9, 63.2*, 68.9, 71.9, 77.7*, 78.1, 78.4, 79.1*, 93.8, 118.3*, 118.8, 130.8, 130.9, 143.5, 144.1*, 152.6 (*Note: extra signals due to amide resonance, distinguishable signals of the minor rotamer are denoted with an asterisk*); **HRMS** (ESI+): calculated for C₃₃H₆₃NNaO₆Si₂⁺ [M+Na]⁺: 648.4086, found: 648.4094.

(4*R*,5*R*)-2-(Trimethylsilyl)ethyl 5-(hydroxymethyl)-4-((*Z*)-((*S*,*Z*)-2-*iso*butyl-4-(5-methoxy-pentan-2-ylidene)dihydrofuran-3(2*H*)-ylidene)methyl)-2,2-dimethyloxazolidine-3-carboxylate (10)

 $C_{27}H_{49}NO_6Si, M = 511.8 \text{ g/mol}$

23a (51.7 mg, 82.6 μ mol, 1.0 eq) was dissolved in dry MeOH (1.6 mL). After cooling to 0 °C acetyl chloride (1:10 *v*/*v* in CH₂Cl₂, 32 μ L, 40.7 μ mol, 0.5 eq) was added dropwise. After complete addition the reaction mixture was warmed to room temperature and stirred for 45 minutes. The reaction mixture was diluted with toluene (5 mL) and the solvent was removed *in vacuo*. The crude product was purified by column chromatography (SiO₂, cyclohexane/EtOAc, 2:1) yielding **10** (39.5 mg, 77.2 μ mol, 93%) as a white foam.

R_f (cyclohexane/EtOAc = 1/1) = 0.51; $[\alpha]_D^{20}$ = -151.2 (c = 1.0, CHCl₃); ¹H-NMR (500 MHz, 339 K, CD₃CN): δ [ppm] = 0.01-0.07 (m, 9H), 0.97 (d, *J* = 6.6 Hz, 3H), 0.99 (d, *J* = 6.6 Hz, 3H), 0.99-1.03 (m, 2H), 1.42 (ddd, *J* = 14.3, 11.0, 4.4 Hz, 1H), 1.55 (s, 3H), 1.64 (s, 3H), 1.65-1.72 (m, 3H), 1.78-1.86 (m, 1H), 1.86-1.89 (m, 3H), 2.01-2.12 (m, 2H), 3.28 (s, 3H), 3.33 (t, *J* = 6.3 Hz, 2H), 3.52-3.61 (m, 2H), 4.10-4.19 (m, 2H), 4.22 (dt, *J* = 6.4, 5.4 Hz, 1H), 4.34-4.47 (m, 2H), 4.49 (dd, *J* = 10.0, 5.5 Hz, 1H), 4.78 (ddd, *J* = 10.8, 2.4, 1.5 Hz, 1H), 5.37 (d, *J* = 10.3 Hz, 1H); ¹³C-NMR (125 MHz, 339 K, CD₃CN) δ [ppm] = -1.5, 19.5, 20.0, 21.8, 24.2, 24.4, 25.8, 27.8, 28.1, 34.6, 42.2, 58.7,

59.2, 61.8, 63.4, 69.3, 72.5, 79.1, 79.4, 94.5, 120.5, 131.5, 132.4, 144.1, 153.4; **HRMS** (ESI+): calculated for $C_{27}H_{49}NNaO_6Si [M+Na]^+$: 534.3221, found 534.3217.

3.3 Synthesis of Pyrrole 8

The synthesis of **8**, started from pyrrole **S8** (Scheme S 4)^{21,22} and involved conversion of the acid function to the corresponding *tert*-butyl-ester and Boc-protection of the nitrogen, before bromination of the sidechain was achieved by means of NBS.

Scheme S 4: Synthesis of pyrrole 8.

5-Methyl-1*H*-pyrrole-2-carboxylic acid (S8)

 $C_6H_7NO_2$, M = 125.1 g/mol

To a solution of ethyl 5-methyl-1*H*-pyrrole-2-carboxylate (2.7 g, 17.6 mmol, 1.0 eq) in MeOH (120 mL) were added H₂O (70 mL) and NaOH (1 M in H₂O, 50.0 mL, 50.0 mmol, 2.8 eq) and the solution was stirred at 50 °C for 24 hours. The solution was concentrated to ca. 100 mL *in vacuo*, saturated with NH₄Cl (ca. 37 g) and acidified with solid KHSO₄ to pH = 3. The aqueous phase was extracted with EtOAc (3×100 mL) and the combined organic extracts were dried over MgSO₄. The solvent was removed *in vacuo* and **S8** was yielded (2.15 g, 17.2 mmol, 98 %) as a white solid.

²¹ Olson, S.; Slossberg, L. H. Tetrahedron Lett. 2003, 44, 61.

²² Ashkenazi, T.; Pinkert, D.; Nudelman, A.; Widberg, A.; Wexler, B.; Wittenbach, V.; Flint, D. Pest. Manag. Sci. **2007**, 63, 974.

 \mathbf{R}_{f} = 0.12 (cyclohexane/EtOAc = 2/1); ¹**H-NMR** (300 MHz, CDCl₃): δ [ppm] = 2.33 (s, 3H), 5.97-6.04 (m, 1H), 6.94-7.01 (m, 1H), 9.14 (br. s., 1H); ¹³**C-NMR** (75 MHz, CDCl₃) δ [ppm] = 13.4, 109.9, 118.6, 120.3, 135.5, 165.8; **HRMS** (ESI-): calculated for C₆H₆NO₂ [M-H]⁺; 124.0404, found 124.0402.

tert-Butyl 5-methyl-1H-pyrrole-2-carboxylate (S8a)

C₁₀H₁₅NO₂, M = 181.2 g/mol

To a solution of **S8** (2.15 g, 17.2 mmol, 1.0 eq) in dry CH_2Cl_2 (35 mL) was added *tert*butyl 2,2,2-trichloroacetimidate (11.5 g, 52.6 mmol, 3.0 eq) in dry cyclohexane (35 mL). The resulting mixture was cooled to 0 °C and boron trifluoride etherate (48% BF₃, 350 µL, cat.) was added dropwise. Afterwards the reaction mixture was warmed to room temperature and stirred overnight. The reaction was quenched by the addition of solid NaHCO₃ (4.5 g, 53.5 mmol, 3.1 eq), filtered and finally the solvent was removed *in vacuo*. Purification by column chromatography (SiO₂, cyclohexane/EtOAc, 9:1) yielded **S8a** (2.18 g, 12.0 mmol, 70%) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (cyclohexane/EtOAc = 9/1); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.55 (s, 9H), 2.30 (s, 3H), 5.89-5.94 (m, 1H), 6.71-6.76 (m, 1H), 8.88-9.22 (m, 1H); ¹³**C-NMR** (100 MHz, CDCl₃) δ [ppm] = 13.4, 28.6, 80.5, 108.7, 115.7, 123.0, 133.2, 160.9; **HRMS** (ESI+): calculated for C₁₀H₁₅NO₂ [M]⁺: 181.1103, found 181.1104.

Di-tert-butyl 5-methyl-1H-pyrrole-1,2-dicarboxylate (S9)

To a solution of **S8a** (906 mg, 5.00 mmol, 1.0 eq) in dry CH₂Cl₂ (25 mL) was added NEt₃ (7.0 mL, 50.0 mmol, 10.0 eq), di-*tert*-butyl dicarbonate (8.70 g, 40.0 mmol, 8.0 eq) and DMAP (305 mg, 2.50 mmol, 0.5 eq) and the resulting mixture was stirred at room temperature overnight. The reaction was quenched by the addition of H₂O (30 mL) and stirring was continued for additional 30 minutes. The organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by column chromatography (SiO₂, cyclohexane/EtOAc, 30:1) yielding **S9** (1.39 g, 4.95 mmol, 99%) as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.53$ (cyclohexane/EtOAc = 9/1); [4-anisaldehyde, color: yellow]; ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 1.54 (s, 9H), 1.58 (s, 9H), 2.34 (s, 3H), 5.83-5.87 (m, 1H), 6.66 (d, *J* = 3.5 Hz, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ [ppm] = 14.2, 27.7, 28.4, 80.7, 84.6, 109.4, 118.8, 126.4, 136.7, 149.8, 160.0; **HRMS** (EI+): calculated for C₁₅H₂₃NO₄ [M]⁺: 281.1627, found 281.1630.

Di-tert-butyl 5-(bromomethyl)-1H-pyrrole-1,2-dicarboxylate (8)

C₁₅H₂₂BrNO₄, M = 360.2 g/mol

A solution of **S9** (272 mg, 964 μ mol, 1.0 eq) in CCl₄ (10 mL) was irradiated with a 300 W daylight-lamp in approximately ten centimeter distance to the reaction vessel. After the solution started refluxing, AIBN (10 mg, cat.) and NBS (209 mg, 1.17 mmol, 1.2 eq) were added in one portion and the solution was irradiated to reflux for additional 2 hours. After cooling to room temperature the solution was filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography (SiO₂, cyclohexane/EtOAc, 30:1) yielding **8** (330 mg, 916 μ mol, 95%) as a white solid.

R_f = 0.53 (cyclohexane/EtOAc = 9/1); [4-anisaldehyde, color: green-grey]; ¹**H-NMR** (400 MHz, CD₂Cl₂): δ [ppm] = 1.54 (s, 9H) 1.61 (s, 9H) 4.71 (s, 2H) 6.23 (d, *J* = 3.6 Hz, 1H) 6.63 (d, J = 3.6 Hz, 1H); ¹³C-NMR (100 MHz, CD_2Cl_2) δ [ppm] = 24.7, 27.8, 28.5, 81.9, 86.2, 113.0, 117.8, 129.6, 135.1, 149.3, 160.0; **HRMS** (EI+): calculated for $C_{15}H_{22}BrNO_4$ [M]⁺: 359.0732, found 359.0734.

3.4 Completion of the Total Synthesis

Di-*tert*-butyl 5-((*E*)-3-((2*S*,3*R*,4*R*)-3-acetoxy-4-(((*tert*-butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1*H*-pyrrole-1,2-dicarboxylate (7a)

 $C_{32}H_{51}NO_9Si, M = 621.8 \text{ g/mol}$

To a mixture of **7** (54.0 mg, 115 µmol, 1.0 eq), Pd(P^{*t*}Bu₃)₂ (14.7 mg, 28.8 µmol, 0.25 eq) and Cs₂CO₃ (60.1 mg, 184 µmol, 1.6 eq) was added a solution of **8** (82.8 mg, 330 µmol, 2.87 eq) in a THF-H₂O mixture (11:1, 770 µmL). The reaction mixture was stirred at room temperature for 16 hours before it was quenched with saturated solution of NH₄Cl (2 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 3 mL). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo*. Purification of the obtained crude product was performed by column chromatography (SiO₂, cyclohexane/EtOAc, 97:3 → 6:1) to give **7a** (51.1 mg, 82.1 µmol, 71 %) as a colorless liquid.

 $\mathbf{R}_{f} = 0.26$ (cyclohexane/EtOAc = 9/1); $[\alpha]_{D}^{20} = -14.5$ (c = 1.00, CH₃Cl); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 6.66 (d, J = 3.6 Hz, 1H), 5.83 (d, J = 3.6 Hz, 1H), 5.73 (d, J = 7.9 Hz, 1H), 5.71-5.76 (m, 1H), 4.57 (d, J = 7.9 Hz, 1H), 3.83 (d, J = 9.4 Hz, 1H), 3.60 (d, J = 9.4 Hz, 1H), 3.54 (dd, J = 17.1 Hz, J = 7.1 Hz, 1H), 3.48 (dd, J = 17.1 Hz, J = 7.1 Hz, J = 7.

7.1 Hz, 1H), 2.08 (s, 3H), 1.71 (s, 3H), 1.57 (s, 9H), 1.57 (s, 9H), 1.06 (s, 3H), 0.88 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 177.2, 169.7, 159.8, 149.6, 138.1, 132.4, 127.1, 126.8, 118.4, 108.7, 84.8, 83.9, 80.7, 72.5, 65.7, 49.8, 28.4, 27.6, 26.5, 25.8, 20.6, 18.3, 13.8, 11.1, -5.6, -5.6; HRMS (ESI+) calculated for C₃₂H₅₁NO₉SiNa⁺ [M+Na]⁺: 644,3225, found: 644,3223.

5-((*E*)-3-((2*S*,3*R*,4*R*)-3-Acetoxy-4-(((*tert*-butyldimethylsilyl)oxy)methyl)-4-methyl-5oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1*H*-pyrrole-2-carboxylic acid (24)

C₂₃H₃₅NO₇Si, M = 465.6 g/mol

To a mixture of ester **7a** (88.0 mg, 0.142 mmol, 1.0 eq) and 2,6-lutidine (330 μ L, 2.84 mmol, 20 eq) in dry CH₂Cl₂ (1.4 mL) at 0 °C TMSOTF (256 μ L, 1.42 mmol, 10 eq) was added. After 1 hour the mixture was allowed to warm up to room temperature and it was stirred over night. It was diluted with EtOAc (4 mL) and quenched by addition of a saturated solution of NH₄Cl (4 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 × 4 mL). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo*. Purification by preparative TLC (SiO₂, petroleum ether/EtOAc/HOAc, 5:5:1) followed by co-evaporation with toluene to remove residual acetic acid yielded **24** (60.1 mg, 0.129 mmol, 91%).

R_f = 0.23 (cyclohexane/EtOAc/HOAc = 10/10/1); $[\alpha]_D^{20} = -9.3$ (c = 0.3, CH₃Cl); ¹**H**-**NMR** (500 MHz, CD₃OD) δ [ppm] = 6.77 (d, J = 3.7 Hz, 1H), 5.90 (d, J = 3.7 Hz, 1H), 5.84-5.77 (m, 2H), 4.72 (d, J = 8.3 Hz, 1H), 3.81 (d, J = 9.6 Hz, 1H), 3.59 (d, J = 9.6 Hz, 1H), 3.43 (d, J = 7.2 Hz, 2H), 2.06 (s, 3H), 1.76 (s, 2H), 1.10 (s, 3H), 0.89 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H). ¹³**C-NMR** (125 MHz, CD₃OD) δ [ppm] = 179.1, 171.6, 164.5, 137.5, 132.7, 129.3, 123.1, 117.4, 108.7, 85.2, 73.0, 66.4, 51.2, 27.0, 26.3, 20.4, 19.1, 13.8, 11.3, -5.5, -5.6. **HRMS** (ESI-): calculated for $C_{23}H_{34}NO_7Si^+$ [M-H]⁺: 464.2110, found: 464.2114.

(S)-4-*tert*-Butyl 1-(((4R,5R)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)-2,2-dimethyl-3-((2-(trimethylsilyl)ethoxy)carbonyl)oxazolidin-5-yl)methyl) 2-*iso*butylsuccinate (9a)

 $C_{39}H_{69}NO_9Si, M = 724.1 \text{ g/mol}$

To a solution of **9** (357 mg, 1.55 mmol, 2.2 eq) in dry CH_2Cl_2 (16 mL) was added NEt₃ (850 µL, 6.09 mmol, 8.8 eq), MNBA (530 mg, 1.10 mmol, 1.6 eq) and DMAP (140 mg, 1.15 mmol, 1.6 eq) and the resulting mixture was stirred at room temperature for 10 minutes. **10** (378 mg, 739 µmol, 1.0 eq) was dissolved in dry CH_2Cl_2 (21 mL), added to the reaction mixture and stirred for 60 minutes at room temperature. The reaction was quenched by the addition of saturated NaHCO₃ solution (30 mL). The organic phase was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 30 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed *in vacuo*. The crude product was purified by column chromatography (SiO₂, cyclohexane/EtOAc, 9:1) yielding **9a** (528 mg, 0.729 mmol, 99%) as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.73 \text{ (cyclohexane/EtOAc} = 2/1); \ [\alpha]_D^{20} = -109.9 \text{ (c} = 1.0, \text{ CHCl}_3); \ ^1\mathbf{H}\text{-NMR}$ $(500 \text{ MHz}, 339 \text{ K}, \text{CD}_3\text{CN}): \delta \text{ [ppm]} = 0.03 - 0.06 \text{ (m}, 9\text{H}), 0.90 \text{ (d}, J = 6.6 \text{ Hz}, 3\text{H}), 0.93 \text{ (d}, J = 6.4 \text{ Hz}, 3\text{H}), 0.98 \text{ (d}, J = 6.8 \text{ Hz}, 3\text{H}), 1.01 \text{ (d}, J = 6.6 \text{ Hz}, 3\text{H}), 0.96 - 1.04 \text{ (m}, 2\text{H}), 1.30 - 1.36 \text{ (m}, 1\text{H}), 1.43 \text{ (s}, 9\text{H}), 1.40 - 1.47 \text{ (m}, 2\text{H}), 1.55 \text{ (s}, 3\text{H}), 1.56 - 1.63 \text{ (m}, 2\text{H}), 1.64 \text{ (s}, 3\text{H}), 1.65 - 1.70 \text{ (m}, 1\text{H}), 1.67 - 1.72 \text{ (m}, 2\text{H}), 1.82 - 1.87 \text{ (m}, 1\text{H}), 1.88 \text{ (m}, 3\text{H}), 2.02 - 2.11 \text{ (m}, 2\text{H}), 2.35 \text{ (dd}, J = 16.2, 5.9 \text{ Hz}, 1\text{H}), 2.54 \text{ (dd}, J = 16.2, 8.4 \text{ Hz}, 1\text{H}), 2.82 \text{ (tt}, J = 8.3, 100 \text{ (m}, 2\text{H}), 1.82 - 1.87 \text{ (m}, 2\text{H}), 1.82 \text{ (tt}, J = 8.3, 100 \text{ (m}, 2\text{H}), 2.85 \text{ (dd}, J = 16.2, 5.9 \text{ Hz}, 1\text{H}), 2.54 \text{ (dd}, J = 16.2, 8.4 \text{ Hz}, 1\text{H}), 2.82 \text{ (tt}, J = 8.3, 100 \text{ (m}, 2\text{H}), 2.85 \text{ (tt}, J = 8.3$

6.1 Hz, 1H), 3.28 (s, 3H), 3.33 (t, J = 6.3 Hz, 2H), 4.04-4.13 (m, 2H), 4.12-4.23 (m, 2H), 4.32-4.36 (m, 1H), 4.36-4.48 (m, 2H), 4.55 (dd, J = 10.1, 5.6 Hz, 1H), 4.76 (dt, J = 10.9, 2.0 Hz, 1H), 5.39 (d, J = 10.1 Hz, 1H); ¹³C-NMR (125 MHz, 339 K, CD₃CN) δ [ppm] = - 1.2, 19.7, 20.2, 22.5, 22.8, 23.3, 24.5, 25.0, 26.3, 27.0, 28.4, 28.5, 28.7 (3C), 34.9, 39.0, 41.2, 42.2, 42.7, 58.9, 59.6, 63.9, 63.9, 69.7, 73.0, 76.5, 80.0, 81.6, 95.1, 120.4, 131.8, 133.1, 145.2, 153.7, 172.0, 175.9; **HRMS** (ESI+): C₃₉H₆₉NNaO₉Si [M+Na]⁺: 746.4634, found 746.4646.

(S)-1-((2R,3R,Z)-3-amino-2-hydroxy-4-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)butyl) 4-*tert*-butyl 2-*iso*butylsuccinate (25)

 $C_{30}H_{53}NO_7, M = 539.7 \text{ g/mol}$

TAS-F (90%, 230 mg, 0.75 mmol, 2.0 eq) was dissolved in dry MeCN (2.3 mL) and added dropwise to a solution of **9a** (268 mg, 0.37 mmol, 1.0 eq) in dry MeCN (3 mL) at 0 °C. The ice bath was removed and the reaction mixture was slowly heated to 45 °C over 30 minutes. After stirring for 2 hours at this temperature the reaction was quenched by the addition of saturated NH₄Cl solution (25 mL) and diethyl ether (20 mL). The organic phase was separated and the aqueous phase was extracted with Et₂O (2 × 25 mL) and EtOAc (25 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was filtered over a small pad of silica, eluating with cyclohexane/EtOAc/*i*PrNH₂ 85/15/3. The solvent was removed *in vacuo* yielding **25** (200 mg, 0.37 mmol, 100%) as yellow oil which was directly used without further purification. NMR analysis showed a purity of about 80%. (NOTE: slow column chromatography or purification by preparative TLC gave rise to small quantities of the more polar byproduct **S11** by migration of the acyl group to the amine).

 $\mathbf{R}_{\mathbf{f}}$ (cyclohexane/EtOAc/*i*PrNH₂, 85/15/3) = 0.26.

 $\label{eq:constraint} \begin{array}{l} 1-((2R,3R,Z)-3-(5-((E)-3-((2S,3R,4R)-3-Acetoxy-4-(((tert-butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-\\ 1H-pyrrole-2-carboxamido)-2-hydroxy-4-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)butyl) \\ 4-(tert-butyl) \\ (S)-2-isobutylsuccinate \\ (24a) \end{array}$

 $C_{53}H_{86}N_2O_{13}$, M = 987.4 g/mol

To a solution of **25** (40.2 mg, 74.5 μ mol, 1.0 eq) and crude acid **24** (max. 96.8 μ mol, 1.3 eq) in dry MeCN (2.6 mL) at room temperature NEt₃ (31 μ L, 0.224 mmol, 3.0 eq) and HATU (56.7 mg, 0.149 mmol, 2.0 eq) were added. The resulting solution was stirred for 2 hours at 40 °C before it was quenched by addition of a saturated solution of NaHCO₃ (4 mL). The layers were separated and it was extracted with EtOAc (3 × 4 mL). The organic layers were combined, dried over MgSO₄ and concentrated under reduced pressure. Purification by column chromatography (SiO₂, petroleum ether/EtOAc, 65:35) gave **24a** (51.5 mg, 52.1 μ mol, 70%) as a colorless gum.

 $\mathbf{R}_{f} = 0.21$ (petroleum ether/EtOAc = 70/30); $[\alpha]_{D}^{20} = -128.4$ (c = 0.5 in CH₂Cl₂); ¹H-NMR $(400 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: δ [ppm] = 0.06 (s, 3H), 0.08 (s, 3H), 0.86 (d, J = 6.6 \text{ Hz}, 3H), 0.87 (d, J = 6.6 Hz, 3H), 0.89 (s, 9H), 0.91 (d, J = 6.2 Hz, 3H), 0.93 (d, J = 6.2 Hz, 3H), 1.08(s, 3H), 1.22-1.31 (m, 2H), 1.41 (s, 9H), 1.42-1.45 (m, 1H), 1.48-1.60 (m, 2H), 1.62-1.72 (m, 2H), 1.75 (s, 3H), 1.77-1.81 (m, 1H), 1.92 (s, 3H), 1.99-2.06 (m, 2H), 2.07 (s, 3H), 2.39 (dd, J = 16.4, 4.4 Hz, 1H), 2.58 (dd, J = 16.4, 10.0 Hz, 1H), 2.73-2.83 (m, 1H), 3.29 (s, 3H), 3.32 (t, J = 6.2 Hz, 2H), 3.40 (dd, J = 16.4, 6.7 Hz, 1H), 3.46 (dd, J = 16.4, 7.7 Hz, 1H), 3.56 (d, J = 9.6 Hz, 1H), 3.81 (d, J = 9.6 Hz, 1H), 3.96-4.06 (m, 2H), 4.24-4.29 (m, 1H), 4.38-4.44 (m, 1H), 4.44-4.50 (m, 1H), 4.56 (d, J = 8.1 Hz, 1H), 4.68-4.74 (m, 1H), 4.84 (dt, J = 10.6, 1.8 Hz, 1H), 5.67-5.76 (m, 3H), 5.92 (t, J = 3.1 Hz, 1H), 6.35 (d, J = 7.8 Hz, 1H), 6.50-6.54 (m, 1H), 9.14 (br. s, 1H); 13 C-NMR (100 MHz, CD₂Cl₂): δ [ppm] = -5.4, -5.4, 11.4, 14.1, 18.7, 20.4, 20.9, 21.9, 22.5, 22.9, 24.1, 25.6, 26.1, 26.3, 26.1, 26.1, 26.3, 26.1, 2626.9, 27.9, 28.3, 34.6, 38.6, 40.4, 41.7, 43.1, 50.1, 52.6, 58.8, 66.0, 66.3, 69.7, 72.5, 72.5, 72.7, 80.0, 81.8, 84.5, 108.2, 110.7, 118.1, 125.3, 127.7, 131.0, 132.9, 133.3, 134.9, 146.4, 161.0, 170.8, 172.6, 175.8, 177.3; **HRMS** (ESI+): calculated for $C_{53}H_{86}N_2O_{13}Si^+$ [M+Na]⁺: 1009.5791, found: 1009.5788.

 $\label{eq:constraint} \begin{array}{l} 1-(((4R,5S)-2-(5-((E)-3-((2S,3R,4R)-3-Acetoxy-4-(((tert-butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-\\ 1H-pyrrol-2-yl)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-yl)dene)dihydrofuran-3(2H)-ylidene)methyl)-4,5-dihydrooxazol-5-yl)methyl) \\ \begin{array}{l} 4-(tert-butyl) \ (S)-2-isobutylsuccinate \ (26) \end{array}$

C₅₃H₈₄N₂O₁₂Si, M = 969.3 g/mol

To a solution of **24a** (94.0 mg, 95.2 µmol, 1.0 eq) in dry CH₂Cl₂ (1.8 mL) at -78 °C a solution of DAST (19 µL, 0.143 mmol, 1.5 eq) in dry CH₂Cl₂ (0.57 mL) was added. The resulting solution was stirred for 1 hour at the indicated temperature before further DAST (10 µL, 75.3 µmol, 0.8 eq) in CH₂Cl₂ (0.30 mL) was added. After an additional hour at -78 °C anhydrous K₂CO₃ (19.7 mg, 0.143 mmol, 1.5 eq) was added. The mixture was allowed to warm up to -10 °C before it was quenched by addition of a saturated solution of NaHCO₃ (2 mL). The layers were separated and it was extracted with Et₂O (3 × 3 mL). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo*. Purification by HPLC (System C, column: Daicel Chiralpak IB, 5 µm; 250 × 20 mm, *n*-heptane/*i*PrOH = 98:2, flow rate 18 mL/min, total running time: 22 min, detection at 280 nm) gave **26** (74.4 mg, 76.8 µmol, 81%) as a colorless gum.

 $\mathbf{R}_{f} = 0.30$ (petroleum ether/EtOAc = 70/30); $[\alpha]_{D}^{20} = -42.5$ (c = 0.5 in CH₂Cl₂); ¹H-NMR $(400 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: δ [ppm] = 0.06 (s, 3H), 0.07 (s, 3H), 0.81 (d, J = 6.3 \text{ Hz}, 3H), 0.84 (d, J = 6.3 Hz, 3H), 0.88 (s, 9H), 0.96 (d, J = 6.7 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 1.07 (s, 3H), 1.18-1.26 (m, 1H), 1.35 (ddd, *J* = 14.1, 9.4, 2.8 Hz, 1H), 1.41 (s, 9H), 1.46-1.60 (m, 3H), 1.62-1.70 (m, 2H), 1.75 (s, 3H), 1.81-1.88 (m, 1H), 1.90 (s, 3H), 1.97-2.06 (m, 2H), 2.07 (s, 3H), 2.32 (dd, J = 16.3, 5.4 Hz, 1H), 2.54 (dd, J = 16.3, 9.0 Hz, 1H), 2.78-2.87 (m, 1H), 3.29 (s, 3H), 3.31 (t, J = 6.2 Hz, 2H), 3.41 (dd, J = 16.6, 6.6 Hz, 1H), 3.46 (dd, J = 16.6, 7.4 Hz, 1H), 3.56 (d, J = 9.5 Hz, 1H), 3.81 (d, J = 9.5 Hz, 1H), 4.17 (dd, J = 12.0, 5.4 Hz, 1H), 4.38-4.45 (m, 2H), 4.45-4.55 (m, 3H), 4.56 (d, J = 7.9 Hz, 1H), 4.89 (dt, J = 10.7, 2.0 Hz, 1H), 5.46 (d, J = 9.3 Hz, 1H), 5.69-5.72 (m, 1H), 5.72 (d, J = 7.9Hz, 1H), 5.94 (d, J = 3.5 Hz, 1H), 6.60 (d, J = 3.5 Hz, 1H), 9.07 (br. s, 1H); ¹³C-NMR $(100 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: δ [ppm] = -5.4, -5.4, 11.4, 14.1, 18.7, 20.4, 21.0, 22.0, 22.4, 22.9, 24.1, 25.5, 26.1, 26.3, 26.9, 27.9, 28.3, 34.7, 38.3, 40.2, 41.7, 44.0, 50.2, 58.8, 64.7, 66.0, 68.6, 69.8, 72.4, 72.6, 79.8, 81.1, 83.6, 84.4, 108.3, 113.9, 119.6, 122.4, 127.7, 130.7, 133.1 (2C), 135.2, 144.7, 158.3, 170.6, 171.4, 175.5, 177.3; HRMS (ESI+): calculated for $C_{53}H_{84}N_2NaO_{12}Si^+$ [M+Na]⁺: 991.5686, found: 991.5686.

(S)-3-((((4R,5S)-2-(5-((E)-3-((2S,3R,4R)-3-Acetoxy-4-(((tert-butyldimethylsilyl)oxy)-methyl)-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1H-pyrrol-2-yl)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)-4,5-dihydrooxazol-5-yl)methoxy)carbonyl)-5-methylhexanoic acid (26a)

C₄₉H₇₆N₂O₁₂Si, M = 913.2 g/mol

To a solution of **26** (27.8 mg, 28.7 μ mol, 1.0 eq) and 2,6-lutidine (97 μ L, 0.831 mmol, 30 eq) in dry CH₂Cl₂ (640 μ L) at 0 °C TMSOTf (78 μ L, 0.431 mmol, 15 eq) was added. The resulting solution was stirred for 30 minutes at 0 °C before it was allowed to warm up to room temperature. After further 30 minutes the reaction was quenched by addition of a saturated solution of NH₄Cl (1 mL). The layers were separated and the aqueous layer was extracted with EtOAc (4 × 2 mL). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo* to give crude **26a** as a yellow oil that was used without further purification.

An analytical sample was purified by preparative TLC (SiO₂, cyclohexane/EtOAc/HOAc, 5:5:0.2) followed by co-evaporation with toluene to remove residual acetic acid.

R_f = 0.38 (petroleum ether/EtOAc/HOAc = 50/50/3); ¹**H-NMR** (400 MHz, CD₃OD) δ [ppm] = 0.07 (d, J = 6.6 Hz, 6H), 0.74 (d, J = 6.4 Hz, 3H), 0.79 (d, J = 6.4 Hz, 3H), 0.89 (s, 9H), 0.98 (d, J = 6.7 Hz, 3H), 1.01 (d, J = 6.6 Hz, 3H), 1.09 (s, 3H), 1.18-1.26 (m, 1H), 1.31-1.36 (m, 1H), 1.36-1.43 (m, 1H), 1.44-1.53 (m, 2H), 1.55–1.64 (m, 1H), 1.65-1.75 (m, 2H), 1.76 (s, 3H), 1.83-1.91 (m, 1H), 1.95 (s, 3H), 2.07 (s, 3H), 2.04-2.22 (m, 2H), 2.38 (dd, J = 16.6, 5.3 Hz, 1H), 2.58 (dd, J = 16.7, 9.4 Hz, 1H), 2.82-2.91 (m, 1H), 3.32 (s, 3H), 3.35-3.38 (m, 2H), 3.44 (d, J = 7.3 Hz, 2H), 3.60 (d, J = 9.5 Hz, 1H), 3.81 (d, J = 9.5 Hz, 1H), 4.19 (dd, J = 12.4, 3.3 Hz, 1H), 4.42-4.56 (m, 2H), 4.56-4.60 (m, 1H), 4.66 (dd, J = 12.4, 3.3 Hz, 1H), 4.70-4.73 (m, 1H), 4.72-4.75 (m, 1H), 4.96-5.01 (m, 1H), 5.54 (d, J = 10.1 Hz, 1H), 5.79 (d, J = 8.2 Hz, 1H), 5.81 (d, J = 6.4 Hz, 1H), 5.93 (d, J = 3.6 Hz, 1H), 6.73 (d, J = 3.8 Hz, 1H); ¹³C-NMR (100 MHz, CD₃OD) δ [ppm] = -5.4, -5.3, 11.5, 14.0, 19.3, 20.4, 20.6, 22.3, 22.5, 23.3, 24.3, 26.3, 26.4, 27.1, 27.2, 28.5, 35.1, 38.2, 41.2, 42.7, 44.9, 51.3, 58.9, 64.5, 66.6, 68.3, 70.4, 73.0, 73.2, 80.7, 84.5, 85.3, 108.9, 115.9, 119.1, 123.4, 129.3, 131.4, 133.0, 134.1, 137.0, 145.4, 161.0, 171.6, 176.1, 177.1, 179.3;

HRMS (ESI+): calculated for $C_{49}H_{77}N_2NaO_{12}Si^+$ [M+H]⁺: 913.5240, found: 913.5247.

(S)-3-((((4R,5S)-2-(5-((E)-3-((2S,3R,4R)-4-(((tert-Butyldimethylsilyl)oxy)methyl)-3-hydroxy-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1H-pyrrol-2-yl)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)-4,5-dihydrooxazol-5-yl)methoxy)carbonyl)-5-methylhexanoic acid (27)

 $C_{47}H_{74}N_2O_{11}Si, M = 871.2 \text{ g/mol}$

Crude **26a** (max. 28.7 μ mol) was dissolved in THF (1.7 mL) at room temperature. Then MeOH (1.7 mL) was added followed by 1 M aqueous K₂CO₃-solution (1.7 mL). The resulting mixture was stirred at room temperature for 2 hours before it was quenched by addition of a saturated solution of NH₄Cl (2 mL) and Et₂O (3 mL). The layers were separated and the aqueous layer was extracted with EtOAc (4 × 4 mL). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo*. Purification by preparative TLC (SiO₂, petroleum ether/EtOAc/HOAc, 50:50:2) followed by co-evaporation with toluene to remove residual acetic acid gave **27** (21.0 mg, 24.1 μ mol, 84% over 2 steps) as a colorless gum.

 $\mathbf{R}_{f} = 0.32$ (petroleum ether/EtOAc/HOAc = 50/50/3); $[\alpha]_{D}^{20} = -41.2$ (c = 0.5 in CH₂Cl₂); ¹**H-NMR** (500 MHz, CD₃OD): δ [ppm] = 0.07 (s, 3H), 0.08 (s, 3H), 0.73 (d, J = 6.5 Hz, 3H), 0.79 (d, J = 6.4 Hz, 3H), 0.88 (s, 9H), 0.98 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 6.5 Hz, 3H), 1.04 (s, 3H), 1.21 (ddd, J = 13.4, 7.9, 5.9 Hz, 1H), 1.40 (ddd, J = 14.3, 9.4, 2.7 Hz, 1H), 1.42-1.47 (m, 1H), 1.47-1.54 (m, 1H), 1.60 (ddd, J = 14.3, 10.5, 4.4 Hz, 1H), 1.64-1.74 (m, 2H), 1.75 (s, 3H), 1.83-1.90 (m, 1H), 1.92-1.97 (m, 3H), 2.02-2.09 (m, 1H), 2.09-2.16 (m, 1H), 2.38 (dd, J = 16.6, 5.2 Hz, 1H), 2.58 (dd, J = 16.6, 9.4 Hz, 1H), 2.82-2.90 (m, 1H), 3.32 (s, 3H), 3.36 (t, J = 6.2 Hz, 2H), 3.48 (d, J = 7.2 Hz, 2H), 3.51 (d, J =9.9 Hz, 1H), 3.80 (d, J = 9.9 Hz, 1H), 4.19 (dd, J = 12.5, 3.3 Hz, 1H), 4.42-4.48 (m, 1H), 4.50 (d, J = 8.5 Hz, 1H), 4.52-4.57 (m, 1H), 4.57-4.59 (m, 1H), 4.58 (d, J = 8.5 Hz, 1H), 4.67 (dd, J = 12.5, 3.2 Hz, 1H), 4.73 (dd, J = 9.9, 7.4 Hz, 1H), 4.96-5.01 (m, 1H), 5.55 (d, J = 9.9 Hz, 1H), 5.81 (t, J = 7.2 Hz, 1H), 5.98 (d, J = 3.7 Hz, 1H), 6.72 (d, J = 3.7 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): δ [ppm] = -5.4, -5.3, 11.6, 13.4, 19.2, 20.4, 22.3, 22.6, 23.3, 24.3, 26.3, 26.4, 27.2, 27.2, 28.5, 35.1, 39.5, 41.6, 42.8, 45.0, 51.6, 58.9, 64.4, 65.7, 68.3, 70.4, 71.5, 73.0, 80.7, 84.6, 88.0, 109.0, 116.0, 119.1, 123.4, 128.4, 131.4, 133.7, 134.1, 137.3, 145.5, 161.1, 177.4, 177.5, 180.7; HRMS (ESI+): calculated for $C_{47}H_{73}N_2O_{11}Si^{-}[M-H^+]^{-}: 869.4989$, found: 869.4994.

 $(1^4R, 1^5S, 6^2S, 6^3R, 6^4R, 10S, E) - 6^4 - (((tert-Butyldimethylsilyl)oxy)methyl) - 10-isobutyl - 1^4 - ((Z) - ((S,Z) - 2-isobutyl - 4 - (5-methoxypentan - 2-ylidene)dihydrofuran - 3(2H) - ylidene)methyl) - 6^4, 5-dimethyl - 1^4, 1^5, 6^2, 6^3, 6^4, 6^5 - hexahydro - 2^1H - 7, 12 - dioxa - 1(2,5) - oxazola - 2(2,5) - pyrrola - 6(2,3) - furanacyclotridecaphan - 4-ene - 6^5, 8, 11-trione (28)$

 $C_{47}H_{72}N_2O_{10}Si, M = 853.2 \text{ g/mol}$

2-Methyl-6-nitrobenzoic anhydride (15.8 mg 45.9 μ mol, 5 eq), DMAP (9.0 mg, 73.4 μ mol, 8 eq) and molecular sieves (4 Å) were dried under vacuum for 4 hours before CH₂Cl₂ (4.6 mL) was added. To this, a solution of **27** (8.0 mg, 9.18 μ mol, 1.0 eq) in CH₂Cl₂ (4.6 mL) was added over a period of 16 hours by a syringe pump. After 4 more hours at room temperature, the reaction mixture was filtered and an aqueous solution of NaHCO₃ (2 mL) was added. The layers were separated and the aqueous layer was extracted with EtOAc (3 × 3 mL). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo*. Purification by preparative TLC (SiO₂, petroleum ether/EtOAc, 65:35) gave **28** (7.2 mg, 8.40 µmol, 92%) as a colorless gum.

 $\mathbf{R}_{f} = 0.29$ (petroleum ether/EtOAc = 70/30); $[\alpha]_{p}^{20} = +17.6$ (c = 0.5 in CH₂Cl₂); ¹H-NMR $(500 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: δ [ppm] = -0.02 (s, 3H), -0.01 (s, 3H), 0.78 (s, 9H), 0.89 (d, J = 6.2Hz, 3H), 0.92 (d, J = 6.2 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 1.12 (s, 3H), 1.25-1.31 (m, 1H), 1.36 (ddd, J = 14.3, 9.4, 2.7 Hz, 1H), 1.57 (ddd, J = 14.3, 10.8, 4.3 Hz, 1H), 1.59-1.65 (m, 2H), 1.65-1.72 (m, 2H), 1.75-1.77 (m, 3H), 1.80-1.88 (m, 1H), 1.91 (t, J = 1.6 Hz, 3H), 1.99-2.09 (m, 2H), 2.68 (dd, J = 16.6, 5.4 Hz, 1H), 2.76 (dd, J = 16.6, 8.1 Hz, 1H), 2.81-2.88 (m, 1H), 3.29 (s, 3H), 3.31 (t, J = 6.3 Hz, 2H), 3.48 (d, J = 7.5 Hz, 2H), 3.49 (d, J = 9.8 Hz, 1H), 3.80 (d, J = 9.8 Hz, 1H), 3.96 (dd, J = 11.7)2.0 Hz, 1H), 4.38 (dd, J = 9.7, 6.7 Hz, 1H), 4.42 (dq, J = 12.2, 1.6 Hz, 1H), 4.46-4.50 (m, 1H), 4.50 (d, *J* = 7.4 Hz, 1H), 4.55 (ddd, *J* = 8.7, 6.7, 2.0 Hz, 1H), 4.63 (dd, *J* = 11.7, 8.7 Hz, 1H), 4.82 (dt, J = 10.5, 2.2 Hz, 1H), 5.48 (d, J = 9.7 Hz, 1H), 5.55 (d, J = 7.4 Hz, 1H), 5.73-5.78 (m, 1H), 6.00-6.03 (m, 1H), 6.73 (dd, J = 3.3, 1.7 Hz, 1H), 9.07 (br. s, 1H); ¹³C-NMR (125 MHz, CD₂Cl₂): δ [ppm] = -5.5, 13.9, 14.6, 18.6, 20.4, 21.9, 22.7, 22.8, 24.0, 25.6, 26.0, 26.4, 26.9, 27.9, 34.7, 36.9, 39.4, 40.6, 43.7, 50.4, 58.8, 65.6, 65.8, 68.3, 69.8, 72.4, 75.5, 79.9, 83.7, 84.1, 109.0, 114.0, 119.7, 122.0, 126.9, 130.6, 133.3, 134.5, 135.1, 144.7, 158.3, 171.7, 174.9, 177.0; HRMS (ESI+): calculated for $C_{47}H_{72}N_2NaO_{10}Si^+$ [M+H]⁺: 875.4848, found: 875.4861.

Leupyrrin $A_1(5)$

 $C_{41}H_{58}N_2O_{10}$, M = 738.4 g/mol

To a solution of TBS protected alcohol **28** (6.2 mg, 7.27 μ mol, 1.0 eq) in MeCN (125 μ L) at 0 °C a solution of TASF (90%, 8.9 mg, 29.1 μ mol, 4.0 eq) in MeCN (25 μ L) was added. The resulting mixture was stirred at this temperature for 1 hour before it was allowed to warm up to room temperature. After 2.5 hours further TASF (90%, 4.4 mg, 15.5 μ mol, 2.0 eq) in MeCN (12 μ L) was added. After 2 hours, when TLC indicated complete consumption of starting material **28** the reaction mixture was diluted with EtOAc (1 mL) and it was quenched by addition of a saturated solution of NaHCO₃ (1 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 × 1.5 mL). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo*. Purification by preparative TLC (SiO₂, petroleum ether/EtOAc, 50:50) gave leupyrrin A₁ (**5**) (4.1 mg, 5.55 μ mol, 76%).

R_f = 0.31 (petroleum ether/EtOAc = 50/50); $[\alpha]_D^{20}$ = +11.0 (*c* = 0.313 in MeOH); ¹**H**-**NMR** (500 MHz, CD₃OD): δ [ppm] = 0.88 (d, *J* = 6.5 Hz, 3H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.99 (d, *J* = 6.6 Hz, 3H), 1.03 (d, *J* = 6.6 Hz, 3H), 1.06 (s, 3H), 1.27-1.31 (m, 1H), 1.41 (ddd, *J* = 14.3, 9.5, 2.5 Hz, 1H), 1.57 (ddd, *J* = 14.3, 10.8, 4.1 Hz, 1H), 1.58-1.69 (m, 3H), 1.69-1.76 (m, 1H), 1.73 (d, *J* = 1.0 Hz, 3H), 1.83-1.90 (m, 1H), 1.93 (t, *J* = 1.5 Hz, 3H), 2.02-2.08 (m, 1H), 2.11 (ddd, J = 13.5, 8.0, 7.0 Hz, 1H), 2.61-2.68 (m, 1H), 2.73-2.82 (m, 2H), 3.32 (s, 3H), 3.34 (m, 1H), 3.36 (t, *J* = 6.0 Hz, 2H), 3.58 (d, *J* = 11.0 Hz, 1H), 3.59 (dd, *J* = 15.5, 9.0 Hz, 1H), 3.73 (d, *J* = 11.0 Hz, 1H), 4.16 (dd, *J* = 12.0, 2.5 Hz, 1H), 4.52 (dd, *J* = 10.1, 5.5 Hz, 1H), 4.53-4.54 (m, 1H), 4.54 (dd, *J* = 12.0, 5.5 Hz, 1H), 4.67 (td, *J* = 5.5, 2.5 Hz, 1H), 4.73 (dd, *J* = 7.7, 0.4 Hz, 1H), 4.96 (ddd, *J* = 10.8, 2.5, 1.7 Hz, 1H), 5.51 (d, *J* = 10.1 Hz, 1H), 5.54 (d, *J* = 7.7 Hz, 1H), 4.96 (ddd, *J* = 10.8, 2.5, 1.7 Hz, 1H), 5.51 (d, *J* = 10.1 Hz, 1H), 5.54 (d, *J* = 7.7 Hz, 1H), 4.96 (ddd, *J* = 10.8, 2.5, 1.7 Hz, 1H), 5.51 (d, *J* = 10.1 Hz, 1H), 5.54 (d, *J* = 7.7 Hz, 1Hz), 5.51 (d, *J* = 10.1 Hz, 1H), 5.54 (d, *J* = 7.7 Hz, 1Hz), 5.51 (d, *J* = 10.1 Hz, 1H), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz, 1H), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz, 1H), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz, 1H), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, *J* = 10.1 Hz), 5.54 (d, *J* = 7.7 Hz), 5.51 (d, J = 10.1 Hz), 5.54

1H), 5.85 (m, 1H), 6.03 (d, J = 3.6 Hz, 1H), 6.75 (d, J = 3.6 Hz, 1H); ¹³C-NMR (125 MHz, CD₂Cl₂): δ [ppm] = 11.5, 14.7, 20.3, 22.2, 22.8, 23.0, 24.3, 26.2, 27.0, 27.0, 28.5, 35.0, 36.5, 39.9, 40.1, 44.4, 51.2, 58.9, 65.9, 66.1, 68.2, 70.3, 73.0, 75.3, 80.6, 84.6, 85.5, 109.7, 115.3, 119.5, 123.2, 128.6, 131.4, 134.1, 135.3, 136.6, 145.0, 160.8, 172.3, 175.6, 179.5; **HRMS** (ESI+): calculated for C₄₁H₅₉N₂O₁₀⁺ [M+H]⁺: 739.4164, found: 739.4165.

Scheme S 6: CD-Spectra-overlay of synthetic and natural leupyrrin A_1 (c = 10^{-4} mol/L, MeCN).

Natural Leupyrrin: CD₃OD, 400 MHz (¹H-NMR), 100 MHz (¹³C-NMR);²³

Synthetic Leupyrrin: CD₃OD, 500 MHz (¹H-NMR), 125 MHz (¹³C-NMR).

Position	Natural leupyrrin A ₁ ²⁴		Synthetic leupyrrin A ₁	
	H [δ (mult, J/Hz]	C	H [δ (mult, $J/$ Hz]	C
1		179.3		179.5
2		51.1		51.2
3	5.58 (d, 8.0), 1H	75.4	5.54 (d, 7.7), 1H	75.3
4	4.76 (dd, 8.0, 1.0), 1H	85.5	4.73 (dd, 7.7, 0.4), 1H	85.5
5		135.1		135.3
6	5.89 (td, 7.5, 1.5), 1H	128.4	5.85 (m), 1H	128.6
7a	3.38 (m), 1H	26.9	3.34 (m), 1H	27.0
7b	3.62 (dd, 15.5, 9.0), 1H		3.59 (dd, 15.5, 9.0), 1H	
8		136.5		136.6
9	6.07 (d, 3.5), 1H	109.6	6.03 (d, 3.6), 1H	109.7
10	6.79 (d, 3.5), 1H	115.2	6.75 (d, 3.6), 1H	115.3
11		119.3		119.5
12		160.6		160.8
13	4.70 (td, 5.5, 2.5), 1H	84.5	4.67 (td, 5.5, 2.5), 1H	84.6
14	4.56 (dd, 10.0, 5.5), 1H	68.8 ²⁵	4.52 (dd, 10.1, 5.5), 1H	68.2
15	5.55 (dd, 10.0, 1.5), 1H	123.0	5.51 (d, 10.1), 1H	123.2
16		144.9		145.0
17		131.2		131.4
18		134.0		134.1

²³ Bode, H. B.; Irschik, H.; Wenzel, S. C.; Reichenbach, H.; R. Müller, R.; Höfle, G. J. Nat. Prod. 2003, 66, 1203-1206.

 $^{^{24}}$ The observed ¹H-NMR chemical shifts values of synthetic leupyrrin A₁ were systematically 0.03-0.05 ppm lower as compared to the reported data for natural leupyrrin A1. They were however identical to the data for reisolated leupyrin A1. This discrepancy may be explained by a difference of the calibtration. An overlay of the spectra of natural and synthetic leupyrrin A1 recorded in our group confirmed this observation (see below). ²⁵ For reisolated leupyrrin A_1 a value of 68.1 ppm was found.

19a	2.11 (ddd, 13.5, 8.0, 7.0), 1H	34.9	2.06 (m), 1H	35.0
19b	2.14 (ddd, 13.5, 8.0, 7.0), 1H		2.11 (ddd, 13.5, 8.0, 7.0), 1H	
20a	1.70 (m), 1H	28.3	1.68 (m), 1H	28.5
20b	1.76 (m), 1H		1.73 (m), 1H	
21	3.39 (t, 6.0), 2H	72.8	3.36 (t, 6.0), 2H	73.0
21-OMe	3.35 (s), 3H	58.8	3.32 (s), 3H	58.9
22a	3.63 (d, 11.0), 1H	65.7	3.58 (d, 11.0), 1H	65.9
22b	3.77 (d, 11.0), 1H		3.73 (d, 11.0), 1H	
23	1.10 (s), 3H	14.6	1.06 (s), 3H	14.7
24	1.77 (d, 2.0), 1H ²⁶	11.4	1.72 (d, 1.0), 3H	11.5
25a	4.19 (dd, 12.0, 2.5), 1H	65.9	4.16 (dd, 12.0, 2.5), 1H	66.1
25b	4.59 (dd, 12.5, 5.5), 1H		4.54 (dd, 12.0, 5.5), 1H	
26	5.00 (ddd, 11.0, 3.0, 1.5), 1H	80.5	4.96 (ddd, 10.8, 2.5, 1.7), 1H	80.6
27a	1.45 (ddd, 14.0, 9.5, 2.5), 1H	44.3	1.41 (ddd, 14.3, 9.5, 2.5), 1H	44.4
27b	1.60 (m), 1H		1.57 (ddd, 14.3, 10.8, 4.1), 1H	
28	1.91 (m), 1H	26.1	1.87 (m), 1H	26.2
29	1.03 (d, 6.5), 3H	24.1	0.99 (d, 6.6), 3H	24.3
30	1.07 (d, 6.5), 3H	22.0	1.03 (d, 6.6), 3H	22.2
31 a	4.49 (m), 1H	70.1	4.45 (dq, 12.0, 1.5), 1H	70.3
31b	4.57 (d, 10.0), 1H		4.54 (m), 1H	
32	1.97 (t, 2.0), 3H	20.2	1.93 (t, 1.5), 3H	20.3
1'		172.1		172.3
2'a	2.69 (m), 1H	36.4	2.64 (m), 1H	36.5
2 ʻ b	2.83 (m), 1H		2.79 (m), 1H	
3'	2.79 (m), 1H	39.8	2.75 (m), 1H	39.9
4'		175.4		175.6
5'a	1.33 (m), 1H	40.1	1.29 (m), 1H	40.1
5 ' b	1.68 (m), 1H		1.65 (m), 1H	
6'	1.65 (m), 1H	26.9	1.61 (m), 1H	27.0
7'	0.94 (d, 6.5), 3H	22.9	0.90 (d, 6.5), 3H	23.0
8'	0.92 (d, 6.5), 3H	22.7	0.88 (d, 6.5), 3H	22.8

²⁶ Integral value does not match the expected amount of protons.

3.5 Copies of NMR spectra

S84

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 Chemical Shift (ppm)

ŌН _OTBS

Frequency: 100.61 MHz Nucleus: ¹³C Solvent: CDCl₃

Ó ,OMe .OH

 \cap .OMe

Frequency: 100.61 MHz Nucleus: ¹³C Solvent: CDCl₃

Frequency: 100.61 MHz Nucleus: ¹³C Solvent: CDCl₃

S125

S127

Frequency: 100.61 MHz Nucleus: ¹³C Solvent: CDCl₃

Frequency: 100.61 MHz Nucleus: ¹³C Solvent: CD₂Cl₂

S149

4 X-Ray Crystal Structure Analysis of Leupyrrin B₁

Suitable crystals could be obtained from a biphasic mixture of diethyl ether and methanol (90:10) at 8 °C

Figure S 2: Crystal structure of leupyrrin B_1 (2).

Table S 6 Crystal data for leupyrrin $B_1(2)$.

Empirical formula	$C_{41}H_{56}N_2O_{10}$	
Formula weight	736.88	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P2 ₁	
Z	4	
Unit cell dimensions	a =15.112(5) Å	α = 90°
	b =11.463(4) Å	β = 99.302(6) °
	c =23.854(8) Å	γ = 90°
Volume	4078(2) Å ³	
Density (calculated)	1.200 g/cm ³	
Absorption coefficient	0.085 mm ⁻¹	
Crystal shape	polyhedron	
Crystal size	$0.18 \times 0.15 \times 0.04 \text{ mm}^3$	
Crystal colour	colourless	
Theta range for data collection	1.73 bis 19.86 °	
Index ranges	-14≤h≤14, -10≤k≤10, -22≤l≤22	
Reflections collected	18935	
Independent reflections	3965 (R(int) = 0.1261)	
Observed reflections	3240 (I >2s(I))	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00 und 0.98	
Refinement method	Full-matrix least-squares an F ²	
Data/restraints/parameters	3965 / 279 / 958	
Goodness-of-fit on F ²	1.08	
Final R indices (I> $2\sigma(I)$)	R1 = 0.076, wR2 = 0.157	
Absolute structure parameter	-1(2)	
Extinction coefficient	0.047(3)	
Largest diff. peak and hole	0.49 und -0.40 eÅ ⁻³	

atom	x	У	Z	U_{eq}
C11	0.4450(7)	1.1053(11)	0.6175(4)	0.035(3)
C21	0.3789(8)	1.0975(12)	0.5644(5)	0.056(3)
C31	0.4855(7)	1.0100(10)	0.6446(5)	0.034(3)
C41	0.4816(8)	0.8823(10)	0.6255(5)	0.043(3)
C51	0.5717(7)	0.8453(9)	0.6197(4)	0.031(2)
N61	0.6131(6)	0.8823(7)	0.5763(3)	0.031(2)
C71	0.7012(7)	0.8481(9)	0.5855(4)	0.031(2)
C81	0.7171(8)	0.7890(10)	0.6365(4)	0.039(3)
C91	0.6350(8)	0.7877(10)	0.6566(5)	0.042(3)
C101	0.7643(7)	0.8843(9)	0.5490(4)	0.027(2)
0111	0.8512(4)	0.8681(6)	0.5737(3)	0.0329(17)
C121	0.9052(7)	0.9218(9)	0.5358(4)	0.031(2)
C131	0.8366(6)	0.9498(9)	0.4815(4)	0.030(2)
N141	0.7494(5)	0.9284(7)	0.4994(4)	0.030(2)
C151	0.9511(6)	1.0248(9)	0.5639(5)	0.034(3)
0161	0.8855(4)	1.1122(6)	0.5712(3)	0.0239(16)
C171	0.8808(7)	1.2091(9)	0.5385(4)	0.026(2)
0171	0.9365(4)	1.2345(6)	0.5102(3)	0.0347(19)
C181	0.7963(6)	1.2766(9)	0.5375(4)	0.024(2)
C191	0.7261(6)	1.2241(9)	0.5541(4)	0.025(2)
C201	0.6374(7)	1.2812(10)	0.5525(5)	0.035(3)
0201	0.5983(5)	1.3340(8)	0.5124(3)	0.056(2)
0211	0.6047(4)	1.2621(6)	0.6004(3)	0.0289(17)
C221	0.5130(6)	1.2972(10)	0.6007(4)	0.032(2)
C231	0.4745(7)	1.2191(10)	0.6405(4)	0.032(2)
0241	0.3983(4)	1.2886(7)	0.6536(3)	0.0382(19)
C251	0.4161(7)	1.4032(12)	0.6486(5)	0.039(3)
0251	0.3660(5)	1.4764(8)	0.6616(4)	0.060(2)
C261	0.5015(7)	1.4217(10)	0.6240(4)	0.035(2)
C271	0.5747(7)	1.4537(11)	0.6738(5)	0.046(3)
C281	0.4908(7)	1.5215(10)	0.5816(4)	0.038(3)
0291	0.4306(4)	1.4965(7)	0.5303(3)	0.0372(19)
C301	0.8013(7)	1.3989(9)	0.5186(4)	0.032(2)
C311	0.8591(7)	1.4785(9)	0.5622(5)	0.036(3)
C321	0.8633(8)	1.5987(10)	0.5372(6)	0.056(4)
C331	0.8235(10)	1.4828(12)	0.6184(5)	0.070(4)
C341	0.8478(7)	0.8772(9)	0.4313(4)	0.035(3)
C351	0.8767(7)	0.9167(9)	0.3847(5)	0.034(2)

Table S 7 Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for leupyrrin B_1 (2). U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C361	0.8892(7)	0.8524(11)	0.3328(4)	0.037(3)
C371	0.9352(8)	0.9373(11)	0.2993(5)	0.052(3)
0381	0.9598(5)	1.0370(7)	0.3345(3)	0.045(2)
C391	0.8999(6)	1.0429(9)	0.3743(5)	0.029(2)
C401	0.8166(7)	1.1154(10)	0.3535(5)	0.038(3)
C411	0.8335(7)	1.2294(10)	0.3242(5)	0.040(3)
C421	0.9012(8)	1.3071(10)	0.3608(5)	0.052(3)
C431	0.7471(8)	1.2987(12)	0.3078(6)	0.068(4)
C441	0.8654(7)	0.7455(11)	0.3145(4)	0.039(3)
C451	0.8172(8)	0.6615(10)	0.3469(5)	0.046(3)
C461	0.8788(8)	0.7060(12)	0.2568(5)	0.053(3)
C471	0.7929(9)	0.6811(14)	0.2166(5)	0.070(4)
C481	0.7237(9)	0.7790(13)	0.2129(6)	0.068(4)
O491	0.7622(6)	0.8836(9)	0.1951(3)	0.070(3)
C501	0.7058(10)	0.9821(14)	0.2000(6)	0.075(4)
C12	-0.1953(7)	0.6445(11)	0.0183(5)	0.041(3)
C22	-0.1534(10)	0.6241(13)	-0.0345(5)	0.072(4)
C32	-0.2146(7)	0.5649(10)	0.0542(5)	0.037(3)
C42	-0.1903(7)	0.4372(10)	0.0561(5)	0.042(3)
C52	-0.1324(7)	0.4143(9)	0.1104(5)	0.035(3)
N62	-0.0449(5)	0.4479(7)	0.1197(4)	0.032(2)
C72	-0.0107(6)	0.4373(9)	0.1758(4)	0.027(2)
C82	-0.0772(7)	0.3966(9)	0.2030(5)	0.035(3)
C92	-0.1536(7)	0.3788(10)	0.1626(5)	0.040(3)
C102	0.0800(7)	0.4751(9)	0.1980(4)	0.025(2)
0112	0.1000(5)	0.4726(6)	0.2561(3)	0.0363(18)
C122	0.1860(7)	0.5321(9)	0.2708(4)	0.033(2)
C132	0.2189(6)	0.5432(9)	0.2138(4)	0.027(2)
N142	0.1406(5)	0.5120(7)	0.1713(3)	0.027(2)
C152	0.1717(7)	0.6461(9)	0.2987(4)	0.034(3)
0162	0.1193(4)	0.7217(6)	0.2566(3)	0.0271(17)
C172	0.1634(8)	0.8098(9)	0.2385(4)	0.029(2)
0172	0.2359(5)	0.8451(6)	0.2602(3)	0.040(2)
C182	0.1132(6)	0.8652(9)	0.1854(4)	0.025(2)
C192	0.0503(6)	0.8050(9)	0.1521(4)	0.030(3)
C202	0.0048(7)	0.8442(10)	0.0951(5)	0.032(3)
0202	0.0434(5)	0.8708(9)	0.0570(3)	0.063(3)
0212	-0.0839(4)	0.8401(7)	0.0907(3)	0.0368(19)
C222	-0.1354(6)	0.8529(10)	0.0345(4)	0.032(2)
C232	-0.2141(7)	0.7696(10)	0.0308(5)	0.037(2)
0242	-0.2788(5)	0.8212(7)	-0.0149(3)	0.044(2)

C252	-0.2598(8)	0.9351(12)	-0.0199(5)	0.045(3)
0252	-0.3083(5)	0.9957(9)	-0.0535(4)	0.067(3)
C262	-0.1781(7)	0.9717(10)	0.0207(5)	0.035(2)
C272	-0.2074(8)	1.0330(11)	0.0713(5)	0.054(3)
C282	-0.1214(8)	1.0540(12)	-0.0079(5)	0.053(3)
0292	-0.0879(5)	1.0040(9)	-0.0545(3)	0.065(3)
C302	0.1454(7)	0.9867(9)	0.1741(5)	0.035(3)
C312	0.1058(7)	1.0789(9)	0.2111(5)	0.039(3)
C322	0.1611(9)	1.1892(11)	0.2142(6)	0.061(4)
C332	0.0080(8)	1.1045(12)	0.1873(6)	0.063(4)
C342	0.2983(6)	0.4695(10)	0.2067(4)	0.033(3)
C352	0.3788(7)	0.5136(9)	0.1994(4)	0.029(2)
C362	0.4610(6)	0.4537(10)	0.1917(4)	0.033(2)
C372	0.5350(7)	0.5443(11)	0.2006(5)	0.051(3)
0382	0.4956(5)	0.6467(7)	0.2185(3)	0.044(2)
C392	0.4007(7)	0.6428(9)	0.2010(4)	0.035(3)
C402	0.3708(8)	0.6984(10)	0.1433(5)	0.042(3)
C412	0.3766(8)	0.8309(11)	0.1423(5)	0.056(3)
C422	0.4688(10)	0.8799(13)	0.1532(7)	0.094(5)
C432	0.3239(10)	0.8804(13)	0.0857(6)	0.084(5)
C442	0.4735(7)	0.3415(11)	0.1749(5)	0.049(3)
C452	0.3998(8)	0.2529(11)	0.1637(6)	0.056(4)
C462	0.5645(8)	0.3008(13)	0.1642(6)	0.066(4)
C472	0.5647(9)	0.2611(14)	0.1030(6)	0.074(4)
C482	0.5273(9)	0.3526(15)	0.0597(6)	0.076(4)
0492	0.5813(6)	0.4540(10)	0.0674(4)	0.082(3)
C502	0.5442(10)	0.5428(16)	0.0304(7)	0.092(5)

Table S 8 Hydrogen coordinates and isotropic displacement parameters ($Å^2$) for leupyrrin B_1 (2).

atom	х	У	Z	U_{eq}
H2A1	0.3593	1.1761	0.5519	0.084
H2B1	0.3269	1.0519	0.5714	0.084
H2C1	0.4067	1.0594	0.5349	0.084
H31	0.5211	1.0249	0.6805	0.04
H4A1	0.4582	0.833	0.6538	0.052
H4B1	0.4412	0.8743	0.5887	0.052
H61	0.5872	0.9223	0.5467	0.037
H81	0.7722	0.7559	0.6542	0.047
H91	0.625	0.752	0.691	0.05

H121	0.9506	0.8646	0.5264	0.037
H131	0.8413	1.0342	0.4717	0.036
H15A1	0.9851	1.0023	0.6014	0.04
H15B1	0.9939	1.0564	0.5405	0.04
H191	0.7332	1.1462	0.5676	0.03
H221	0.4778	1.2898	0.5616	0.038
H231	0.5192	1.2084	0.6759	0.038
H27A1	0.5834	1.3888	0.7009	0.07
H27B1	0.5567	1.5235	0.6928	0.07
H27C1	0.6309	1.469	0.6596	0.07
H28A1	0.4687	1.591	0.5997	0.045
H28B1	0.5503	1.5409	0.5719	0.045
H291	0.3848	1.4628	0.5383	0.045
H30A1	0.7397	1.4312	0.5106	0.038
H30B1	0.8261	1.4001	0.4827	0.038
H311	0.9213	1.4459	0.5695	0.043
H32A1	0.8998	1.6495	0.5648	0.084
H32B1	0.8025	1.6308	0.5281	0.084
H32C1	0.8901	1.5941	0.5026	0.084
H33A1	0.8629	1.532	0.6454	0.105
H33B1	0.8221	1.4038	0.6339	0.105
H33C1	0.7628	1.5155	0.6122	0.105
H341	0.8335	0.7967	0.4326	0.042
H37A1	0.9892	0.9011	0.2882	0.062
H37B1	0.8943	0.9607	0.2644	0.062
H391	0.9319	1.0771	0.4105	0.035
H40A1	0.7866	1.1335	0.3865	0.046
H40B1	0.7746	1.0675	0.3268	0.046
H411	0.8577	1.2102	0.2887	0.048
H42A1	0.9113	1.3777	0.3395	0.079
H42B1	0.9579	1.2648	0.371	0.079
H42C1	0.8781	1.3287	0.3954	0.079
H43A1	0.7601	1.3713	0.289	0.102
H43B1	0.7216	1.3171	0.342	0.102
H43C1	0.7041	1.2523	0.2818	0.102
H45A1	0.8068	0.5884	0.3256	0.069
H45B1	0.7595	0.6951	0.3523	0.069
H45C1	0.8536	0.6461	0.384	0.069
H46A1	0.9159	0.6343	0.2609	0.064
H46B1	0.9127	0.7668	0.2398	0.064
H47A1	0.766	0.6087	0.229	0.085

H47B1	0.8076	0.6669	0.1782	0.085
H48A1	0.6698	0.7578	0.1854	0.082
H48B1	0.7053	0.791	0.2505	0.082
H50A1	0.7341	1.0527	0.1879	0.112
H50B1	0.6972	0.9909	0.2397	0.112
H50C1	0.6476	0.9703	0.1759	0.112
H2A2	-0.1474	0.6987	-0.0536	0.108
H2B2	-0.1916	0.5715	-0.0603	0.108
H2C2	-0.094	0.5888	-0.0237	0.108
H32	-0.2479	0.591	0.0823	0.045
H4A2	-0.2451	0.3888	0.0527	0.05
H4B2	-0.1583	0.4177	0.0242	0.05
H62	-0.0149	0.4728	0.0934	0.038
H82	-0.0723	0.3827	0.2427	0.042
H92	-0.2094	0.3484	0.1694	0.048
H122	0.2283	0.4824	0.2972	0.039
H132	0.2342	0.6267	0.2081	0.033
H15A2	0.1393	0.6334	0.3311	0.041
H15B2	0.2302	0.6829	0.3133	0.041
H192	0.0331	0.7318	0.1656	0.036
H222	-0.0976	0.8317	0.0053	0.038
H232	-0.2392	0.7735	0.0671	0.044
H27A2	-0.2455	0.9806	0.0895	0.081
H27B2	-0.2411	1.1036	0.0583	0.081
H27C2	-0.1543	1.0543	0.0988	0.081
H28A2	-0.1578	1.1234	-0.0212	0.064
H28B2	-0.0702	1.0806	0.0205	0.064
H292	-0.1157	1.0316	-0.0849	0.078
H30A2	0.127	1.0059	0.1334	0.042
H30B2	0.2117	0.9891	0.1826	0.042
H312	0.1091	1.0469	0.2504	0.047
H32A2	0.2233	1.1715	0.2307	0.091
H32B2	0.1367	1.2467	0.238	0.091
H32C2	0.1592	1.221	0.1759	0.091
H33A2	-0.0275	1.0332	0.1879	0.094
H33B2	0.0034	1.1325	0.1481	0.094
H33C2	-0.0148	1.1645	0.2105	0.094
H342	0.2918	0.3871	0.2074	0.04
H37A2	0.585	0.5179	0.2299	0.061
H37B2	0.5585	0.5585	0.1648	0.061
H392	0.3702	0.6823	0.2301	0.042

H40A2	0.308	0.6752	0.1295	0.05
H40B2	0.4081	0.6665	0.1163	0.05
H412	0.3454	0.8599	0.1735	0.068
H42A2	0.4657	0.9653	0.1526	0.141
H42B2	0.5023	0.8531	0.1237	0.141
H42C2	0.4994	0.8538	0.1905	0.141
H43A2	0.3289	0.9657	0.0857	0.126
H43B2	0.2606	0.8582	0.0823	0.126
H43C2	0.349	0.8485	0.0535	0.126
H45A2	0.4242	0.1791	0.1522	0.084
H45B2	0.3532	0.281	0.1333	0.084
H45C2	0.3739	0.2406	0.1983	0.084
H46A2	0.5847	0.2354	0.1902	0.079
H46B2	0.6081	0.3653	0.1731	0.079
H47A2	0.6269	0.2422	0.098	0.088
H47B2	0.5285	0.189	0.0958	0.088
H48A2	0.5263	0.3217	0.0208	0.091
H48B2	0.4651	0.3722	0.0642	0.091
H50A2	0.5814	0.613	0.037	0.138
H50B2	0.4834	0.5603	0.0374	0.138
H50C2	0.5417	0.517	-0.009	0.138

Table S 9 Anisotropic displacement parameters ($Å^2$) for leupyrrin B_1 (**2**). The anisotropic displacement factor exponent takes the form: -2 pi² ($h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$).

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C11	0.027(7)	0.053(5)	0.025(6)	-0.013(5)	0.005(5)	-0.007(5)
C21	0.050(8)	0.059(9)	0.051(7)	-0.025(7)	-0.011(5)	-0.010(6)
C31	0.032(6)	0.044(6)	0.026(7)	-0.015(5)	0.011(5)	-0.020(5)
C41	0.053(6)	0.039(6)	0.042(7)	-0.014(6)	0.020(6)	-0.027(5)
C51	0.051(6)	0.021(6)	0.024(6)	-0.014(5)	0.014(5)	-0.023(5)
N61	0.042(5)	0.022(5)	0.031(5)	0.003(4)	0.011(4)	0.005(4)
C71	0.041(5)	0.023(7)	0.032(6)	-0.002(5)	0.010(5)	0.006(5)
C81	0.062(7)	0.026(7)	0.027(6)	0.003(5)	-0.003(5)	0.004(6)
C91	0.075(7)	0.032(7)	0.021(6)	-0.002(5)	0.015(5)	-0.017(6)
C101	0.034(5)	0.022(6)	0.024(6)	-0.004(5)	0.000(4)	0.003(5)
0111	0.038(4)	0.021(4)	0.041(4)	0.005(3)	0.009(3)	0.006(3)
C121	0.028(5)	0.035(6)	0.033(6)	0.002(5)	0.016(4)	0.011(5)
C131	0.042(6)	0.015(6)	0.034(5)	-0.006(4)	0.009(4)	-0.001(5)

N141	0.038(5)	0.019(5)	0.031(5)	-0.005(4)	-0.001(4)	-0.001(4)
C151	0.010(6)	0.041(6)	0.049(7)	-0.001(5)	0.001(5)	0.012(4)
0161	0.023(4)	0.027(4)	0.023(4)	0.003(3)	0.006(3)	0.006(3)
C171	0.030(6)	0.026(6)	0.024(6)	0.001(5)	0.011(5)	0.003(5)
0171	0.033(4)	0.029(4)	0.047(5)	0.003(4)	0.021(4)	-0.003(3)
C181	0.026(5)	0.019(5)	0.026(6)	0.000(5)	0.002(5)	0.003(4)
C191	0.017(5)	0.025(6)	0.032(6)	-0.004(5)	0.001(4)	0.003(4)
C201	0.034(6)	0.033(7)	0.042(7)	0.006(6)	0.014(5)	0.002(5)
0201	0.032(4)	0.085(7)	0.056(5)	0.033(5)	0.020(4)	0.024(4)
0211	0.018(4)	0.041(5)	0.029(4)	-0.008(4)	0.011(3)	0.004(3)
C221	0.015(5)	0.046(6)	0.032(6)	-0.006(5)	-0.001(4)	0.004(5)
C231	0.020(6)	0.050(5)	0.026(6)	-0.015(5)	0.008(5)	-0.005(5)
0241	0.023(4)	0.053(5)	0.041(5)	-0.013(4)	0.013(3)	0.000(4)
C251	0.026(6)	0.050(6)	0.040(7)	-0.010(6)	0.001(5)	0.005(5)
0251	0.043(5)	0.058(6)	0.082(6)	-0.010(5)	0.022(5)	0.022(4)
C261	0.026(6)	0.048(6)	0.029(6)	-0.011(5)	0.000(4)	0.007(5)
C271	0.034(6)	0.044(8)	0.056(7)	-0.008(6)	-0.009(5)	-0.003(6)
C281	0.036(7)	0.039(6)	0.037(6)	-0.018(5)	0.001(5)	0.005(5)
O291	0.026(4)	0.052(5)	0.033(4)	-0.007(4)	0.005(3)	-0.001(4)
C301	0.030(6)	0.028(5)	0.038(6)	-0.001(5)	0.011(5)	0.007(4)
C311	0.034(7)	0.024(6)	0.051(7)	-0.003(5)	0.009(5)	0.002(5)
C321	0.052(8)	0.021(6)	0.098(10)	0.011(6)	0.019(7)	-0.001(6)
C331	0.105(11)	0.054(9)	0.056(7)	-0.029(7)	0.025(8)	-0.034(9)
C341	0.051(7)	0.013(6)	0.043(6)	-0.005(5)	0.009(5)	0.004(5)
C351	0.030(6)	0.031(6)	0.045(6)	-0.007(5)	0.013(5)	-0.002(5)
C361	0.032(6)	0.047(6)	0.034(6)	-0.011(5)	0.007(5)	-0.010(5)
C371	0.053(8)	0.059(8)	0.048(7)	-0.013(6)	0.023(6)	-0.007(6)
0381	0.041(5)	0.046(5)	0.054(5)	-0.003(4)	0.025(4)	-0.015(4)
C391	0.022(6)	0.031(5)	0.037(7)	0.002(4)	0.015(5)	-0.002(5)
C401	0.030(6)	0.035(6)	0.049(7)	0.008(6)	0.007(5)	-0.009(4)
C411	0.050(7)	0.031(6)	0.037(7)	0.005(5)	0.000(5)	-0.007(5)
C421	0.075(8)	0.033(7)	0.044(8)	0.000(6)	-0.007(6)	-0.022(6)
C431	0.066(8)	0.051(9)	0.079(10)	0.023(8)	-0.013(7)	0.002(7)
C441	0.023(6)	0.061(7)	0.034(6)	-0.018(6)	0.010(5)	-0.004(6)
C451	0.074(9)	0.032(7)	0.030(7)	0.000(6)	0.005(6)	0.004(6)
C461	0.063(7)	0.061(9)	0.042(7)	-0.021(6)	0.023(5)	-0.014(7)
C471	0.090(9)	0.087(9)	0.032(7)	-0.020(7)	0.003(6)	0.006(8)
C481	0.063(8)	0.081(8)	0.054(9)	-0.013(8)	-0.011(7)	-0.018(6)
O491	0.074(6)	0.088(6)	0.050(5)	0.007(5)	0.020(5)	-0.004(5)
C501	0.080(10)	0.087(9)	0.057(9)	-0.010(9)	0.014(8)	0.010(8)
C12	0.031(7)	0.053(6)	0.041(7)	-0.012(5)	0.007(5)	0.006(5)

C22	0.097(11)	0.073(11)	0.054(8)	-0.023(8)	0.035(8)	-0.016(9)
C32	0.024(6)	0.046(6)	0.040(7)	-0.012(5)	0.000(5)	0.000(5)
C42	0.028(6)	0.048(6)	0.049(6)	-0.012(6)	0.002(5)	0.002(6)
C52	0.032(6)	0.029(7)	0.044(6)	-0.002(5)	0.009(5)	-0.005(5)
N62	0.027(5)	0.037(6)	0.033(5)	0.002(5)	0.008(4)	-0.009(4)
C72	0.024(5)	0.020(6)	0.039(6)	-0.004(5)	0.009(4)	0.001(5)
C82	0.044(6)	0.024(7)	0.040(6)	-0.001(5)	0.015(5)	-0.002(5)
C92	0.035(6)	0.038(7)	0.051(6)	-0.001(6)	0.014(5)	-0.008(6)
C102	0.028(5)	0.017(6)	0.029(6)	0.005(5)	0.001(4)	0.007(5)
0112	0.048(4)	0.034(4)	0.027(4)	0.000(4)	0.009(3)	-0.010(4)
C122	0.032(6)	0.029(6)	0.036(5)	0.016(5)	0.005(4)	0.000(5)
C132	0.032(5)	0.014(6)	0.034(6)	-0.002(5)	-0.001(4)	0.001(4)
N142	0.023(4)	0.024(5)	0.034(5)	-0.004(4)	0.009(4)	0.001(4)
C152	0.039(7)	0.038(6)	0.024(6)	0.010(4)	-0.002(5)	-0.001(5)
0162	0.031(4)	0.021(4)	0.027(4)	0.001(3)	0.000(3)	-0.004(3)
C172	0.036(6)	0.015(6)	0.035(6)	-0.008(4)	0.004(5)	0.003(5)
0172	0.042(5)	0.033(5)	0.041(5)	0.002(4)	-0.006(4)	-0.011(4)
C182	0.031(6)	0.027(5)	0.019(5)	-0.003(4)	0.008(4)	-0.001(5)
C192	0.026(6)	0.029(7)	0.036(6)	0.006(5)	0.003(4)	0.006(5)
C202	0.025(5)	0.033(7)	0.037(6)	-0.002(6)	0.003(4)	0.007(6)
O202	0.040(5)	0.112(8)	0.034(5)	0.025(5)	-0.001(4)	-0.014(5)
0212	0.032(4)	0.060(5)	0.018(4)	0.005(4)	0.002(3)	0.008(4)
C222	0.025(5)	0.059(6)	0.012(5)	-0.001(5)	0.007(4)	0.004(4)
C232	0.028(6)	0.049(5)	0.031(6)	0.005(5)	0.000(5)	0.006(5)
0242	0.037(4)	0.062(5)	0.030(4)	0.005(4)	-0.006(3)	0.005(4)
C252	0.037(6)	0.060(7)	0.038(7)	0.008(6)	0.010(5)	0.012(5)
0252	0.036(5)	0.087(7)	0.071(6)	0.034(5)	-0.009(4)	0.008(5)
C262	0.027(6)	0.043(6)	0.037(6)	0.005(5)	0.008(4)	0.015(4)
C272	0.064(9)	0.059(9)	0.040(7)	0.007(6)	0.014(6)	0.025(7)
C282	0.042(7)	0.067(8)	0.052(8)	0.011(6)	0.013(6)	0.005(6)
0292	0.037(5)	0.119(8)	0.041(5)	0.022(5)	0.013(4)	0.036(5)
C302	0.035(6)	0.031(5)	0.039(7)	0.001(5)	0.009(5)	-0.005(5)
C312	0.054(7)	0.022(6)	0.040(7)	-0.003(5)	0.008(6)	0.002(5)
C322	0.074(9)	0.039(7)	0.065(9)	-0.003(7)	-0.001(7)	-0.014(6)
C332	0.058(7)	0.050(9)	0.078(10)	-0.013(8)	0.001(7)	0.015(6)
C342	0.026(5)	0.023(6)	0.049(7)	-0.005(6)	0.001(5)	-0.004(4)
C352	0.033(5)	0.034(5)	0.021(6)	0.005(5)	0.003(5)	0.000(4)
C362	0.023(5)	0.050(6)	0.025(6)	0.002(6)	-0.004(5)	0.007(4)
C372	0.032(6)	0.064(7)	0.053(8)	-0.008(7)	-0.003(6)	0.002(5)
0382	0.034(4)	0.049(5)	0.045(5)	0.001(4)	-0.007(4)	-0.002(4)
C392	0.034(6)	0.039(6)	0.031(6)	0.002(5)	0.005(5)	-0.009(5)

C402	0.044(7)	0.038(6)	0.041(7)	0.002(5)	0.001(5)	-0.006(5)
C412	0.070(8)	0.045(7)	0.054(8)	0.020(6)	0.010(6)	-0.012(7)
C422	0.082(9)	0.048(9)	0.140(14)	0.014(10)	-0.015(9)	-0.026(8)
C432	0.093(10)	0.070(10)	0.083(10)	0.041(9)	-0.002(7)	-0.010(9)
C442	0.043(7)	0.053(7)	0.052(8)	-0.003(7)	0.015(6)	0.010(5)
C452	0.056(7)	0.036(7)	0.084(10)	-0.005(7)	0.035(7)	0.007(5)
C462	0.045(7)	0.076(10)	0.078(7)	-0.001(7)	0.015(7)	0.020(6)
C472	0.054(9)	0.085(10)	0.089(9)	-0.019(7)	0.030(8)	0.013(8)
C482	0.064(10)	0.108(11)	0.058(8)	-0.012(8)	0.020(7)	-0.002(8)
0492	0.046(6)	0.104(8)	0.100(8)	0.002(6)	0.021(6)	0.005(5)
C502	0.066(11)	0.115(12)	0.105(13)	0.012(9)	0.044(9)	0.009(9)

Table S 10 Bond lengths $({\rm \AA})$ and angles (deg) for

			()
Leupyrrin B ₁ (2).		C191-H191	0.95
atoms	bond length/angle	C201-O201	1.202(12)
C11-C31	1.363(15)	C201-O211	1.335(12)
C11-C231	1.457(15)	O211-C221	1.443(11)
C11-C21	1.484(14)	C221-C231	1.491(15)
C21-H2A1	0.98	C221-C261	1.552(15)
C21-H2B1	0.98	C221-H221	1
C21-H2C1	0.98	C231-O241	1.473(12)
C31-C41	1.532(16)	C231-H231	1
C31-H31	0.95	O241-C251	1.350(14)
C41-C51	1.453(15)	C251-O251	1.204(13)
C41-H4A1	0.99	C251-C261	1.516(15)
C41-H4B1	0.99	C261-C281	1.518(15)
C51-N61	1.361(12)	C261-C271	1.532(14)
C51-C91	1.361(12)	C271-H27A1	0.98
N61-C71	1.371(12)	C271-H27B1	0.98
N61-H61	0.88	C271-H27C1	0.98
C71-C81	1.378(14)	C281-O291	1.430(12)
C71-C101	1.452(14)	C281-H28A1	0.99
C81-C91	1.401(15)	C281-H28B1	0.99
C81-H81	0.95	O291-H291	0.84
C91-H91	0.95	C301-C311	1.542(15)
C101-N141	1.272(12)	C301-H30A1	0.99
C101-0111	1.362(11)	C301-H30B1	0.99
0111-C121	1.450(12)	C311-C321	1.507(15)
C121-C151	1.475(14)	C311-C331	1.525(15)
C121-C131	1.557(14)	C311-H311	1
C121-H121	1	C321-H32A1	0.98
C121-H121 C131-N141	1.470(12)	C321-H32B1	0.98
C131-C341	1.489(14)	C321-H32C1	0.98
	ζ, γ	C331-H33A1	0.98
C131-H131 C151-O161	1 1.439(11)	C331-H33B1	0.98
		C331-H33C1	0.98
C151-H15A1	0.99	C341-C351	1.338(14)
C151-H15B1	0.99	C341-H341	0.95
0161-C171	1.352(12)	C351-C361	1.478(15)
C171-O171	1.198(11)	C351-C391	1.518(15)
C171-C181	1.489(14)	C361-C441	1.331(16)
C181-C191	1.333(13)	C361-C371	1.499(16)
C181-C301	1.479(14)	01.00	

C191-C201

1.486(14)

C371-O381	1.431(13)	C22-H2C2	0.98
C371-H37A1	0.99	C32-C42	1.508(16)
C371-H37B1	0.99	C32-H32	0.95
O381-C391	1.416(12)	C42-C52	1.466(15)
C391-C401	1.523(14)	C42-H4A2	0.99
C391-H391	1	C42-H4B2	0.99
C401-C411	1.524(15)	C52-N62	1.361(12)
C401-H40A1	0.99	C52-C92	1.396(14)
C401-H40B1	0.99	N62-C72	1.358(12)
C411-C421	1.520(15)	N62-H62	0.88
C411-C431	1.524(16)	C72-C82	1.365(14)
C411-H411	1	C72-C102	1.454(14)
C421-H42A1	0.98	C82-C92	1.393(14)
C421-H42B1	0.98	C82-H82	0.95
C421-H42C1	0.98	C92-H92	0.95
C431-H43A1	0.98	C102-N142	1.271(12)
C431-H43B1	0.98	C102-O112	1.369(11)
C431-H43C1	0.98	O112-C122	1.459(12)
C441-C461	1.492(15)	C122-C152	1.499(15)
C441-C451	1.496(16)	C122-C132	1.527(14)
C451-H45A1	0.98	C122-H122	1
C451-H45B1	0.98	C132-N142	1.473(12)
C451-H45C1	0.98	C132-C342	1.499(14)
C461-C471	1.511(17)	C132-H132	1
C461-H46A1	0.99	C152-O162	1.459(12)
C461-H46B1	0.99	C152-H15A2	0.99
C471-C481	1.527(19)	C152-H15B2	0.99
C471-H47A1	0.99	O162-C172	1.322(12)
C471-H47B1	0.99	C172-O172	1.204(11)
C481-O491	1.428(16)	C172-C182	1.507(14)
C481-H48A1	0.99	C182-C192	1.330(14)
C481-H48B1	0.99	C182-C302	1.514(15)
O491-C501	1.431(16)	C192-C202	1.491(14)
C501-H50A1	0.98	C192-H192	0.95
C501-H50B1	0.98	C202-O202	1.196(11)
C501-H50C1	0.98	C202-O212	1.327(11)
C12-C32	1.316(15)	O212-C222	1.444(11)
C12-C232	1.502(16)	C222-C232	1.516(15)
C12-C22	1.517(16)	C222-C262	1.520(16)
C22-H2A2	0.98	С222-Н222	1
C22-H2B2	0.98	C232-O242	1.468(12)

C232-H232	1	C252-O252	1.212(13)
O242-C252	1.346(14)	C252-C262	1.501(16)
C262-C282	1.510(16)	C422-H42A2	0.98
C262-C272	1.523(15)	C422-H42B2	0.98
C272-H27A2	0.98	C422-H42C2	0.98
C272-H27B2	0.98	C432-H43A2	0.98
C272-H27C2	0.98	C432-H43B2	0.98
C282-O292	1.417(13)	C432-H43C2	0.98
C282-H28A2	0.99	C442-C452	1.499(16)
C282-H28B2	0.99	C442-C462	1.513(16)
O292-H292	0.84	C452-H45A2	0.98
C302-C312	1.557(15)	C452-H45B2	0.98
C302-H30A2	0.99	C452-H45C2	0.98
C302-H30B2	0.99	C462-C472	1.530(17)
C312-C322	1.511(16)	C462-H46A2	0.99
C312-C332	1.524(15)	C462-H46B2	0.99
C312-H312	1	C472-C482	1.52(2)
C322-H32A2	0.98	C472-H47A2	0.99
C322-H32B2	0.98	C472-H47B2	0.99
C322-H32C2	0.98	C482-O492	1.415(17)
C332-H33A2	0.98	C482-H48A2	0.99
C332-H33B2	0.98	C482-H48B2	0.99
C332-H33C2	0.98	O492-C502	1.403(18)
C342-C352	1.355(13)	C502-H50A2	0.98
C342-H342	0.95	C502-H50B2	0.98
C352-C362	1.457(14)	C502-H50C2	0.98
C352-C392	1.517(15)	C31-C11-C231	116.9(9)
C362-C442	1.368(16)	C31-C11-C21	123.1(11)
C362-C372	1.516(16)	C231-C11-C21	119.9(11)
C372-O382	1.414(14)	C11-C21-H2A1	109.5
C372-H37A2	0.99	C11-C21-H2B1	109.5
C372-H37B2	0.99	H2A1-C21-H2B1	109.5
O382-C392	1.428(12)	C11-C21-H2C1	109.5
C392-C402	1.519(15)	H2A1-C21-H2C1	109.5
C392-H392	1	H2B1-C21-H2C1	109.5
C402-C412	1.522(16)	C11-C31-C41	129.2(10)
C402-H40A2	0.99	C11-C31-H31	115.4
C402-H40B2	0.99	C41-C31-H31	115.4
C412-C422	1.486(17)	C51-C41-C31	108.5(9)
C412-C432	1.560(17)	C51-C41-H4A1	110
C412-H412	1	C31-C41-H4A1	110

C51-C41-H4B1	110	C171-O161-C151	118.4(7)
C31-C41-H4B1	110	0171-C171-O161	123.3(9)
H4A1-C41-H4B1	108.4	O171-C171-C181	122.9(9)
N61-C51-C91	106.3(10)	O161-C171-C181	113.7(8)
N61-C51-C41	122.3(10)	C191-C181-C301	126.8(9)
C91-C51-C41	130.7(10)	C191-C181-C171	118.8(9)
C51-N61-C71	110.1(9)	C301-C181-C171	114.3(9)
C51-N61-H61	124.9	C181-C191-C201	123.5(10)
C71-N61-H61	124.9	C181-C191-H191	118.3
N61-C71-C81	107.9(9)	C201-C191-H191	118.3
N61-C71-C101	122.5(9)	O201-C201-O211	124.0(10)
C81-C71-C101	129.2(10)	O201-C201-C191	124.6(10)
C71-C81-C91	105.7(10)	O211-C201-C191	111.3(9)
C71-C81-H81	127.2	C201-O211-C221	116.6(8)
C91-C81-H81	127.2	O211-C221-C231	108.1(8)
C51-C91-C81	110.0(10)	O211-C221-C261	115.0(8)
C51-C91-H91	125	C231-C221-C261	104.2(8)
C81-C91-H91	125	O211-C221-H221	109.8
N141-C101-O111	118.0(9)	C231-C221-H221	109.8
N141-C101-C71	129.6(10)	C261-C221-H221	109.8
O111-C101-C71	112.4(9)	C11-C231-O241	111.2(8)
C101-O111-C121	105.8(7)	C11-C231-C221	115.2(9)
O111-C121-C151	109.1(8)	O241-C231-C221	102.1(8)
O111-C121-C131	103.9(7)	C11-C231-H231	109.4
C151-C121-C131	114.5(9)	O241-C231-H231	109.4
O111-C121-H121	109.7	C221-C231-H231	109.4
C151-C121-H121	109.7	C251-O241-C231	109.5(8)
C131-C121-H121	109.7	O251-C251-O241	120.8(10)
N141-C131-C341	111.4(8)	O251-C251-C261	127.7(11)
N141-C131-C121	103.3(8)	O241-C251-C261	111.4(9)
C341-C131-C121	114.0(8)	C251-C261-C281	111.0(9)
N141-C131-H131	109.3	C251-C261-C271	106.7(9)
C341-C131-H131	109.3	C281-C261-C271	108.8(9)
C121-C131-H131	109.3	C251-C261-C221	99.3(9)
C101-N141-C131	107.8(8)	C281-C261-C221	117.4(8)
O161-C151-C121	109.3(8)	C271-C261-C221	112.8(9)
O161-C151-H15A1	109.8	C261-C271-H27A1	109.5
C121-C151-H15A1	109.8	C261-C271-H27B1	109.5
O161-C151-H15B1	109.8	H27A1-C271-H27B1	109.5
C121-C151-H15B1	109.8	C261-C271-H27C1	109.5
H15A1-C151-H15B1	108.3	H27A1-C271-H27C1	109.5

H27B1-C271-H27C1	109.5	O381-C371-C361	107.8(8)
O291-C281-C261	113.8(9)	O381-C371-H37A1	110.1
O291-C281-H28A1	108.8	C361-C371-H37A1	110.1
C261-C281-H28A1	108.8	O381-C371-H37B1	110.1
O291-C281-H28B1	108.8	C361-C371-H37B1	110.1
C261-C281-H28B1	108.8	H37A1-C371-H37B1	108.5
H28A1-C281-H28B1	107.7	C391-O381-C371	107.3(8)
C281-O291-H291	109.5	O381-C391-C351	104.7(8)
C181-C301-C311	114.0(9)	O381-C391-C401	113.1(9)
C181-C301-H30A1	108.8	C351-C391-C401	111.8(8)
C311-C301-H30A1	108.8	O381-C391-H391	109
C181-C301-H30B1	108.8	C351-C391-H391	109
C311-C301-H30B1	108.8	C401-C391-H391	109
H30A1-C301-H30B1	107.7	C391-C401-C411	115.2(9)
C321-C311-C331	111.1(10)	C391-C401-H40A1	108.5
C321-C311-C301	109.3(10)	C411-C401-H40A1	108.5
C331-C311-C301	111.7(9)	C391-C401-H40B1	108.5
C321-C311-H311	108.2	C411-C401-H40B1	108.5
C331-C311-H311	108.2	H40A1-C401-H40B1	107.5
C301-C311-H311	108.2	C421-C411-C401	112.7(9)
C311-C321-H32A1	109.5	C421-C411-C431	108.2(10)
C311-C321-H32B1	109.5	C401-C411-C431	111.4(9)
H32A1-C321-H32B1	109.5	C421-C411-H411	108.1
C311-C321-H32C1	109.5	C401-C411-H411	108.1
H32A1-C321-H32C1	109.5	C431-C411-H411	108.1
H32B1-C321-H32C1	109.5	C411-C421-H42A1	109.5
C311-C331-H33A1	109.5	C411-C421-H42B1	109.5
C311-C331-H33B1	109.5	H42A1-C421-H42B1	109.5
H33A1-C331-H33B1	109.5	C411-C421-H42C1	109.5
C311-C331-H33C1	109.5	H42A1-C421-H42C1	109.5
H33A1-C331-H33C1	109.5	H42B1-C421-H42C1	109.5
H33B1-C331-H33C1	109.5	C411-C431-H43A1	109.5
C351-C341-C131	125.0(10)	C411-C431-H43B1	109.5
C351-C341-H341	117.5	H43A1-C431-H43B1	109.5
C131-C341-H341	117.5	C411-C431-H43C1	109.5
C341-C351-C361	129.1(10)	H43A1-C431-H43C1	109.5
C341-C351-C391	124.9(10)	H43B1-C431-H43C1	109.5
C361-C351-C391	106.0(9)	C361-C441-C461	120.9(11)
C441-C361-C351	132.1(10)	C361-C441-C451	123.4(10)
C441-C361-C371	123.1(10)	C461-C441-C451	115.5(10)
C351-C361-C371	104.8(9)	C441-C451-H45A1	109.5

C441-C451-H45B1	109.5	C42-C32-H32	116.1
H45A1-C451-H45B1	109.5	C52-C42-C32	108.0(9)
C441-C451-H45C1	109.5	C52-C42-H4A2	110.1
H45A1-C451-H45C1	109.5	C32-C42-H4A2	110.1
H45B1-C451-H45C1	109.5	C52-C42-H4B2	110.1
C441-C461-C471	114.4(10)	C32-C42-H4B2	110.1
C441-C461-H46A1	108.7	H4A2-C42-H4B2	108.4
C471-C461-H46A1	108.7	N62-C52-C92	107.1(9)
C441-C461-H46B1	108.7	N62-C52-C42	121.2(10)
C471-C461-H46B1	108.7	C92-C52-C42	130.7(10)
H46A1-C461-H46B1	107.6	C72-N62-C52	109.9(8)
C461-C471-C481	114.0(11)	C72-N62-H62	125.1
C461-C471-H47A1	108.7	C52-N62-H62	125.1
C481-C471-H47A1	108.7	N62-C72-C82	107.9(9)
C461-C471-H47B1	108.7	N62-C72-C102	121.3(9)
C481-C471-H47B1	108.7	C82-C72-C102	130.6(10)
H47A1-C471-H47B1	107.6	C72-C82-C92	108.2(9)
O491-C481-C471	109.0(11)	C72-C82-H82	125.9
O491-C481-H48A1	109.9	C92-C82-H82	125.9
C471-C481-H48A1	109.9	C82-C92-C52	106.9(9)
O491-C481-H48B1	109.9	C82-C92-H92	126.5
C471-C481-H48B1	109.9	C52-C92-H92	126.5
H48A1-C481-H48B1	108.3	N142-C102-O112	117.1(9)
C481-O491-C501	111.2(10)	N142-C102-C72	129.0(10)
O491-C501-H50A1	109.5	O112-C102-C72	113.9(9)
O491-C501-H50B1	109.5	C102-O112-C122	106.1(7)
H50A1-C501-H50B1	109.5	O112-C122-C152	109.2(8)
O491-C501-H50C1	109.5	O112-C122-C132	103.3(8)
H50A1-C501-H50C1	109.5	C152-C122-C132	114.4(8)
H50B1-C501-H50C1	109.5	O112-C122-H122	109.9
C32-C12-C232	117.6(10)	C152-C122-H122	109.9
C32-C12-C22	126.8(11)	C132-C122-H122	109.9
C232-C12-C22	115.5(11)	N142-C132-C342	110.7(8)
C12-C22-H2A2	109.5	N142-C132-C122	104.6(8)
C12-C22-H2B2	109.5	C342-C132-C122	115.8(8)
H2A2-C22-H2B2	109.5	N142-C132-H132	108.5
C12-C22-H2C2	109.5	C342-C132-H132	108.5
H2A2-C22-H2C2	109.5	C122-C132-H132	108.5
H2B2-C22-H2C2	109.5	C102-N142-C132	107.4(8)
C12-C32-C42	127.9(11)	O162-C152-C122	108.2(8)
C12-C32-H32	116.1	O162-C152-H15A2	110.1

C122-C152-H15A2	110.1	C262-C272-H27B2	109.5
O162-C152-H15B2	110.1	H27A2-C272-H27B2	109.5
C122-C152-H15B2	110.1	C262-C272-H27C2	109.5
H15A2-C152-H15B2	108.4	H27A2-C272-H27C2	109.5
C172-O162-C152	115.6(8)	H27B2-C272-H27C2	109.5
0172-C172-O162	126.0(10)	O292-C282-C262	113.8(11)
O172-C172-C182	121.4(10)	O292-C282-H28A2	108.8
O162-C172-C182	112.7(9)	C262-C282-H28A2	108.8
C192-C182-C172	119.8(9)	O292-C282-H28B2	108.8
C192-C182-C302	126.2(9)	C262-C282-H28B2	108.8
C172-C182-C302	113.9(9)	H28A2-C282-H28B2	107.7
C182-C192-C202	124.6(10)	C282-O292-H292	109.5
C182-C192-H192	117.7	C182-C302-C312	111.0(8)
C202-C192-H192	117.7	C182-C302-H30A2	109.4
O202-C202-O212	124.0(9)	C312-C302-H30A2	109.4
O202-C202-C192	124.0(10)	C182-C302-H30B2	109.4
O212-C202-C192	111.8(9)	C312-C302-H30B2	109.4
C202-O212-C222	117.1(8)	H30A2-C302-H30B2	108
O212-C222-C232	106.9(8)	C322-C312-C332	110.6(10)
O212-C222-C262	116.0(9)	C322-C312-C302	109.6(9)
C232-C222-C262	104.5(8)	C332-C312-C302	111.0(9)
O212-C222-H222	109.8	C322-C312-H312	108.5
C232-C222-H222	109.8	C332-C312-H312	108.5
C262-C222-H222	109.8	C302-C312-H312	108.5
O242-C232-C12	111.2(9)	C312-C322-H32A2	109.5
O242-C232-C222	102.2(8)	C312-C322-H32B2	109.5
C12-C232-C222	116.2(9)	H32A2-C322-H32B2	109.5
O242-C232-H232	109	C312-C322-H32C2	109.5
С12-С232-Н232	109	H32A2-C322-H32C2	109.5
C222-C232-H232	109	H32B2-C322-H32C2	109.5
C252-O242-C232	109.3(9)	C312-C332-H33A2	109.5
0252-C252-O242	120.0(11)	C312-C332-H33B2	109.5
O252-C252-C262	127.7(12)	H33A2-C332-H33B2	109.5
O242-C252-C262	112.2(10)	C312-C332-H33C2	109.5
C252-C262-C282	110.5(9)	H33A2-C332-H33C2	109.5
C252-C262-C222	99.5(9)	H33B2-C332-H33C2	109.5
C282-C262-C222	113.9(9)	C352-C342-C132	123.8(10)
C252-C262-C272	109.1(9)	С352-С342-Н342	118.1
C282-C262-C272	109.1(10)	С132-С342-Н342	118.1
C222-C262-C272	114.2(9)	C342-C352-C362	129.9(10)
C262-C272-H27A2	109.5	C342-C352-C392	123.9(9)

C362-C352-C392	106.1(9)	C412-C432-H43C2	109.5
C442-C362-C352	129.9(10)	H43A2-C432-H43C2	109.5
C442-C362-C372	123.4(10)	H43B2-C432-H43C2	109.5
C352-C362-C372	106.5(9)	C362-C442-C452	123.7(10)
O382-C372-C362	105.9(8)	C362-C442-C462	120.8(11)
O382-C372-H37A2	110.6	C452-C442-C462	115.5(11)
C362-C372-H37A2	110.6	C442-C452-H45A2	109.5
O382-C372-H37B2	110.6	C442-C452-H45B2	109.5
C362-C372-H37B2	110.6	H45A2-C452-H45B2	109.5
H37A2-C372-H37B2	108.7	C442-C452-H45C2	109.5
C372-O382-C392	109.8(8)	H45A2-C452-H45C2	109.5
O382-C392-C352	104.0(8)	H45B2-C452-H45C2	109.5
O382-C392-C402	112.8(8)	C442-C462-C472	113.3(11)
C352-C392-C402	110.8(9)	C442-C462-H46A2	108.9
O382-C392-H392	109.7	C472-C462-H46A2	108.9
C352-C392-H392	109.7	C442-C462-H46B2	108.9
C402-C392-H392	109.7	C472-C462-H46B2	108.9
C392-C402-C412	115.0(10)	H46A2-C462-H46B2	107.7
C392-C402-H40A2	108.5	C482-C472-C462	112.7(12)
C412-C402-H40A2	108.5	C482-C472-H47A2	109
C392-C402-H40B2	108.5	C462-C472-H47A2	109
C412-C402-H40B2	108.5	C482-C472-H47B2	109
H40A2-C402-H40B2	107.5	C462-C472-H47B2	109
C422-C412-C402	115.5(11)	H47A2-C472-H47B2	107.8
C422-C412-C432	110.3(11)	O492-C482-C472	109.7(12)
C402-C412-C432	110.7(11)	O492-C482-H48A2	109.7
C422-C412-H412	106.6	C472-C482-H48A2	109.7
C402-C412-H412	106.6	O492-C482-H48B2	109.7
C432-C412-H412	106.6	C472-C482-H48B2	109.7
C412-C422-H42A2	109.5	H48A2-C482-H48B2	108.2
C412-C422-H42B2	109.5	C502-O492-C482	110.5(11)
H42A2-C422-H42B2	109.5	O492-C502-H50A2	109.5
C412-C422-H42C2	109.5	O492-C502-H50B2	109.5
H42A2-C422-H42C2	109.5	H50A2-C502-H50B2	109.5
H42B2-C422-H42C2	109.5	O492-C502-H50C2	109.5
C412-C432-H43A2	109.5	H50A2-C502-H50C2	109.5
C412-C432-H43B2	109.5	H50B2-C502-H50C2	109.5
H43A2-C432-H43B2	109.5		