Stereochemical Determination of the Leupyrrins and Total Synthesis of Leupyrrin A_{1}

Daniel Herkommer, ${ }^{\dagger}$ Sebastian Thiede, ${ }^{\dagger}$ Paul R. Wosniok, ${ }^{\dagger}$ Sandra Dreisigacker, ${ }^{\dagger}$ Maoqun Tian, ${ }^{\dagger}$ Thomas Debnar, ${ }^{\dagger}$ Herbert Irschik, ${ }^{\perp}$ and Dirk Menche ${ }^{*}, \dagger$
${ }^{\dagger}$ Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany and ${ }^{\perp}$ Helmholtz Centre for Infection Research (HZI), Microbial Drugs, Inhoffenstr. 7, D-38124 Braunschweig, Germany

Supporting Information

Table of Contents:

1 GENERAL METHODS 2
2 STEREOCHEMICAL DETERMINATION 4
2.1 Fermentation and Isolation 4
2.2 Assignment of the relative configuration of the C-1 to C-6 subunit of Leupyrin B_{1} 8
2.3 Derivatization 9
2.4 COPIES OF NMR SPECTRA 13
2.5 Molecular Modeling 23
3 EXPERIMENTAL PROCEDURES AND CHARACTERIZATION DATA. 33
3.1 Synthesis of Butyrolactone 7 33
3.2 Synthesis of Dihydrofuran 10 36
3.3 Synthesis of Pyrrole 8 58
3.4 Completion of the Total Synthesis 61
3.5 COPIES OF NMR SPECTRA 78
4 X-RAY CRYSTAL STRUCTURE ANALYSIS OF LEUPYRRIN B_{1} 151

1 General Methods

All reactions with dry solvents were performed under an atmosphere of argon in flame-dried glassware which had been cooled under argon unless stated otherwise. All flasks were equipped with rubber septa and reactants were handled using standard Schlenk techniques.

Temperatures above room temperature $\left(20^{\circ} \mathrm{C}\right)$ refer to oil bath temperatures which were controlled by a temperature modulator. For cooling, the following baths were used: acetone/dry ice $\left(-78{ }^{\circ} \mathrm{C}\right), \mathrm{H}_{2} \mathrm{O} /$ ice $\left(0^{\circ} \mathrm{C}\right)$ for other temperatures below $0{ }^{\circ} \mathrm{C}$ a Huber TC100E-F-NR cooler was used.
All reagents were purchased from commercial suppliers (Sigma-Aldrich, TCI, AlfaAesar, Strem) in the highest grade available and used without further purification unless otherwise stated.

Anhydrous solvents (THF, $\mathrm{Et}_{2} \mathrm{O}$, toluene, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were obtained from a solvent drying system MB SPS-800 (MBraun) and stored over molecular sieves or purchased over molecular sieves (dioxane, DMF, DMSO).
Reactions were monitored via TLC on silica gel $60 \mathrm{~F}_{254}$ precoated plates $\left(0.2 \mathrm{~mm} \mathrm{SiO}_{2}\right.$, Machery-Nagel) and visualized using UV light and/or staining with a solution of CAM (1.0 g $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}, 2.5 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}, 8 \mathrm{~mL}$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$) or $\mathrm{KMnO}_{4}(1.5 \mathrm{~g}$ $\mathrm{KMnO}_{4}, 10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}, 1.25 \mathrm{~mL} 10 \% \mathrm{NaOH}$ in $200 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) or Ninhydrin (1.5 g ninhydrin, 3 mL HOAc in $100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} 0$ and $100 \mathrm{~mL} n$-butanol) or 4-anisaldehyde (3.7 mL 4 anisaldehyde, 1.5 mL HOAc, $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 135 mL abs. EtOH) respectively, and subsequent heating.
For column chromatography, silica gel (pore size $60 \AA, 40-63 \mu \mathrm{~m}$) obtained from Aldrich or Merck was used and the size of the column was adjusted to the recommendations by Still et al. ${ }^{1}$ Compounds were eluated using the stated mixtures under a positive pressure of air. Solvents were destilled prior to use.
Optical rotations were measured with a Perkin Elmer 241 or 341 polarimeter in a 10 mm cuvette and are uncorrected. Melting points were obtained using a Büchi melting point instrument B-540 or a microscope for determining the melting point of fibres (Reichert, Austria, type 7905) and are uncorrected.
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on Bruker AC-300, DRX-300, DPX-300, DPX-400, DRX-500 and Avance-III-600 spectrometers with ${ }^{13} \mathrm{C}$ operating frequencies of $75,100,125$ and 150 Mhz respectively. Spectra were measured at room temperature unless stated otherwise. Chemical shifts (δ) are reported in ppm relative to tetramethylsilane ($\delta=0.00 \mathrm{ppm}$)

[^0]and the spectra were calibrated to the residual signal of undeuterated solvents. ${ }^{2}$ Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants in Hertz, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), br. (broad).
Mass spectra (MS) and high-resolution-mass spectra (HRMS) were recorded at the Departments of Organic Chemistry in Heidelberg and Bonn on the following mass spectrometers: Bruker ICR APEX-QE, Vacuum Generators ZAB-2F, Finnigan MAT TSQ 700, JEOL JMS-700, Bruker Daltonics micrOTOF-Q and a Thermo Finnigan MAT 95 XL.
IR spectra were recorded on a Thermo Scientific Nicolet 380 FT-IR spectrometer. UV/Vis measurements were carried out using a Perkin Elmer Lambda 18 spectrometer.
The HPLC analytical and preparative analyses were performed by using a system of the company "Knauer Wissenschaftliche Geräte GmbH": Smartline series consisting of a twochannel degasser, two pumps S-1800 (100 mL pump head), an injection assistant 6000 with a feed pump S-100, a mixing chamber Smartmix 350, a UV-detector S-2550 and a fraction valves (16 port). The system was controlled by Chromgate software version 3.3.2. All solvents were purchased from the central chemical store of the University of Bonn in HPLC grade.

List of abbreviations:

Boc	tert-butyloxycarbonyl
CSA	10-camphorsulfonic acid
DAST	diethylaminosulfur trifluoride
DiBA1	di-iso-butylaluminium hydride
DIPT	di-iso-propyltartrate
DMAP	4-(N,N-dimethylamino)pyridine
HATU	O-(7-azabenzotriazol-1-yl)- N, N, N, N--tetramethyluronium hexafluorophosphate
HWE	Horner-Wadsworth-Emmons
IBX	2-iodoxybenzoic acid
MS	molecular sieve
MW	microwave
pin	pinacole
PPTS	pyridinium-para-toluensulfonate
Py	pyridine
rt	room temperature
SAE	Sharpless asymmetric epoxidation
Suc	succinimide
TASF	tris(dimethylamino)sulfonium difluorotrimethylsilicate

[^1]| TBAF | tetra-n-butylammoniumfluoride |
| :--- | :--- |
| TBS | tert-butyldimethylsilyl |
| TCBC | 2,4,6-trichlorbenzoylchloride |
| Teoc | 2-(trimethylsilyl)ethoxycarbonyl |

2 Stereochemical Determination

2.1 Fermentation and Isolation

The Leupyrrins $\mathrm{A}_{1}(\mathbf{1}), \mathrm{A}_{2}, \mathrm{~B}_{1}(\mathbf{2}), \mathrm{B}_{2}, \mathrm{C}$ and D were produced by the Sorangium cellulosum strain So ce690 in a 70 L fermentor (Giovanola Frères SA, Monthey, Switzerland) at $30{ }^{\circ} \mathrm{C}$ containing the following medium: Starch $8 \mathrm{~g} \mathrm{~L}^{-1}$, soybean meal $1.5 \mathrm{~g} \mathrm{~L}^{-1}$, skim milk $1.5 \mathrm{~g} \mathrm{~L}^{-1}$, casitone $1 \mathrm{~g} \mathrm{~L}^{-1}$, glucose $\times \mathrm{H}_{2} \mathrm{O} 2 \mathrm{~g} \mathrm{~L}^{-1}$, fructose $\times \mathrm{H}_{2} \mathrm{O} 2 \mathrm{~g} \mathrm{~L}^{-1}, \mathrm{KH}_{2} \mathrm{PO}_{4} \times \mathrm{H}_{2} \mathrm{O} 0.25 \mathrm{~g} \mathrm{~L}^{-1}$, $\mathrm{CaCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O} 1 \mathrm{~g} \mathrm{~L}^{-1}, \mathrm{MgSO}_{4} \times 7 \mathrm{H}_{2} \mathrm{O} 1 \mathrm{~g} \mathrm{~L}^{-1}, \mathrm{Na}-\mathrm{Fe}-E D T A 8 \mathrm{mg}^{-1}$, at pH 7.3 in the presence of 1% of adsorber resin Amberlite XAD-16 (Rohm \& Haas). The partial pressure was regulated to an oxygen concentration of 20%. After 14 days of cultivation, starch, glucose and fructose were used up and the culture broth was passed through a process filter to collect the absorber resin.

Residual cells were floated from the XAD-16 resin with water. The resin was eluted with acetone (12 L). The organic solvent was evaporated and the remaining water-layer $(1 \mathrm{~L})$ was adjusted to pH 10 with aqueous NH_{3} and extracted with ice-cold $\mathrm{Et}_{2} \mathrm{O}$ (3 portions of 2 L) after addition of saturated NaCl -solution (500 mL). The $\mathrm{Et}_{2} \mathrm{O}$-layer yielded an oily crude extract after evaporation. ${ }^{3}$ A MeOH / n-heptane partition was carried out to remove lipophilic byproducts in the n-heptane layer (700 mL). After evaporation the MeOH -layer yielded 9.80 gof an orange-brown material, which was fractionated into leupyrrins $A_{1}(\mathbf{1}), A_{2}, B_{1}(\mathbf{2}), B_{2}$ $(2.39 \mathrm{~g})$, and Leupyrrins $\mathrm{C}, \mathrm{D}(0.42 \mathrm{~g})$ by silica gel flash-chromatography [solvent: t-butyl methyl ether/petrol ether, $2: 1$, with $2 \% \mathrm{MeOH}]$. The mixture of Leupyrrins C and D were purified by RP-HPLC [column $250 \times 21 \mathrm{~mm}, 10 \mu \mathrm{~m}$: Nucleosil C18 (Macherey-Nagel), solvents $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 70: 30$ with $0.05 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}, \mathrm{pH} 8.0, \mathrm{FR}=22 \mathrm{~mL} \mathrm{~min}^{-1}$, UV detection 277 nm]. The fractions at $R_{\mathrm{t}}=23 \mathrm{~min}$ and $R_{\mathrm{t}}=27 \mathrm{~min}$ were combined, respectively and neutralized with pure acetic acid and extracted with EtOAc before the organic solvent was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. This yielded pure compounds (leupyrrins C and D). The crude mixture of leupyrrins $\mathrm{A}_{1}(\mathbf{1}), \mathrm{A}_{2}, \mathrm{~B}_{1}(\mathbf{2}), \mathrm{B}_{2}$ were separated by normal-phase HPLC [column $250 \times 21 \mathrm{~mm}, 10 \mu \mathrm{~m}$: Nucleosil (Macherey-Nagel), solvents: t-butyl methyl

[^2]ether/petrol ether 18:82 mit $0.5 \% \mathrm{MeOH}, \mathrm{FR}=34 \mathrm{~mL} \mathrm{~min}^{-1}$, UV detection 277 nm]. The fractions at $R_{\mathrm{t}}=27 \mathrm{~min}$ and $R_{\mathrm{t}}=29 \mathrm{~min}$ as well as the fractions of $R_{\mathrm{t}}=44 \mathrm{~min}$ and $R_{\mathrm{t}}=50$ min were combined and evaporated to yield a mixture of leupyrrins A_{1} and A_{2} and a mixture of B_{1} and B_{2}. Both mixed fractions were purified by chiral normal-phase HPLC [column 250×20 $\mathrm{mm}, 5 \mu \mathrm{~m}$: Chiralpak-IB (Daicel), solvent A: petrol ether; solvent B: i-propanol, gradient: starting from $5 \% \mathrm{~B}$ and increasing to $22.5 \% \mathrm{~B}$ in 15 min , maintaining for 1 min , $\mathrm{FR}=20 \mathrm{~mL} \mathrm{~min}^{-1}$, UV detection 277 nm]. The retention was detected by $R_{\mathrm{t}}=7 \mathrm{~min}$ for leupyrrin $\mathrm{A}_{1}, R_{\mathrm{t}}=9 \mathrm{~min}$ for leupyrrin A_{2} and $R_{\mathrm{t}}=6 \mathrm{~min}$ for leupyrrin B_{1} and $R_{\mathrm{t}}=8 \mathrm{~min}$ for leupyrrin B_{2}. The yields for the purified compounds are as follows:

Table S 1 Quantities of the leupyrrins after isolation

Leupyrrin A_{1} (1)

$\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{10}, \mathbf{M}=\mathbf{7 3 8} .91 \mathrm{~g} / \mathrm{mol}$

Isolated material.
$\mathbf{R}_{f}=0.60$ (petroleum ether/EtOAc $\left.=1 / 2\right) ;[\alpha]_{D}^{20}=+11.7(\mathrm{c}=1.0, \mathrm{MeOH})\left[\right.$ Lit: $[\alpha]_{D}^{20}=+12(\mathrm{c}$ 4.06, MeOH$)] ;{ }^{4} \mathbf{U V}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 260(1.09) \mathrm{nm}, 286$ (1.98) nm; IR (film) $v_{\max } 2955$, 2872, 1782, 1741, 1649, 1159, 1115, 1068, 1036, $1003 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta[\mathrm{ppm}]=6.80(\mathrm{~d}, ~ J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71$ (ddd, $J=8.1,5.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 4 \mathrm{H}), 4.49(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.1$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.61(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 3 \mathrm{H}), 3.36$ (s, 3 H), 2.85-2.79 (m, 2 H), 2.72-2.67 (m, 1 H), 2.19-2.07 (m, 2 H), 1.98 (s, 3 H), 1.95-1.89 (m, 1 H), 1.82-1.59 (m, 5 H), 1.77 (s, 3 H), 1.49-1.44 (m, 2 H), 1.11 (s, 3 H), 1.08 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=179.5,175.6,172.3,160.8,145.0,136.6,135.3$, 134.1, 131.4, 128.6, 123.2, 119.5, 115.3, 109.7, 85.5, 84.7, 80.6, 75.6, 73.0, 70.3, 68.2, 66.1, $65.9,58.9,51.3,44.5,40.2,40.0,36.5,35.0,28.5,27.0^{5}, 26.3,24.3,23.0,22.8,22.2,20.3$, 14.7, 11.5; HRMS (ESI+): calculated for $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{10}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 739.4164, found 739.4166.

[^3]
Leupyrrin \mathbf{B}_{1} (2)

$\mathrm{C}_{41} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{10}, \mathrm{M}=736.89 \mathrm{~g} / \mathrm{mol}$

Isolated material.
$\mathbf{R}_{f}=0.60$ (silica, petroleum ether/EtOAc $\left.=1 / 2\right) ; \quad[\alpha]_{D}^{20}=+2.7 \quad(\mathrm{c}=1.0, \quad \mathrm{MeOH}) \quad[\mathrm{Lit}:$ $\left.[\alpha]_{D}^{20}=+11(c=4.6, \mathrm{MeOH})\right]^{6} ; \mathbf{U V}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 236(0.82) \mathrm{nm}, 260(0.80) \mathrm{nm}, 287$ (1.29) nm; IR (film) $v_{\max } 2954,2868,1780,1725,1653,1209,1132,1116,1038,1008 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=6.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.99-4.95 (m, 1 H), 4.70-4.64 (m, 3 H), 4.59 (dd, $J=10.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, 1 H), 4.49 (dd, $J=12.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=14.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.23$ (dd, $J=14.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{dd}, J=12.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=12.6$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13-2.00 (m, 2 H), 1.91 (s, 3 H), 1.88-1.82 (m, 1 H), 1.77-1.62 (m, 3 H), 1.74 (s, 3 H), 1.57 (ddd, $J=14.5,11.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{ddd}, J=14.2,9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.01$ (s, $3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=179.1,167.7,166.2,161.4,148.3$, 144.6, 136.9, 134.1, 131.6, 131.3, 131.1, 128.1, 123.4, 119.6, 115.8, 109.3, 85.2, 84.3, 80.7, $74.8,73.0,70.5,68.9,66.9,65.3,58.9,51.1,44.8,37.2,35.1,29.8,28.5,27.3,26.3,24.3$, 23.0, 22.9, 22.1, 20.3, 13.7, 10.0; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=9.0(\mathrm{bs}, 1 \mathrm{H}), 6.70$ ($\mathrm{s}, 1 \mathrm{H}$), 6.67 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.03 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-$ $5.52(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.59(\mathrm{~m}, 3 \mathrm{H}), 4.57$ (dd, $J=9.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, ~ J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (d,

[^4]$J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=12.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.54(\mathrm{dd}, J=15.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.60$ (dd, $J=12.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49 (dd, $J=12.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.10-2.00 (m, 2 H), 1.89 ($\mathrm{s}, 3 \mathrm{H}$), $1.83-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.61$ (ddd, $J=14.3,10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{ddd}, J=14.3$, $9.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$), $0.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=176.4$, $166.0,165.6,161.7,146.9,143.8,134.5,132.9,131.5,129.9,129.3,126.8,121.3,119.1$, $113.9,108.5,83.8,82.7,79.5,72.8,71.9,69.4,67.5,66.4,64.8,58.6,49.4,43.3,36.4,34.1$, 29.7, 28.5, 27.4, 26.8, 24.9, 23.7, 22.4, 22.3, 20.1, 13.2, 10.1; HRMS (ESI+): calculated for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{10}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 737.4008$, found: 737.4007.

2.2 Assignment of the relative configuration of the C-1 to C-6 subunit of Leupyrrin B_{1}

As shown in Figure S 1 for the $\mathrm{C}-1$ to $\mathrm{C}-6$ subunit of leupyrrin B_{1}, characteristic NOE correlations were observed from $\mathrm{H}-3$ to $\mathrm{H}-22$ and $\mathrm{H}-24$ as well as from $\mathrm{H}-4$ to $\mathrm{H}-6$ and $\mathrm{H}-23$. In combination with an antiperiplanar relationship of H-3 and H-4 as deduced from a large vicinal coupling constant between these protons $(9.2 \mathrm{~Hz})$ these data suggest an anti-, anticonfiguration between H-2 and H-3 and between H-3 and Me-23, in agreement with the proposal of Bode and Höfle for leupyrrin A_{1} and a partial synthesis from our laboratory. ${ }^{7,8}$

Figure S 1: Rotamers determined for the C-1 to C-6 subunit of leupyrrin B_{1}; coupling constants, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}(\mathrm{Hz})$ in parentheses.

[^5]
2.3 Derivatization

For determination of the absolute configuration at C 3 of leupyrrin B_{1}, basic cleavage of the dicarboxylic acid $\left(\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}\right)$ yielded triol $\mathbf{S 1}$, which was subsequently transformed to tris-Mosher esters S2 with MTPA-Cl (Scheme S 1, see below for further details).

Scheme S 1: Synthesis of tris-Mosher esters (S2).
(3R,4R,5S)-4-Hydroxy-3-(hydroxymethyl)-5-((E)-4-(5-((4R,5S)-5-(hydroxymethyl)-4((Z)-((S, Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)-methyl)-4,5-dihydrooxazol-2-yl)-1H-pyrrol-2-yl)but-2-en-2-yl)-3-methyldihydrofuran-2(3H)-one (S1)

To a stirred solution of leupyrrin $\mathrm{B}_{1} 2(16.0 \mathrm{mg}, 21.7 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(200 \mu \mathrm{~L})$ at room temperature $\mathrm{K}_{2} \mathrm{CO}_{3}(6.00 \mathrm{mg}, 43.4 \mu \mathrm{~mol})$ was added. The mixture was stirred for 10 minutes until the conversion was completed. After addition of sat. aq. NaCl solution (3 mL), the aqueous portion was extracted with EtOAc $(3 \times 7 \mathrm{~mL})$. The combined organic portions were dried over MgSO_{4}, filtered and concentrated at reduced pressure. Purification by flash column
chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 1:2) gave triol $\mathbf{S 1}(6.80 \mathrm{mg}, 52 \%)$ as a colorless oil.
$\mathbf{R}_{f}=0.23$ (petroleum ether/EtOAc $=1 / 4$), ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=9.79(\mathrm{bs}$, $1 \mathrm{H}), 6.71(\mathrm{~d}, ~ J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.82(\mathrm{~m}, ~ 1 \mathrm{H}), 5.47(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.54-$ $4.47(\mathrm{~m}, 3 \mathrm{H}), 4.42-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=12.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 5 \mathrm{H}), 3.36(\mathrm{t}, 6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.12-$ $2.02(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.56(\mathrm{~m}$, $1 \mathrm{H}), 1.25-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=179.1,159.6,144.3,135.6,135.2,133.2,129.8$, $122.2,121.4,116.9,115.2,107.3,86.3,79.1,72.7,71.9,69.4,65.7,65.2,62.7,58.6,50.8$, 49.7, 43.7, 34.3, 27.4, 25.6, 24.9, 23.7, 21.4, 20.3, 13.5, 11.4; HRMS (ESI+): calculated for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 601.3483$, found: 601.3481.

2-Methoxy-2-phenylpropanoyloxy)-4-(((S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoy-loxy)methyl)tetrahydrofuran-2-yl)but-2-enyl)-1H-pyrrol-2-yl)-4,5-dihydrooxazol-5yl)methyl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate ((S)-S2)

To a stirred solution of triol $\mathbf{S 1}(2.00 \mathrm{mg}, 3.40 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L})$ at room temperature were added pyridine $(280 \mu \mathrm{~L}, 3.40 \mathrm{mmol})$, DMAP $(100 \mu \mathrm{~L}$ of a stock solution containing 12.6 mg in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and (R)-MTPA-chloride ($11.8 \mu \mathrm{~L}, 68.6 \mu \mathrm{~mol}$). The reaction was stirred for 1 hour, diluted with EtOAc (2 mL), washed with aq. NaHCO_{3} solution (1.5 mL , $1 \%)$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated in vacuo. Flash column
chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 4:1) of the residue afforded the corresponding (S)-Mosher ester (S)-S2 ($3.30 \mathrm{mg}, \mathbf{9 4 \%}$) as a colorless oil.
$\mathbf{R}_{f}=0.63$ (petroleum ether/EtOAc 1:1); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=7.50-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-$ $4.54(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=12.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{~d}, ~ J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.27(\mathrm{~m}, 2 \mathrm{H})$, $3.33(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.23,(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;$ HRMS (ESI+): calculated for $\mathrm{C}_{63} \mathrm{H}_{70} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{14}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 1249.4678$, found: 1249.4617.
(R)-((4R,5S)-4-((Z)-((S,Z)-2-Isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)-2-(5-((E)-3-($(2 S, 3 R, 4 R)$-4-methyl-5-oxo-3-($(R)-3,3,3-$ trifluoro-2-methoxy-2-phenylpropanoyloxy)-4-(((R)-3,3,3-trifluoro-2-methoxy-2-phenylpro-panoyloxy)methyl)tetrahydrofuran-2-yl)but-2-enyl)-1H-pyrrol-2-yl)-4,5-dihydrooxazol-5-yl)methyl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate ((R)-S2)

To a stirred solution of triol $\mathbf{S 1}(2.30 \mathrm{mg}, 4.00 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L})$ at room temperature were added pyridine $(320 \mu \mathrm{~L}, 4.00 \mathrm{mmol})$, DMAP $(100 \mu \mathrm{~L}$ of a stock solution containing 16.1 mg in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and (S)-MTPA-chloride ($13.8 \mu \mathrm{~L}, 78.9 \mu \mathrm{~mol}$). The reaction was stirred for 1 hour, diluted with EtOAc (2 mL), washed with aq. NaHCO_{3} solution (1.5 mL ,
$1 \%)$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 4:1) of the residue afforded the corresponding (R)-Mosher ester $(R) \mathbf{- 2 2}(3.60 \mathrm{mg}, \mathbf{7 3 \%})$ as a colorless oil.
$\mathbf{R}_{f}=0.63$ (petroleum ether/EtOAc $=1 / 1$), ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.52-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 10 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.93$ $(\mathrm{m}, 1 \mathrm{H}), 4.87-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.64(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.49(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=12.6$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 4 \mathrm{H}), 3.34(\mathrm{~s}$, $3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; HRMS (ESI $\left.{ }^{+}\right)$: calculated for $\mathrm{C}_{63} \mathrm{H}_{70} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{14}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 1249.4678, found: 1249.4617.

Table S 2: Mosher ester analysis of triol S2.

	${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right)$			
	$\delta(S)$	$\delta(R)$	$\Delta \delta^{S-R}$	$\bigcirc \mathrm{OMe}$
H4	4.76	4.83	-0.07	$11 / \mathrm{N}, 14$
Me23	1.24	0.95	0.29	
H3	5.64	5.35	$0.29{ }^{\text {a }}$	$\mathrm{M}^{*}=\mathrm{O}$
H24	1.32	1.23	0.09	0^{4}
H6	5.61	5.77	-0.16^{a}	
H22b	4.67	4.4	0.24	OM* Tris-Mosher (S2)

${ }^{a}$ high $\Delta \delta^{S-R}$ value for H 3 indicates a gauche conformation between H 3 and the CF_{3}-group. This conformational change also results in a negative $\Delta \delta^{S-R}$ value at H6. ${ }^{9}$

[^6]
2.4 Copies of NMR spectra

2.5 Molecular Modelling

The molecules were built using the Maestro9.2 work suite. ${ }^{10}$ If possible, pre-assembled fragments were used to provide a more realistic picture of the angles and bond lengths. The structures were pre-minimized with 500 iterations using MacroModel9.7 (MM). ${ }^{11}$ For conformational analysis the mixed torsion/low-mode sampling algorithm as implemented in MM was used. The torsional sampling option was set as "Extended" mode. Default values were used for the other parameters related to conformational sampling, exept that the number of steps was set to 10000. The conformational searches were done for aqueous solution with the Generalized Born/Solvent Accessible surface (GB/SA) continuum solvation model with water or chloroform as solvents. The energy minimization was carried out with the Polak-Ribiere conjugate gradient algorithm (PRCG), ${ }^{12,13}$ the minimization steps were set to 5000 and the final convergence was set as $0.05 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-1}$.

For analysis of the conformers, all structures were superimposed and identical conformations of the macrocycle were clustered. The conformer with lowest energy of each cluster was taken as "cluster representative". The ensemble of all structures for each cluster is given in the appendix. Finally distances between selected atoms were measured and compared to experimental NOE-values.

Conformational Search
Typical INPUT-File (.com)

```
New_Ring07_OPLS2005_water_5000_1000.mae
New_Ring07_OPLS2005_water_5000_1000-out.maegz
```

MMOD	0	1	0	0	0.0000	0.0000	0.0000	0.0000
FFLD	14	1	0	0	1.0000	0.0000	0.0000	0.0000
SOLV	3	1	0	0	0.0000	0.0000	0.0000	0.0000
EXNB	0	0	0	0	0.0000	0.0000	0.0000	0.0000
BDCO	0	0	0	0	89.4427	99999.0000	0.0000	0.0000
READ	0	0	0	0	0.0000	0.0000	0.0000	0.0000
FXTA	8	7	10	28	100.0000	-8.7921	0.0000	0.0000
FXTA	46	19	3	4	100.0000	-179.4274	0.0000	0.0000
CRMS	0	0	0	0	0.0000	0.5000	0.0000	0.0000
LMCS	1000	0	0	0	0.0000	0.0000	3.0000	6.0000
NANT	0	0	0	0	0.0000	0.0000	0.0000	0.0000

[^7]| MCNV | 1 | 5 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MCSS | 2 | 0 | 0 | 0 | 21.0000 | 0.0000 | 0.0000 | 0.0000 |
| MCOP | 1 | 0 | 0 | 0 | 0.5000 | 0.0000 | 0.0000 | 0.0000 |
| DEMX | 0 | 1666 | 0 | 0 | 21.0000 | 42.0000 | 0.0000 | 0.0000 |
| COMP | 1 | 2 | 3 | 4 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| COMP | 5 | 6 | 7 | 8 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| COMP | 9 | 10 | 11 | 12 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| COMP | 13 | 14 | 15 | 16 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| COMP | 17 | 18 | 19 | 20 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| COMP | 21 | 22 | 23 | 24 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| COMP | 25 | 26 | 27 | 28 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| COMP | 29 | 30 | 31 | 32 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| COMP | 33 | 34 | 35 | 52 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| COMP | 62 | 68 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| MSYM | 0 | 0 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| CHIG | 11 | 12 | 18 | 19 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| CHIG | 21 | 0 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| AUOP | 0 | 0 | 0 | 0 | 10000.0000 | 0.0000 | 0.0000 | 0.0000 |
| TORS | 1 | 7 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 1 | 62 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 2 | 12 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 3 | 19 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 5 | 6 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 6 | 62 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 7 | 10 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 8 | 9 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 10 | 28 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 11 | 12 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 11 | 13 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 11 | 28 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 13 | 29 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 14 | 15 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 15 | 24 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 16 | 17 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 18 | 19 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 18 | 32 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 19 | 33 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 20 | 21 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 21 | 23 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 23 | 35 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORS | 24 | 25 | 0 | 0 | 0.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORC | 1 | 7 | 8 | 9 | 0.0000 | 90.0000 | 0.0000 | 0.0000 |
| TORC | 4 | 3 | 5 | 6 | 0.0000 | 90.0000 | 0.0000 | 0.0000 |
| TORC | 7 | 10 | 2 | 12 | 90.0000 | 180.0000 | 0.0000 | 0.0000 |
| TORC | 8 | 9 | 62 | 1 | 0.0000 | 90.0000 | 0.0000 | 0.0000 |

TORC	13	29	14	30	0.0000	90.0000	0.0000	0.0000
TORC	14	15	16	17	90.0000	180.0000	0.0000	0.0000
TORC	18	32	17	31	0.0000	90.0000	0.0000	0.0000
TORC	19	33	20	34	90.0000	180.0000	0.0000	0.0000
RCA4	1	7	8	9	0.5000	2.5000	0.0000	0.0000
RCA4	12	2	10	28	0.5000	2.5000	0.0000	0.0000
RCA4	19	3	5	6	0.5000	2.5000	0.0000	0.0000
RCA4	19	18	21	20	0.5000	2.5000	0.0000	0.0000
CONV	2	0	0	0	0.0500	0.0000	0.0000	0.0000
MINI	1	0	5000	0	0.0000	0.0000	0.0000	0.0000

Typical OUTPUT-File

```
JobID: menche69-0-50435bfd
    BatchMin V9.9 Build 99109 Starting Time 02-Sep-2012 15:15:43
    MacroModel. Copyright Schrodinger, LLC.
    All rights reserved.
    Input filename: New_Ring07_OPLS2005_water_5000_1000.mae
    Output filename: New_Ring07_OPLS2005_water_5000_1000-out.maegz
    Atom-type file: /opt/schrodinger/mmshare-v20109/bin/Linux-
x86_64/../../data/atom.typ
    Force field: /opt/schrodinger/macromodel-v99109/bin/Linux-
x86_64/../../data/OPLS_2005.fld
    Read 71 atoms. Structure name, if any, appears on next line:
    Ring07_fixNHNsyn_fixH24_H4
Low-frequency-Mode Conformational Search.
    Probability of TORS/MOLS steps: 0.5000000
    Quality of Force Field Parameters in Use:
        Numbers of high, medium and low quality stretch parameters = 74 0 0
        Numbers of high, medium and low quality bend parameters = 135 0
        Numbers of high, medium and low quality torsion parameters = 183 11 0
        Interactions examined: 403 of 403 total, including unused
params.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stretch total= & 74 & constrained= & 0 & & \\
\hline Bend total= & 135 & constrained= & 0 & linear= & 0 \\
\hline Torsion total= & 209 & constrained= & 2 & out-of-plane= & 13 \\
\hline Nonbonded total= & 2276 & H -bonded= & 0 & ordinary= & 2276 \\
\hline nbonded cutoffs: & dw= & 8.00 ; Cut & 20. & & \\
\hline
\end{tabular}
    Solvent file: /opt/schrodinger/macromodel-v99109/bin/Linux-
x86_64/../../data/water.slv
    Block specifies desired NFIELD -- accepting block
Starting conjugate gradient minimization.
    Step 1 New global minimum. E (kJ/mol) = 2.62
    Conf 1 E = 2.62 ( 0.041) is unique and stored as structure 1
    Search initialized with 1 structures from the input structure file
```


Final report:
65 unique conformations found
65 minimized with good convergence
Found 10 confs within $1.00 \mathrm{kcal} / \mathrm{mol}(4.18 \mathrm{~kJ} / \mathrm{mol})$ of glob. min.
Found 17 confs within $2.00 \mathrm{kcal} / \mathrm{mol}(8.37 \mathrm{~kJ} / \mathrm{mol})$ of glob. min.
Found 22 confs within $3.00 \mathrm{kcal} / \mathrm{mol}(12.55 \mathrm{~kJ} / \mathrm{mol})$ of glob. min.
Found 65 confs within $5.00 \mathrm{kcal} / \mathrm{mol}(20.92 \mathrm{~kJ} / \mathrm{mol})$ of glob. min.
Global minimum $E=-34.23$ found 3 times.

Total number of structures processed $=1000$
Conformations with poor convergence marked with a *

Conformation	1	(-34.23270	kJ/mol)	was	found	3	times
Conformation	2	(-33.05400	kJ/mol)	was	found	3	times
Conformation	3	(-33.00788	kJ/mol)	was	found	6	times
Conformation	4	(-32.83193	kJ/mol)	was	found	4	times
Conformation	5	(-32.53358	kJ/mol)	was	found	4	times
Conformation	6	(-32.51785	$\mathrm{kJ} / \mathrm{mol}$)	was	found	3	times
Conformation	7	$($	-32.22464	kJ/mol)	was	found	7	times
Conformation	8	(-31.55818	$\mathrm{kJ} / \mathrm{mol}$)	was	found	3	times
Conformation	9	(-31.53876	kJ/mol)	was	found	1	times

Conformation	10	(-31.16801	kJ/mol)	was	found	3	times
Conformation	11	(-29.14901	kJ/mol)	was	found	2	times
Conformation	12	(-28.81111	kJ/mol)	was	found	4	times
Conformation	13	(-27.21439	kJ/mol)	was	found	4	times
Conformation	14	(-27.15058	kJ/mol)	was	found	1	times
Conformation	15	(-26.33642	kJ/mol)	was	found	4	times
Conformation	16	$($	-26.26876	kJ/mol)	was	found	3	times
Conformation	17	(-26.00729	kJ/mol)	was	found	3	times
Conformation	18	$($	-24.61562	kJ/mol)	was	found	15	times
Conformation	19	(-24.50722	kJ/mol)	was	found	4	times
Conformation	20	(-23.29960	kJ/mol)	was	found	3	times
Conformation	21	$($	-23.17010	kJ/mol)	was	found	11	times
Conformation	22	(-22.81053	kJ/mol)	was	found	3	times
Conformation	23	(-21.54195	kJ/mol)	was	found	1	times
Conformation	24	(-21.11463	kJ/mol)	was	found	2	times
Conformation	25	(-20.77334	kJ/mol)	was	found	2	times
Conformation	26	$($	-20.36103	kJ/mol)	was	found	2	times
Conformation	27	(-19.81793	kJ/mol)	was	found	1	times
Conformation	28	$($	-19.71051	kJ/mol)	was	found	1	times
Conformation	29	$($	-19.63368	kJ/mol)	was	found	5	times
Conformation	30	(-19.53134	kJ/mol)	was	found	4	times
Conformation	31	$($	-18.90831	kJ/mol)	was	found	5	times
Conformation	32	$($	-18.15746	kJ/mol)	was	found	3	times
Conformation	33	(-18.03578	kJ/mol)	was	found	1	times
Conformation	34	(-16.54380	kJ/mol)	was	found	1	times
Conformation	35	$($	-16.44508	kJ/mol)	was	found	2	times
Conformation	36	(-16.22871	kJ/mol)	was	found	3	times
Conformation	37	(-16.02226	kJ/mol)	was	found	1	times
Conformation	38	$($	-15.60071	kJ/mol)	was	found	5	times
Conformation	39	(-15.35244	kJ/mol)	was	found	2	times
Conformation	40	$($	-15.34888	kJ/mol)	was	found	5	times
Conformation	41	$($	-15.29989	kJ/mol)	was	found	1	times
Conformation	42	(-15.17048	kJ/mol)	was	found	1	times
Conformation	43	(-15.10410	kJ/mol)	was	found	3	times
Conformation	44	(-14.99823	kJ/mol)	was	found	1	times
Conformation	45	(-14.93663	kJ/mol)	was	found	2	times
Conformation	46	(-14.80637	kJ/mol)	was	found	2	times
Conformation	47	(-14.75907	kJ/mol)	was	found	1	times
Conformation	48	(-14.69354	kJ/mol)	was	found	1	times
Conformation	49	(-14.59277	kJ/mol)	was	found	4	times
Conformation	50	(-14.56575	kJ/mol)	was	found	3	times
Conformation	51	(-14.53808	kJ/mol)	was	found	7	times
Conformation	52	(-14.49261	kJ/mol)	was	found	1	times
Conformation	53	(-14.48515	kJ/mol)	was	found	4	times
Conformation	54	(-14.46269	kJ/mol)	was	found	2	times

Analyses and Clustering

Table S 3 Structure Ensemble for each Cluster with identical conformations of the macrocyle. All conformers were superimposed and identical conformations of the macrocycle were clustered. This results in two to five families of macrocylic conformations (eg. N, N-syn-MC1_1, N,N-syn-MC1_2, N,N-syn-MC1_3 etc.). The conformer with lowest energy of each family was taken as "cluster representative".

N,N-syn-MC2_2

N, N-syn-MC2_3

N,N-syn-MC2_4

N, N-syn-MC2_5

N,N-anti-MC1_1

N,N-anti-MC1_2

N,N-anti-MC1_3
N, N-anti-MC1_4

N, N-anti-MC1_5

N,N-anti-MC2_1

N,N-anti-MC2_2

3 Experimental Procedures and Characterization Data

Acid $\mathbf{9},{ }^{14}$ lactol 11, ${ }^{15}$ alkyne $\mathbf{1 6}{ }^{16}$ and propargylic alcohol $\mathbf{1 7}{ }^{17}$ were prepared according to literature procedures.

3.1 Synthesis of Butyrolactone 7

(3R,4R,5S)-4-((tert-Butyldimethylsilyl)oxy)-3-(hydroxymethyl)-3-methyl-5-(prop-1-en-2-yl)dihydrofuran-2(3H)-one (14)

$\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}=300.5 \mathrm{~g} / \mathrm{mol}$

To a solution of $\mathbf{1 1}(59.2 \mathrm{mg}, 194 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in dry toluene $(4 \mathrm{~mL})$ at $45^{\circ} \mathrm{C}$ was added a solution isopropenylmagnesium bromide ($0.80 \mathrm{~mL}, 400 \mu \mathrm{~mol}, 2.06 \mathrm{eq}, 0.5 \mathrm{~m}$ in THF) dropwise over 40 minutes. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 11 hours before it was quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \times 5 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification of the obtained crude product was performed by column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, 6:1) to give $14(43.3 \mathrm{mg}, 144 \mu \mathrm{~mol}, 74 \%)$ as a colorless liquid.
$\mathbf{R}_{f}=0.33 \quad$ (cyclohexane/EtOAc $\left.=4 / 1\right) ; \quad[\alpha]_{D}^{20}=-11.4 \quad(\mathrm{c}=1.00, \quad \mathrm{EtOH}) ;{ }^{1} \mathbf{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=5.15(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.53-4.47(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}$, 9 H), 0.07 ($\mathrm{s}, 3 \mathrm{H}$), $0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=178.8,139.5$,

[^8]117.8, 86.1, 71.5, 64.2, 50.6, 25.8, 18.1, 16.3, 13.4, -4.3, -4.3; HRMS (ESI+) calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 323.1665$, found: 323.1662.
(3R,4R,5S)-3-(((tert-Butyldimethylsilyl)oxy)methyl)-4-hydroxy-3-methyl-5-(prop-1-en-2-yl)dihydrofuran-2(3H)-one (14a)

$\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}=300.5 \mathrm{~g} / \mathrm{mol}$

To a solution of $\mathbf{1 4}(850 \mathrm{mg}, 2.83 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry THF (45 mL) at room temperature was added a solution of TBAF ($5.94 \mathrm{~mL}, 5.94 \mathrm{mmol}, 2.1 \mathrm{eq}, 1.0 \mathrm{~m}$ in THF) dropwise over 2 minutes. The reaction mixture was stirred at room temperature for 15 minutes before it was diluted with EtOAc (50 mL) and quenched with brine $(50 \mathrm{~mL})$. After extraction with EtOAc $(3 \times 80 \mathrm{~mL})$, the combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was dissolved in DMF (5.6 mL), Imidazol ($385 \mathrm{mg}, 5.66 \mathrm{mmol}, 2.0 \mathrm{eq}$) and $\mathrm{TBSCl}(469 \mathrm{mg}, 3.11 \mathrm{mmol}, 1.1 \mathrm{eq}$) were added subsequently and the mixture was stirred at room temperature for 75 minutes and concentrated in vacuo. Purification of the obtained crude product was performed by column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, $4: 1$) to give $\mathbf{1 4 a}$ (771 mg , $2.57 \mathrm{mmol}, 91 \%$) as a colorless liquid.
$\mathbf{R}_{f}=0.35$ (cyclohexane/EtOAc $\left.=4 / 1\right) ;[\alpha]_{D}^{20}=-19.2(\mathrm{c}=1.00, \mathrm{EtOH}) ;{ }^{1} \mathbf{H}-\mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=5.16(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.45(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.57 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79 ($\mathrm{s}, 3 \mathrm{H}$), 1.16 ($\mathrm{s}, 3 \mathrm{H}$), 0.87 ($\mathrm{s}, 9 \mathrm{H}$), 0.07 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=177.6,140.5,115.0,84.3,73.0,65.6,49.8,25.9$, 18.3, 17.2, 13.2, -5.5; HRMS (ESI+) calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 323.1665$, found: 323.1652.
(2S,3R,4R)-4-(((tert-Butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxo-2-(prop-1-en-2-yl)tetrahydrofuran-3-yl acetate (15)

15

$$
\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}, \mathrm{M}=342.5 \mathrm{~g} / \mathrm{mol}
$$

To a solution of $\mathbf{1 4 a}(702 \mathrm{mg}, 2.34 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at room temperature, DMAP ($29.0 \mathrm{mg}, 237 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$), pyridine ($12.0 \mathrm{~mL}, 149 \mathrm{mmol}, 64 \mathrm{eq}$) and $\mathrm{Ac}_{2} \mathrm{O}(1.10 \mathrm{~mL}, 11.6 \mathrm{mmol}, 5.0 \mathrm{eq})$ were added subsequently. The reaction mixture was stirred at room temperature for 45 minutes before it was quenched with a saturated solution of $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. Purification of the obtained crude product was performed by column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, 8:1) to give $\mathbf{1 5}$ ($784 \mathrm{mg}, 2.29 \mathrm{mmol}, 98 \%$) as a colorless liquid.
$\mathbf{R}_{f}=0.44 \quad($ cyclohexane $/ \mathrm{EtOAc}=4 / 1) ; \quad[\alpha]_{D}^{20}=-42.5 \quad\left(\mathrm{c}=1.00, \quad \mathrm{CH}_{3} \mathrm{Cl}\right) ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=5.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.61$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.78$ $(\mathrm{s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=177.4,169.9,140.0,115.4,82.4,73.2,65.8,50.1,25.9,20.7,18.4$, $17.0,14.0,-5.5,-5.5$; HRMS (ESI+) calculated for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 365.1755$, found: 365.1745 .
(2S,3R,4R)-4-(((tert-Butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxo-2-((E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl)tetrahydrofuran-3-yl acetate (7)

$\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{BO}_{7} \mathrm{Si}, \mathrm{M}=468.5 \mathrm{~g} / \mathrm{mol}$
A mixture of $15(71.0 \mathrm{mg}, 207 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ and Hoveyda-Grubbs ${ }^{2 \text { nd }}$ catalyst (23.0 mg , $45.1 \mu \mathrm{~mol}, 0.22 \mathrm{eq}$) was dissolved in toluene (0.5 mL). 2,2-dimethylethenylboronic acid pinacol ester ($110 \mu \mathrm{~L}, 538 \mu \mathrm{~mol}, 2.6 \mathrm{eq}$) was added and the mixture was boiled for 19 hours. After removal of the solvent in vacuo purification of the obtained crude product was performed by column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, 20:1 $\rightarrow 6: 1$) to give $7(74.1 \mathrm{mg}, 173 \mu \mathrm{~mol}, 84 \%, E / Z 9: 1)$ as a colorless liquid.
$\mathbf{R}_{f}=0.22 \quad$ (cyclohexane/EtOAc $\left.=7 / 1\right) ; \quad[\alpha]_{D}^{20}=-40.0 \quad\left(\mathrm{c}=1.00, \quad \mathrm{CH}_{3} \mathrm{Cl}\right) ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=5.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (quin, $\left.J=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.60$ (dd, $J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$, $2.00(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05$ (s, 3 H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=177.5,170.0,154.3,84.5,83.3,74.0,66.1$, $50.2,25.9,25.0,25.0,20.8,18.5,15.8,14.0,-5.5,-5.5$; HRMS (ESI+) calculated for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{BO}_{7} \mathrm{SiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 491.2607$, found: 491.2622.

3.2 Synthesis of Dihydrofuran 10

(S)-1-((tert-Butyldimethylsilyl)oxy)-6-methylhept-2-yn-4-ol (17)

To a mixture of activated $\mathrm{Zn}(\mathrm{OTf})_{2}(9.50 \mathrm{~g}, 26.1 \mathrm{mmol}, 1.1 \mathrm{eq})$ and (-) $-\mathrm{N}-$ methylephedrine ($5.11 \mathrm{~g}, 28.5 \mathrm{mmol}, 1.2 \mathrm{eq}$) in dry toluene (65 ml) $\mathrm{Et} 3 \mathrm{~N}(3.95 \mathrm{~mL}$, $28.5 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added dropwise and stirred under argon atmosphere at room temperature for 2 hours. To the resulting milky-white slurry a solution of TBS protected propargyl ether ($5.78 \mathrm{~mL}, 28.5 \mathrm{mmol}, 1.2 \mathrm{eq}$) in dry toluene (20 ml) was added dropwise and it was stirred for 15 min . Afterwards, freshly distilled isovaleraldehyde (2.55 mL , $23.8 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added dropwise and it was stirred at rt overnight before the reaction mixture was diluted with toluene (660 mL) and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(3 \times 120 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation of solvent gave a crude product that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 95:5) to yield $17(5.13 \mathrm{~g}, 20.0 \mathrm{mmol}, 84 \%)$ as a colourless liquid in an enantiomeric excess of 94% as determined by Mosher ester analysis. ${ }^{18}$
$\mathbf{R}_{f}=0.30$ (petroleum ether/EtOAc $=95 / 5$); $[\alpha]_{D}^{20}=-10.0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.13(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-$ $1.91(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{tdt}, J=7.2,5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-5.1,18.3,22.4,22.5,24.7,25.8,46.7,51.7,61.1,83.5$, 86.0; HRMS (ESI+): calculated for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NaO}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 279.1751, found: 279.1745.

Spectral data match those previously reported. ${ }^{18}$

(S)-10-iso-Butyl-15,15,16,16-tetramethyl-2,9,14-trioxa-15-silaheptadeca-6,11-diyne (16a)

$\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}, \mathrm{M}=366.6 \mathrm{~g} / \mathrm{mol}$

To a cold $\left(0^{\circ} \mathrm{C}\right)$ suspension of sodium hydride (60% in mineral oil, $935 \mathrm{mg}, 23.4 \mathrm{mmol}$, $1.6 \mathrm{eq})$ in $\mathrm{MeCN}(170 \mathrm{~mL})$ a solution of alcohol $16(3.75 \mathrm{~g}, 14.6 \mathrm{mmol}, 1.0 \mathrm{eq})$ in MeCN

[^9]$(20 \mathrm{ml})$ was slowly added. The resulting mixture was warmed to room temperature and stirred for 1 hour. Afterwards a solution of $\mathbf{1 7}(4.13 \mathrm{~g}, 14.6 \mathrm{mmol}, 1.0 \mathrm{eq})$ in MeCN $(20 \mathrm{~mL})$ was added. The mixture was stirred over night before it was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 95:5) gave 16a (4.55 g , $12.4 \mathrm{mmol}, 85 \%$) as a colorless oil.
$\mathbf{R}_{f}=0.24$ (petroleum ether/EtOAc $=95 / 5$); $[\alpha]_{D}^{20}=-137.0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.13(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.54 (ddd, $J=13.6,7.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.68(\mathrm{ddd}, J=13.6,8.0,6.8 \mathrm{~Hz}$, 1 H), 1.77 (tt, $J=7.1,6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.88 (virt. spt, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{tt}, J=7.1,2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{dt}, J=15.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dt}, J=$ $15.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.41(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-5.1$, $15.5,18.3,22.3,22.6,24.5,25.8,28.6,44.4,51.7,56.2,58.6,66.4,71.2,76.0,83.5,84.5$, 86.1; HRMS (ESI+) calculated for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{NaO}_{3} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 389.2482$, found: 389.2468.

(S)-4-((6-Methoxyhex-2-yn-1-yl)oxy)-6-methylhept-2-yn-1-ol (16b)

A stirred solution of TBS protected alcohol $\mathbf{1 6 a}(5.18 \mathrm{~g}, 14.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ in MeOH $(140 \mathrm{~mL})$ was treated with CSA ($984 \mathrm{mg}, 4.24 \mathrm{mmol}, 0.3 \mathrm{eq}$) at room temperature. After 10 minutes, TLC indicated complete conversion and a saturated solution of NaHCO_{3} $(400 \mathrm{~mL})$ and EtOAc (1400 mL) were added. The layers were separated and the organic layer was washed with $\mathrm{NaHCO}_{3}(400 \mathrm{ml})$ and with brine (400 mL) before it was dried over MgSO_{4} and the solvent was evaporated in vacuo to give alcohol $\mathbf{1 6 b}$ (3.52 g , $14.0 \mathrm{mmol}, 99 \%)$.
$\mathbf{R}_{f}=0.27$ (petroleum ether/EtOAc $\left.=70 / 30\right) ;[\alpha]_{D}^{20}=-139.5\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.55$
(ddd, $J=13.6,7.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, J=13.6,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{tt}, J=7.1,6.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.87 (virt. spt, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{tt}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.47$ $(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{dt}, J=15.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.39(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.5,22.2,22.6,24.6,28.5,44.5,51.1,56.4,58.6,66.5$, 71.2, 76.0, 84.0, 84.6, 86.3; HR-MS (ESI+) calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 275.1618, found: 275.1620.

(S)-4-((6-Methoxyhex-2-yn-1-yl)oxy)-6-methylhept-2-ynal (18)

$$
\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}, \mathrm{M}=250.3 \mathrm{~g} / \mathrm{mol}
$$

To a solution of alcohol $\mathbf{1 6 b}(3.15 \mathrm{~g}, 12.6 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DMSO (80 mL) IBX (8.80 g , $31.4 \mathrm{mmol}, 2.5 \mathrm{eq}$) was added and the reaction mixture was stirred at room temperature for 2 hours before TLC indicated complete formation of the aldehyde and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(800 \mathrm{~mL})$ was added. After stirring for 30 minutes, a white precipitate had formed which was removed by filtration. The remaining clear solution was washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 700 \mathrm{~mL})$ and dried over MgSO_{4}. Removal of the solvent under reduced pressure afforded a crude product that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, $93: 7$) to give $\mathbf{1 8}(2.93 \mathrm{~g}, 11.7 \mathrm{mmol}, 93 \%)$ as a colorless oil.
$\mathbf{R}_{f}=0.24$ (petroleum ether/EtOAc $=93 / 7$); $[\alpha]_{D}^{20}=-217.2\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.61$ (ddd, $J=13.6,7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.33$ (tt, $J=7.1$, $2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{dt}, J=15.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (dt, $J=15.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=8.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.25(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$-NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.5,22.0,22.6,24.5,28.5,43.6,57.0,58.6$, 66.0, 71.1, 75.2, 85.0, 87.2, 95.1, 176.3; HRMS (ESI+) calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{3}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 273.1461$, found: 273.1472.

(S,E)-Ethyl 6-((6-methoxyhex-2-yn-1-yl)oxy)-8-methylnon-2-en-4-ynoate (18a)

$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}, \mathrm{M}=\mathbf{3 2 0 . 4} \mathrm{g} / \mathrm{mol}$

Triethyl phosphonoacetate 19 ($5.7 \mathrm{~mL}, 11.5 \mathrm{~mol}, 2.5 \mathrm{eq}$) was dissolved in dry THF $(180 \mathrm{ml})$. After cooling to $-78^{\circ} \mathrm{C}$, NaHMDS (1.0 m in THF, $23.0 \mathrm{ml}, 23.0 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added dropwise over a period of 15 minutes. Stirring was continued for 1 hour at $78{ }^{\circ} \mathrm{C}$. Afterwards, a solution of aldehyde $18(2.89 \mathrm{~g}, 11.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF (15 mL) was added over a period of 20 minutes. The reaction mixture was stirred for 2 hours at $78{ }^{\circ} \mathrm{C}$ before it was quenched by addition of buffer ($\mathrm{pH} 7,150 \mathrm{ml}$). $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ was added and the organic layer was separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 150 \mathrm{~mL})$ and the combined organic extracts were dried over MgSO_{4}. The solvent was removed under reduced pressure and after purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 93:7) 18a was yielded ($3.43 \mathrm{~g}, 10.7 \mathrm{mmol}, 93 \%$) as a colorless liquid.
$\mathbf{R}_{f}=0.26$ (petroleum ether/EtOAc $=93 / 7$); $[\alpha]_{D}^{20}=-216.3\left(c=1.0\right.$ in CHCl_{3}); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{ddd}, J=13.6,7.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.87$ (virt. spt, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{tt}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-$ $4.26(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{dt}, J=15.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (ddd, $J=7.9,6.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=15.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta[\mathrm{ppm}]=14.2,15.5,22.2,22.6,24.6,28.6,44.2,56.5,58.6,60.8,66.8,71.1,75.7,82.6$, 86.6, 97.4, 124.5, 130.8, 165.7; HRMS (ESI+): calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 343.1880, found: 343.1887.

(S,E)-6-((6-Methoxyhex-2-yn-1-yl)oxy)-8-methylnon-2-en-4-yn-1-ol (18b)

To a cold ($-78{ }^{\circ} \mathrm{C}$) solution of ester $18 \mathrm{a}(3.33 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mathrm{~mL})$ a solution of DIBAL-H (1 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 31 \mathrm{~mL}, 31.0 \mathrm{mmol}, 3.0 \mathrm{eq}$) was added over a period of 20 minutes. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 hours before it was warmed to $0^{\circ} \mathrm{C}$. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{~mL})$ was slowly added followed by slow addition of an aqueous NaOH solution $(15 \%, 1.3 \mathrm{~mL})$ and finally $\mathrm{H}_{2} \mathrm{O}(3.1 \mathrm{~mL})$. The mixture was allowed to warm to room temperature and it was stirred for additional 30 minutes. Then it was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent evaporated in vacuo to give $\mathbf{1 8 b}(2.87 \mathrm{~g}, 10.3 \mathrm{mmol}, 99 \%)$ as a colorless liquid. $\mathbf{R}_{f}=0.28$ (petroleum ether/EtOAc $\left.=70 / 30\right) ;[\alpha]_{D}^{20}=-258.8\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.92-0.96(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{ddd}, J=13.6$, $7.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.78(\mathrm{tt}, J=7.0,6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.87 (virt. spt, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.32(\mathrm{tt}, J=$ $7.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.19-4.26(\mathrm{~m}, 3 \mathrm{H}), 4.31(\mathrm{dt}, J=$ $15.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.46(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{dq}, J=15.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=15.9$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.5,22.3,22.6,24.6,28.6,44.5$, 56.3, 58.6, 62.8, 67.0, 71.2, 76.1, 83.6, 86.2, 88.7, 109.9, 142.1; HRMS (ESI+): calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 301.1774$, found: 301.1770.
((2S,3S)-3-((S)-3-((6-Methoxyhex-2-yn-1-yl)oxy)-5-methylhex-1-yn-1-yl)oxiran-2yl)methanol (20)

$$
\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}, \mathrm{M}=294.4 \mathrm{~g} / \mathrm{mol}
$$

To a flask containing freshly activated MS ($4 \AA$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ L-(+)-di-iso-propyl tartrate ($187 \mathrm{mg}, 168 \mu \mathrm{~L}, 0.797 \mathrm{mmol}, 0.15 \mathrm{eq}$) was added and the mixture was cooled to $-23{ }^{\circ} \mathrm{C}$ before $\mathrm{Ti}(\mathrm{OiPr})_{4}(227 \mathrm{mg}, 236 \mu \mathrm{~L}, 0.797 \mathrm{mmol}, 0.15 \mathrm{eq})$ and $t-\mathrm{BuOOH}(\sim 5.5 \mathrm{~m}$ in decane, $1.93 \mathrm{~mL}, 10.6 \mathrm{mmol}, 2.0 \mathrm{eq}$) were added successively. The mixture was stirred for 30 minutes before a solution of alcohol $\mathbf{1 8 b}(1.48 \mathrm{~g}, 5.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, which had been pre-dried over MS ($4 \AA$) for 3 hours, was slowly added. The reaction mixture was stirred at $-23^{\circ} \mathrm{C}$ overnight.

When TLC indicated complete conversion, the reaction mixture was filtered and an aqueous solution of $\mathrm{FeSO}_{4}(3.60 \mathrm{~g})$ and citric acid $(1.35 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added. After it was stirred for 30 minutes it was cooled to $0^{\circ} \mathrm{C}$ and treated with 1 m NaOH $(12.5 \mathrm{~mL})$ for 1 hour before it was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the phases were separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and evaporated in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 6:4) to afford epoxyalcohol $\mathbf{2 0}$ as a colorless oil ($1.46 \mathrm{~g}, 4.94 \mathrm{mmol}, d r>15: 1,93 \%$).
$\mathbf{R}_{f}=0.24$ (petroleum ether/EtOAc $=70 / 30$); $[\alpha]_{D}^{20}=-138.9\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.53$ (ddd, $J=13.7,7.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddd}, J=13.7,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{tt}, J=7.1,6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.80-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{tt}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{dt}, J=3.3,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.33(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.47-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{ddd}, J=13.0,8.1,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93$ (ddd, $J=13.0,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dt}, J=15.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dt}, J=$ 15.3, 2.2 Hz, 1H), 4.33 (ddd, $J=7.8,6.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $[\mathrm{ppm}]=15.5,22.2,22.6,24.5,28.5,42.5,44.3,56.4,58.6,60.0,60.1,66.3,71.2,75.8$, 81.6, 83.3, 86.4; HRMS (ESI+): calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 317.1723$, found: 317.1726.

$\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{4}, \mathrm{M}=311.4 \mathrm{~g} / \mathrm{mol}$

Epoxyalcohol $20(2.00 \mathrm{~g}, 6.79 \mathrm{mmol})$ was shared in portions of 70 to 80 mg in high pressure microwave tubes equipped with a magnetic stirring bar. To each tube $\mathrm{NH}_{4} \mathrm{OH}$ (25% in $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~mL}$ per 10 mg of $\mathbf{2 0}$ was added and the resulting mixture was dispersed by magnetic stirring and in an ultrasonic bath until a milky white emulsion was obtained. The tube was immediately placed into a microwave reactor (Cem Discover) were it was irradiated for 10 minutes between 20 and 30 W at $110^{\circ} \mathrm{C}$. Afterwards the solvent was removed in vacuo to give crude $20 \mathrm{a}(2.03 \mathrm{~g}$, max. 6.52 mmol) that was used without further purification. An analytical sample was purified by flash column chromatography ($\mathrm{SiO}_{2}, \mathrm{EtOAc} / \mathrm{MeOH} / i \mathrm{PrNH}_{2}, 100: 5: 5$) to afford 20a as an orange gum.
$\mathbf{R}_{f}=0.22\left(\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{iPNH}_{2}=100 / 4 / 4\right) ;[\alpha]_{D}^{20}=-131.9\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=0.96$ (virt. t, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$), 1.54 (ddd, $J=13.6,7.5,6.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.67 (ddd, $J=13.6,7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.76 (tt, $J=7.1,6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.90 (virt. $\mathrm{spt}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{tt}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.64-3.69 (m, 3H), 3.76-3.78 (m, 1H), 4.30 (t, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{ddd}, J=7.9,6.2,1.9$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=16.2,22.8,23.3,25.9,29.9,46.0$, 47.3, 57.0, 59.0, 64.9, 67.6, 72.3, 75.6, 77.3, 84.0, 86.5, 87.1; HRMS (ESI+): calculated for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 312.2169$ found: 312.2165 .

2-(Trimethylsilyl)ethyl ((2R,3R,6S)-1,2-dihydroxy-6-((6-methoxyhex-2-yn-1-yl)oxy)-8-methylnon-4-yn-3-yl)carbamate (20b)

$\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{Si}, \mathrm{M}=455.7 \mathrm{~g} / \mathrm{mol}$

Crude amine 20a (2.03 g , max. $6.52 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in a mixture of acetone and $\mathrm{H}_{2} \mathrm{O}(2: 1 \mathrm{v} / \mathrm{v}, 30 \mathrm{~mL}) . \mathrm{NaHCO}_{3}(1.64 \mathrm{~g}, 19.6 \mathrm{mmol}, 3.0 \mathrm{eq})$ was added followed by TeocOSuc ($2.20 \mathrm{~g}, 8.48 \mathrm{mmol}, 1.3 \mathrm{eq}$). The resulting solution was stirred at room temperature for 2 hours before $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added followed by EtOAc (75 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 1:1) yielded $20 \mathrm{~b}(2.51 \mathrm{~g}, 5.50 \mathrm{mmol}, 81 \%$ over 2 steps) as a yellow gum.
$\mathbf{R}_{f}=0.23$ (petroleum ether/EtOAc $\left.=60 / 40\right) ;[\alpha]_{D}^{20}=-131.8\left(c=2.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.02(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 3 H), $0.94-1.01$ (m, 2H), 1.50 (ddd, $J=13.6,7.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67$ (ddd, $J=13.6,7.9,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75$ (tt, $J=7.1,6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.82 (virt. spt, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{tt}, J=7.1,2.1$ Hz, 2H), 3.10 (br. s, 1H), 3.31 (s, 3H), 3.34 (br. s, 1H), 3.44 (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.65-3.77 (m, 3H), 4.11-4.22 (m, 3H), $4.26(\mathrm{dt}, J=15.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{ddd}, J=7.9,6.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56-4.64(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ $-1.6,15.4,17.6,22.1,22.6,24.5,28.4,44.3,46.1,56.3,58.5,63.3,63.8,66.4,71.1,73.4$, 75.8, 81.8, 83.9, 86.4, 156.5; HRMS (ESI+): calculated for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NNaO}_{6} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 478.2595, found: 478.2597.

2-(Trimethylsilyl)ethyl ((10S,13R,14R)-14-hydroxy-10-isobutyl-17,17,18,18-tetramethyl-2,9,16-trioxa-17-silanonadeca-6,11-diyn-13-yl)carbamate (20c)

20c
$\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{NO}_{6} \mathrm{Si}_{2}, \mathrm{M}=\mathbf{5 6 9 . 9} \mathrm{g} / \mathrm{mol}$

A solution of diol $\mathbf{2 0 b}(8.08 \mathrm{~g}, 17.7 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DMF (27 mL) was treated at room temperature with imidazole ($3.02 \mathrm{~g}, 44.3 \mathrm{mmol}, 2.5 \mathrm{eq}$). When the solution had turned clear, it was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{TBSCl}(2.80 \mathrm{~g}, 18.6 \mathrm{mmol}, 1.05 \mathrm{eq})$ was added. The mixture was warmed to ambient temperature again and stirred for 1 hour.

The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The layers were separated and the product was extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 9:1 \rightarrow 8:2) yielded $\mathbf{2 0 c}(9.38 \mathrm{~g}, 16.5 \mathrm{mmol}, 93 \%)$ as a yellow oil.
$\mathbf{R}_{f}=0.33$ (petroleum ether/EtOAc $=80 / 20$); $[\alpha]_{D}^{20}=-115.9\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.04(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.89-0.95(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$ $0.95-1.03(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{ddd}, J=13.7,7.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{ddd}, J=13.7,7.8,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.73-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.85$ (virt. spt, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{tt}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.55$ (br. s, 1H), $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=9.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.81$ (m, 1H), 3.85 (dd, $J=9.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.29(\mathrm{dt}, J=15.3,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.33 (ddd, $J=7.8,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.76(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-5.5,-1.5,15.5,17.7,18.2,22.2,22.6,24.6,25.8,28.6$, 44.5, 46.5, 56.3, 58.6, 63.5, 64.4, 66.4, 71.2, 72.5, 75.9, 81.8, 83.8, 86.3, 156.1; HRMS (ESI+): calculated for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{NNaO}_{6} \mathrm{Si}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 592.3460$, found: 592.3462.

To confirm the absolute configuration at C13, alcohol 20c was converted to the corresponding Mosher esters S3 and S4 (Scheme S 2)

Scheme S 2: Attempts to determine the absolute configuration of 20c at C13
Since determination of the absolute configuration at $\mathbf{C 1 3}$ using $\mathbf{S 3}$ and $\mathbf{S 4}$, led to ambiguous results, $\mathbf{2 0}$ was reductively opened in a regioselective fashion to give $\mathbf{S 5}$ after TBS-protection. Mosher ester analysis thereof clearly showed the indicated configuration (Scheme S 3).

20
a) $\mathrm{LiAlH}_{4}, 79 \%$
b) TBSCI,

I Imidazol, 81\%

Scheme S 3: Determination of the absolute configuration at C13 using alcohol S5. 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (S3)

$\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{Si}_{2}, \mathrm{M}=\mathbf{7 8 6 . 1} \mathrm{g} / \mathrm{mol}$

Alcohol 20c ($6.8 \mathrm{mg}, 11.9 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mu \mathrm{~L})$ before pyridine ($8 \mu \mathrm{~L}, 99.3 \mu \mathrm{~mol}, 8.3 \mathrm{eq}$) and (R)-MTPA-Cl $(9 \mu \mathrm{~L}, 48.1 \mu \mathrm{~mol}, 4.0 \mathrm{eq})$ were added successively. The solution was stirred for 1 hour at room temperature before further (R)-MTPA-Cl $(9 \mu \mathrm{~L}, 48.1 \mu \mathrm{~mol}, 4.0 \mathrm{eq})$ was added. After 3 hours, when TLC indicated complete consumption of the starting material, a saturated solution of NaHCO_{3} $(1 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, $\left.88: 12\right)$ gave $\mathbf{S 3}(8.9 \mathrm{mg}$, $11.3 \mu \mathrm{~mol}, 95 \%)$ as a colorless oil.
$\mathbf{R}_{f}=0.25$ (petroleum ether/EtOAc $=90 / 10$); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ $0.03(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.90-0.93(\mathrm{~m}, 6 \mathrm{H}), 0.94-1.00(\mathrm{~m}$, 2 H), 1.49 (ddd, $J=13.7,7.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ (ddd, $J=13.7,7.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.72-1.89 $(\mathrm{m}, 3 \mathrm{H}), 2.31(\mathrm{tt}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.55(\mathrm{~m}$, $3 \mathrm{H}), 3.76(\mathrm{dd}, J=10.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.21(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{dt}, J=$ $15.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (ddd, $J=7.8,6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.23(\mathrm{~m}$, $1 \mathrm{H})$, 5.33-5.43 (m, 1H), 7.36-7.46 (m, 3H), 7.52-7.60 (m, 2H); ${ }^{13}$ C-NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-5.9,-5.8,-1.5,15.5,17.6,18.1,22.2,22.5,24.5,25.7,28.6,44.3$, $44.5,55.3,56.3,58.6,61.8,63.5,66.2,71.1,75.8,75.8,80.6,84.1,84.9,86.3,123.1$ (q, J $=288.2 \mathrm{~Hz}$), 127.5, 128.5, 129.7, 131.7, 155.6, 165.9; ${ }^{19}$ F-NMR (282 MHz, CDCl_{3}): $\delta[\mathrm{ppm}]=-71.9$. 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (S4)

$\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{Si}_{2}, \mathrm{M}=\mathbf{7 8 6 . 1} \mathrm{g} / \mathrm{mol}$

Alcohol 20c ($6.6 \mathrm{mg}, 11.6 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mu \mathrm{~L})$ before pyridine ($8 \mu \mathrm{~L}, 99.3 \mu \mathrm{~mol}, 8.6 \mathrm{eq}$) and (S)-MTPA-Cl ($9 \mu \mathrm{~L}, 48.1 \mu \mathrm{~mol}, 4.2 \mathrm{eq}$) were added successively. The solution was stirred for 1 hour at room temperature before further (S)-MTPA-Cl ($9 \mu \mathrm{~L}, 48.1 \mu \mathrm{~mol}, 4.2 \mathrm{eq}$) was added. After 3 hours, when TLC indicated complete consumption of the starting material, a saturated solution of NaHCO_{3} $(1 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, $\left.88: 12\right)$ gave $\mathbf{S 4}(8.6 \mathrm{mg}$, $10.9 \mu \mathrm{~mol}, 94 \%)$ as a colorless oil.
$\mathbf{R}_{f}=0.25$ (petroleum ether/EtOAc $=90 / 10$); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ $0.05(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.87-0.91(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{dd}, J=9.8$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{dt}, J=13.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62$ (ddd, $J=13.7,7.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-$ $1.84(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{tt}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-$ $3.58(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{dd}, J=10.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=10.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dt}, J$ $=15.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{dt}, J=15.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.26(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.61(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-5.7,-5.6,-1.5,15.5,17.7,18.1,22.3,22.5$, $24.5,25.7,28.6,44.2,44.3,55.5,56.2,58.6,61.9,63.6,66.2,71.2,75.8,76.2,80.3,84.1$, 84.8, 86.3, 123.3 (q, $J=288.2 \mathrm{~Hz}$), 127.3, 128.5, 129.7, 132.2, 155.4, 165.9; ${ }^{19}$ F-NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-71.8$.

Table S 4: Mosher ester analysis of alcohol 20c. ${ }^{\mathbf{1 9}}$

\# of H	δ_{S}	δ_{R}	$\Delta \delta_{\mathrm{S}-\mathrm{R}}$
1	0.90	0.88	+0.02
1	0.92	0.90	+0.02
2	1.82	1.80	+0.02
3 a	1.49	1.46	+0.03
3 b	1.66	1.62	+0.04
4	4.31	4.28	+0.03
5	5.03	4.95	+0.08
6	5.38	4.98	+0.40
10 a	3.76	3.84	-0.08
10 b	4.03	4.02	$+0.01^{20}$
11	0.03	0.10	-0.07
11^{6}	0.05	0.10	-0.05
12	0.88	0.91	-0.03

(2R,6S)-6-((6-Methoxyhex-2-yn-1-yl)oxy)-8-methylnon-4-yne-1,2-diol (20d)

$$
\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}, \mathrm{M}=296.4 \mathrm{~g} / \mathrm{mol}
$$

[^10]To a suspension of LAH ($23.3 \mathrm{mg}, 0.613 \mathrm{mmol}, 2.0 \mathrm{eq}$) in dry THF (2.5 mL) a solution of epoxide 20 ($90.2 \mathrm{mg}, 0.306 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (2.5 mL) was added. The reaction mixture was stirred for 2 hours at room temperature before it was cooled down to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}(25 \mu \mathrm{~L}), \mathrm{NaOH}(3 \mathrm{M}, 25 \mu \mathrm{~L})$ and further $\mathrm{H}_{2} \mathrm{O}(75 \mu \mathrm{~L})$ were added in this order with an interval of 5 minutes each to give a white precipitate. The mixture was filtered and the precipitate was washed with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give crude 20 d ($71.3 \mathrm{mg}, 0.240 \mathrm{mmol}$, 79%) that was used without further purification.
$\mathbf{R}_{f}=0.24$ (petroleum ether/EtOAc $=50 / 50$); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ 0.93 (virt. t, $J=6.4 \mathrm{~Hz}, 6 \mathrm{H}$), 1.52 (dt, $J=13.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.68 (dt, $J=13.7,7.5 \mathrm{~Hz}$, 1 H), 1.78 (virt. quin, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.82-1.88 (m, 1H), 2.20 (br. s, 1 H), $2.32(\mathrm{tt}, J=7.1$, $2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.45-2.51 (m, 2H), 2.56 (br. s, 1H), 3.34 (s, 3 H), 3.46 (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.59(\mathrm{dt}, J=11.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.91(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{dt}, J=15.3$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.5,22.3$, $22.6,23.8,24.6,28.5,44.7,56.2,58.6,65.5,66.7,70.3,71.2,76.1,81.7,81.7,86.2$; HRMS (ESI+): calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 319.1880$, found: 319.1877.
(10S,14R)-10-iso-Butyl-17,17,18,18-tetramethyl-2,9,16-trioxa-17-silanonadeca-6,11-diyn-14-ol (S5)

S5
$\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}=410.7 \mathrm{~g} / \mathrm{mol}$

To a solution of diol $\mathbf{2 0 d}(50.0 \mathrm{mg}, 0.172 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DMF (0.35 mL) imidazole $(25.8 \mathrm{mg}, 0.378 \mathrm{mmol}, 2.2 \mathrm{eq})$ was added followed by TBSCl ($28.6 \mathrm{mg}, 0.191 \mathrm{mmol}$, $1.1 \mathrm{eq})$. The reaction mixture was stirred at room temperature for 4 hours before it was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}) . \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give a crude product
that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 85:15) to give $\mathbf{S 5}(57.2 \mathrm{mg}, 0.139 \mathrm{mmol}, 81 \%)$ as a colorless oil.
$\mathbf{R}_{f}=0.33$ (petroleum ether/EtOAc $=85 / 15$); $[\alpha]_{D}^{20}=-128.0\left(c=0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.09(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89-0.96(\mathrm{~m}, 6 \mathrm{H}), 1.52$ (ddd, $J=13.6,7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=13.6,7.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{tt}, J=7.1,6.3 \mathrm{~Hz}$, 2 H), 1.86 (virt. spt, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.32(\mathrm{tt}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.53(\mathrm{~m}, 3 \mathrm{H}), 3.34$ ($\mathrm{s}, 3 \mathrm{H}$), $3.46(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=9.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=9.9,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75-3.84(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dt}, J=15.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-5.4,-5.4,15.6,18.3,22.3,22.6,23.4,24.7,25.9,28.6$, 44.8, 56.1, 58.6, 65.6, 66.7, 70.3, 71.2, 76.1, 81.0, 82.1, 86.1; HRMS (ESI+): calculated for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{NaO}_{4} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 433.2745$, found: 433.2741.
(10S,14R)-10- iso-Butyl-17,17,18,18-tetramethyl-2,9,16-trioxa-17-silanonadeca-6,11-diyn-14-yl (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (S6)

$\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{Si}, \mathrm{M}=\mathbf{6 2 6 . 8} \mathbf{g} / \mathrm{mol}$

Alcohol $\mathbf{S 5}$ ($16.4 \mathrm{mg}, 39.9 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mu \mathrm{~L})$ before pyridine ($26 \mu \mathrm{~L}, 322 \mu \mathrm{~mol}, 8.1 \mathrm{eq}$) and (S)-MTPA-Cl ($30 \mu \mathrm{~L}, 160 \mu \mathrm{~mol}, 4.0 \mathrm{eq}$) were added successively. The solution was stirred for 3 hours at room temperature until TLC indicated complete consumption of the starting material. A saturated solution of NaHCO_{3} $(1.5 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, $\left.92: 8\right)$ gave $\mathbf{S 6}(23.9 \mathrm{mg}$, $38.1 \mu \mathrm{~mol}, 96 \%)$ as a colorless oil.
$\mathbf{R}_{f}=0.24$ (petroleum ether/EtOAc $=93 / 7$); $[\alpha]_{D}^{20}=-43.9\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87-0.94(\mathrm{~m}, 6 \mathrm{H})$,
1.46 (ddd, $J=13.7,7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{ddd}, J=13.7,7.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{tt}, J=$ $7.1,6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.84 (virt. spt, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (tt, $J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.56 (ddd, $J=16.8,5.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=16.8,7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.59(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{dd}, J=11.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=11.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14(\mathrm{dt}, J=15.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.28(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{dddd}, J=7.0,5.8,5.4$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $[\mathrm{ppm}]=-5.6,15.5,18.2,20.4,22.3,22.5,24.6,25.7,28.6,44.6,55.4(\mathrm{q}, J=1.2 \mathrm{~Hz})$, $56.1,58.6,62.8,66.5,71.2,75.1,76.0,80.4,81.4,84.7(\mathrm{q}, J=27.8 \mathrm{~Hz}), 86.1,123.3(\mathrm{q}, J$ $=288.4 \mathrm{~Hz}), 127.4(\mathrm{q}, J=1.0 \mathrm{~Hz}), 128.4,129.6,132.2,166.0 ;{ }^{19}$ F-NMR $(282 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-72.0 ;$ HRMS $(\mathrm{ESI}+)$: calculated for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{NaO}_{6} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 649.3143, found: 649.3147.
(10S,14R)-10- iso-Butyl-17,17,18,18-tetramethyl-2,9,16-trioxa-17-silanonadeca-6,11-diyn-14-yl (S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (S7)

S7

$$
\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{Si}, \mathrm{M}=626.8 \mathrm{~g} / \mathrm{mol}
$$

Alcohol S5 ($18.9 \mathrm{mg}, 46.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{~L})$ before pyridine ($30 \mu \mathrm{~L}, 372 \mu \mathrm{~mol}, 8.1 \mathrm{eq}$) and (R)-MTPA-Cl ($35 \mu \mathrm{~L}, 185 \mu \mathrm{~mol}, 4.0 \mathrm{eq}$) were added successively. The solution was stirred for 3 hours at room temperature until TLC indicated complete consumption of the starting material. A saturated solution of NaHCO_{3} $(1.5 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, $\left.92: 8\right)$ gave $\mathbf{S} 7(26.5 \mathrm{mg}$, $42.3 \mu \mathrm{~mol}, 92 \%$) as a colorless oil.
$\mathbf{R}_{f}=0.24$ (petroleum ether/EtOAc $=93 / 7$); $[\alpha]_{D}^{20}=-91.2\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.01(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.89-0.94(\mathrm{~m}, 6 \mathrm{H})$,
1.49 (ddd, $J=13.6,7.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{ddd}, J=13.6,7.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{tt}, J=$ $7.1,6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.84 (virt. spt, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.31(\mathrm{tt}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.64 (ddd, $J=17.0,6.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{ddd}, J=17.0,6.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{dd}, J=10.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.9,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16$ (dt, $J=15.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.32(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{tt}, J=6.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.38-7.43 (m, 3H), 7.55-7.60 (m, 2H); ${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-5.7$, $5.7,15.5,18.2,20.7,22.3,22.5,24.6,25.7,28.6,44.6,55.5$ (q, $J=1.2 \mathrm{~Hz}$), 56.1, 58.6 , $62.6,66.5,71.2,75.0,76.0,80.7(\mathrm{q}, ~ J=27.6 \mathrm{~Hz}), 81.4,84.6,86.1,123.2(\mathrm{q}, ~ J=288.6$ $\mathrm{Hz}), 127.4(\mathrm{q}, J=1.0 \mathrm{~Hz}), 128.4,129.5,132.2,166.0 ;{ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-71.9 ;$ HRMS (ESI +): calculated for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{NaO}_{6} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 649.3143$, found: 649.3157.

Table S 5: Mosher ester analysis of alcohol S5.

$\#$ of \mathbf{H}	$\boldsymbol{\delta}_{\mathbf{s}}$	$\boldsymbol{\delta}_{\mathbf{R}}$	$\boldsymbol{\Delta} \boldsymbol{\delta}_{\mathbf{s}-\mathbf{R}}$
1	0.90	0.89	+0.01
1	0.92	0.91	+0.01
2	1.84	1.84	+0.00
3 a	1.49	1.46	+0.03
3 b	1.65	1.63	+0.02
4	4.29	4.26	+0.03
5 a	2.64	2.56	+0.08
5 b	2.75	2.64	+0.11
6 a	3.74	3.84	-0.10
6 b	3.77	3.90	-0.13
7	0.01	0.07	-0.06
$7{ }^{\text {c }}$	0.01	0.08	-0.07
8	0.86	0.90	-0.04

2-(Trimethylsilyl)ethyl (4R,5R)-5-(((tert-butyldimethylsilyl)oxy)methyl)-4-((S)-3-((6-methoxyhex-2-yn-1-yl)oxy)-5-methylhex-1-yn-1-yl)-2,2-dimethyloxazolidine-3carboxylate (21)

To a solution of alcohol $\mathbf{2 0 c}(950 \mathrm{mg}, 1.67 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry toluene (42 mL) PPTS ($41 \mathrm{mg}, 0.167 \mathrm{mmol}, 0.1 \mathrm{eq}$) and 2-methoxypropene ($6.3 \mathrm{~mL}, 67.3 \mathrm{mmol}, 40 \mathrm{eq}$) were added and the mixture stirred at $110^{\circ} \mathrm{C}$ overnight.

The next day, the reaction was quenched by addition of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The organic layer was separated and the aqueous was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 93:7) yielded 21 ($961 \mathrm{mg}, 1.58 \mathrm{mmol}, 95 \%$) as a slightly yellow oil.
$\mathbf{R}_{f}=0.25$ (petroleum ether/EtOAc $=93 / 7$); $[\alpha]_{D}^{20}=-105.4\left(c=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=0.06(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.89-0.92(\mathrm{~m}, 3 \mathrm{H})$, $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{tt}, J=7.1,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{tt}$, $J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.91(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{td}$, $J=6.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{dt}, J=15.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61-4.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=-5.1,-5.0,-1.3$, 16.0, 18.4, 18.7, 22.7*, 22.8, 22.9, 22.9*, 24.8, 25.3, 25.8*, 26.2, 26.8, 27.9*, 29.3, 45.0, $51.5,52.0^{*}, 56.6,58.9,63.1,63.8,64.2^{*}, 67.0,71.6,76.4,77.0^{*}, 77.3,82.3^{*}, 82.4,83.8^{*}$, 84.0, 86.7, 95.0, 152.6 (Note: extra signals due to amide resonance, distinguishable signals of the minor rotamer are denoted with an asterisk); HRMS (ESI+): calculated for $\mathrm{C}_{32} \mathrm{H}_{59} \mathrm{NNaO}_{6} \mathrm{Si}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 632.3773$, found: 632.3776.

2-(Trimethylsilyl)ethyl (4R,5R)-4-((Z)-((S,E)-4-(1-bromo-4-methoxybutylidene)-2-isobutyldihydrofuran-3(2H)-ylidene)methyl)-5-(((tert-

 butyldimethylsilyl)oxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (23)

 butyldimethylsilyl)oxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (23)}

23
$\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{BrNO}_{6} \mathrm{Si}_{2}, \mathrm{M}=\mathbf{6 9 0 . 9} \mathrm{g} / \mathrm{mol}$

Zirconocene dichloride was heated under vacuum until sublimation started, then the heating was stopped and it was stored under vacuum overnight. Diyne 21 was coevaporated with dry toluene (2 mL) under argon three times and it was stored under vacuum overnight. NBS was recrystallized from CHCl_{3} prior to use.

Zirconocene dichloride ($98.6 \mathrm{mg}, 0.337 \mathrm{mmol}, 1.5 \mathrm{eq}$) was dissolved in dry THF $(1.4 \mathrm{~mL})$ and the mixture was cooled to $-78^{\circ} \mathrm{C}$. Afterwards, $n-\mathrm{BuLi}(2.5 \mathrm{~m}$ in hexanes, $270 \mu \mathrm{~L}, 0.675 \mathrm{mmol}, 3.0 \mathrm{eq}$) was added dropwise and the resulting light green solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes. Afterwards a solution of diyne (137 mg , $0.225 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (3.6 mL) was added. The mixture was allowed to warm up to room temperature and was stirred for 80 minutes. The resulting dark red solution was cooled again to $-78{ }^{\circ} \mathrm{C}$ and NBS ($80.1 \mathrm{mg}, 0.450 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added in one portion (Note: addition in one portion is crucial for regioselectivity!). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours before further NBS ($80.1 \mathrm{mg}, 0.450 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added in one portion. After stirring for further 90 minutes at $-78{ }^{\circ} \mathrm{C}$ the reaction mixture was quenched by addition of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. Afterwards the mixture was filtered and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 95:5) yielded 23 ($107 \mathrm{mg}, 0.155 \mathrm{mmol}, 69 \%$, regioisomeric ratio $>20: 1$) as a slightly yellow oil. $\mathbf{R}_{f}=0.27$ (petroleum ether/EtOAc $=93 / 7$); $[\alpha]_{D}^{20}=-56.9\left(c=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.04(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.93-$ $1.04(\mathrm{~m}, 9 \mathrm{H}), 1.45-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.94(\mathrm{~m}, 3 \mathrm{H}), 2.43-2.57$ (m, 2H), 3.33 (s, 3H), 3.34-3.39 (m, 2H), 3.65 (dd, $J=10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dd, $J=$
$10.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.25(\mathrm{~m}, 3 \mathrm{H}), 4.45-4.52(\mathrm{~m}, 3 \mathrm{H}), 4.92-4.98(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.58$ (m, 1H); HRMS (ESI+): calculated for $\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{BrNNaO}_{6} \mathrm{Si}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 712.3035$, found: 712.3033 .

NOTE: no ${ }^{13} C$-NMR-spectrum could be obtained for this compound due to line broadening caused by amide resonances.

2-(Trimethylsilyl)ethyl (4R,5R)-5-(((tert-butyldimethylsilyl)oxy)methyl)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)-2,2-dimethyloxazolidine-3-carboxylate (23a)

23a
$\mathrm{C}_{33} \mathrm{H}_{63} \mathrm{NO}_{6} \mathrm{Si}_{2}, \mathrm{M}=\mathbf{6 2 6 . 0} \mathrm{g} / \mathrm{mol}$

To a solution of $23(107 \mathrm{mg}, 0.154 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry THF $(0.8 \mathrm{~mL})$ at room temperature $\operatorname{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$ (stored and weighed out in a glove box, $7.9 \mathrm{mg}, 15.4 \mu \mathrm{~mol}$, 0.1 eq) was added followed by slow addition of $\mathrm{Me}_{2} \mathrm{Zn}$ (1.2 m in toluene, 1.0 mL , $1.2 \mathrm{mmol}, 7.8 \mathrm{eq})$. The resulting yellow solution was stirred at room temperature for 18 h . Afterwards the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ before a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ was added dropwise. Phases were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The organic phases were combined, dried over MgSO_{4} and concentrated in vacuo. Purification of the obtained crude product was performed by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 95:5) to give 23a $(74.6 \mathrm{mg}, 0.119 \mathrm{mmol}, 78 \%)$ as a colorless oil.
$\mathbf{R}_{f}=0.26$ (petroleum ether/EtOAc $=93 / 7$); $[\alpha]_{D}^{20}=-131.3\left(c=0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.02(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.94$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-1.04(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.46-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}$, 3 H), 1.97-2.12 (m, 2H), 3.30-3.38 (m, 2H), 3.33 ($\mathrm{s}, 3 \mathrm{H}$), 3.67 (dd, $J=10.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.74(\mathrm{dd}, J=10.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.20(\mathrm{~m}, 3 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.83$
(d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.31(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $=-5.6,-5.6,-1.6,17.8^{*}, 18.4,18.8,19.7,21.4,24.0(2 \mathrm{C}), 24.7,25.1^{*}, 26.0,27.3,27.4$, $28.3^{*}, 29.7^{*}, 33.9,41.1,41.9^{*}, 58.5,58.5,59.0^{*}, 61.7,62.9,63.2^{*}, 68.9,71.9,77.7^{*}$, 78.1, 78.4, 79.1*, 93.8, 118.3*, 118.8, 130.8, 130.9, 143.5, 144.1*, 152.6 (Note: extra signals due to amide resonance, distinguishable signals of the minor rotamer are denoted with an asterisk); HRMS (ESI+): calculated for $\mathrm{C}_{33} \mathrm{H}_{63} \mathrm{NNaO}_{6} \mathrm{Si}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 648.4086$, found: 648.4094.
(4R,5R)-2-(Trimethylsilyl)ethyl 5-(hydroxymethyl)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxy-pentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)-2,2-
dimethyloxazolidine-3-carboxylate (10)

$\mathrm{C}_{27} \mathrm{H}_{49} \mathrm{NO}_{6} \mathrm{Si}, \mathrm{M}=\mathbf{5 1 1 . 8} \mathrm{g} / \mathrm{mol}$

23a ($51.7 \mathrm{mg}, 82.6 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in dry $\mathrm{MeOH}(1.6 \mathrm{~mL})$. After cooling to $0{ }^{\circ} \mathrm{C}$ acetyl chloride ($1: 10 \mathrm{v} / \mathrm{v}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 32 \mu \mathrm{~L}, 40.7 \mu \mathrm{~mol}, 0.5 \mathrm{eq}$) was added dropwise. After complete addition the reaction mixture was warmed to room temperature and stirred for 45 minutes. The reaction mixture was diluted with toluene (5 mL) and the solvent was removed in vacuo. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, 2:1) yielding $10(39.5 \mathrm{mg}, 77.2 \mu \mathrm{~mol}, 93 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}($ cyclohexane $/ \mathrm{EtOAc}=1 / 1)=0.51 ;[\alpha]_{D}^{20}=-151.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(500 \mathrm{MHz}, 339 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta[\mathrm{ppm}]=0.01-0.07(\mathrm{~m}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-1.03(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{ddd}, J=14.3,11.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.89(\mathrm{~m}, 3 \mathrm{H}), 2.01-2.12(\mathrm{~m}$, 2 H), 3.28 ($\mathrm{s}, 3 \mathrm{H}$), $3.33(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.61(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{dt}$, $J=6.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (ddd, $J=10.8,2.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(125 \mathrm{MHz}, 339 \mathrm{~K}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta[\mathrm{ppm}]=-1.5,19.5,20.0,21.8,24.2,24.4,25.8,27.8,28.1,34.6,42.2,58.7$,

3.3 Synthesis of Pyrrole 8

The synthesis of 8, started from pyrrole $\mathbf{S 8}$ (Scheme S 4) ${ }^{21,22}$ and involved conversion of the acid function to the corresponding tert-butyl-ester and Boc-protection of the nitrogen, before bromination of the sidechain was achieved by means of NBS.

Scheme S 4: Synthesis of pyrrole 8.

5-Methyl-1H-pyrrole-2-carboxylic acid (S8)

S8

$$
\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{2}, \mathrm{M}=125.1 \mathrm{~g} / \mathrm{mol}
$$

To a solution of ethyl 5-methyl- $1 H$-pyrrole-2-carboxylate ($2.7 \mathrm{~g}, 17.6 \mathrm{mmol}, 1.0 \mathrm{eq}$) in $\mathrm{MeOH}(120 \mathrm{~mL})$ were added $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$ and $\mathrm{NaOH}\left(1 \mathrm{~m}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 50.0 \mathrm{~mL}$, 50.0 mmol , $2.8 \mathrm{eq})$ and the solution was stirred at $50^{\circ} \mathrm{C}$ for 24 hours. The solution was concentrated to ca. 100 mL in vacuo, saturated with $\mathrm{NH}_{4} \mathrm{Cl}$ (ca. 37 g) and acidified with solid KHSO_{4} to $\mathrm{pH}=3$. The aqueous phase was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$ and the combined organic extracts were dried over MgSO_{4}. The solvent was removed in vacuo and $\mathbf{S 8}$ was yielded ($2.15 \mathrm{~g}, 17.2 \mathrm{mmol}, 98 \%$) as a white solid.

[^11]$\mathbf{R}_{\mathbf{f}}=0.12(\mathrm{cyclohexane} / \mathrm{EtOAc}=2 / 1) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.33(\mathrm{~s}$, $3 \mathrm{H}), 5.97-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.94-7.01(\mathrm{~m}, 1 \mathrm{H}), 9.14$ (br. s., 1 H), ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta[\mathrm{ppm}]=13.4,109.9,118.6,120.3,135.5,165.8 ;$ HRMS (ESI-): calculated for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{+}: 124.0404$, found 124.0402.

tert-Butyl 5-methyl-1H-pyrrole-2-carboxylate (S8a)

$$
\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}, \mathrm{M}=181.2 \mathrm{~g} / \mathrm{mol}
$$

To a solution of $\mathbf{S 8}(2.15 \mathrm{~g}, 17.2 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ was added tertbutyl 2,2,2-trichloroacetimidate ($11.5 \mathrm{~g}, 52.6 \mathrm{mmol}, 3.0 \mathrm{eq}$) in dry cyclohexane (35 mL). The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and boron trifluoride etherate $\left(48 \% \mathrm{BF}_{3}\right.$, $350 \mu \mathrm{~L}$, cat.) was added dropwise. Afterwards the reaction mixture was warmed to room temperature and stirred overnight. The reaction was quenched by the addition of solid $\mathrm{NaHCO}_{3}(4.5 \mathrm{~g}, 53.5 \mathrm{mmol}, 3.1 \mathrm{eq})$, filtered and finally the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, 9:1) yielded S8a ($2.18 \mathrm{~g}, 12.0 \mathrm{mmol}, 70 \%$) as a white solid.
$\mathbf{R}_{\mathrm{f}}=0.25(\mathrm{cyclohexane} / \mathrm{EtOAc}=9 / 1) ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.55(\mathrm{~s}$, $9 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 5.89-5.94(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.76(\mathrm{~m}, 1 \mathrm{H}), 8.88-9.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=13.4,28.6,80.5,108.7,115.7,123.0,133.2,160.9 ;$ HRMS (ESI+): calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 181.1103, found 181.1104.

Di-tert-butyl 5-methyl-1H-pyrrole-1,2-dicarboxylate (S9)

S9
$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{4}, \mathrm{M}=281.3 \mathrm{~g} / \mathrm{mol}$

To a solution of $\mathbf{S 8 a}(906 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added NEt_{3} $(7.0 \mathrm{~mL}, 50.0 \mathrm{mmol}, 10.0 \mathrm{eq})$, di-tert-butyl dicarbonate ($8.70 \mathrm{~g}, 40.0 \mathrm{mmol}, 8.0 \mathrm{eq}$) and DMAP ($305 \mathrm{mg}, 2.50 \mathrm{mmol}, 0.5 \mathrm{eq}$) and the resulting mixture was stirred at room temperature overnight. The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and stirring was continued for additional 30 minutes. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, 30:1) yielding $\mathbf{S 9}$ $(1.39 \mathrm{~g}, 4.95 \mathrm{mmol}, 99 \%)$ as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.53$ (cyclohexane/EtOAc $=9 / 1$); [4-anisaldehyde, color: yellow]; ${ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.54(\mathrm{~s}, 9 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 5.83-5.87(\mathrm{~m}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=14.2,27.7,28.4,80.7$, 84.6, 109.4, 118.8, 126.4, 136.7, 149.8, 160.0; HRMS (EI+): calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{4}$ $[M]^{+}: 281.1627$, found 281.1630.

Di-tert-butyl 5-(bromomethyl)-1H-pyrrole-1,2-dicarboxylate (8)

8
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrNO}_{4}, \mathrm{M}=\mathbf{3 6 0 . 2} \mathbf{g} / \mathrm{mol}$

A solution of $\mathbf{S} 9(272 \mathrm{mg}, 964 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in $\mathrm{CCl}_{4}(10 \mathrm{~mL})$ was irradiated with a 300 W daylight-lamp in approximately ten centimeter distance to the reaction vessel. After the solution started refluxing, AIBN (10 mg , cat.) and NBS ($209 \mathrm{mg}, 1.17 \mathrm{mmol}$, 1.2 eq) were added in one portion and the solution was irradiated to reflux for additional 2 hours. After cooling to room temperature the solution was filtered and concentrated in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, 30:1) yielding $\mathbf{8}(330 \mathrm{mg}, 916 \mu \mathrm{~mol}, 95 \%)$ as a white solid. $\mathbf{R}_{\mathbf{f}}=0.53$ (cyclohexane/EtOAc $=9 / 1$); [4-anisaldehyde, color: green-grey]; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=1.54(\mathrm{~s}, 9 \mathrm{H}) 1.61(\mathrm{~s}, 9 \mathrm{H}) 4.71(\mathrm{~s}, 2 \mathrm{H}) 6.23(\mathrm{~d}, J=3.6 \mathrm{~Hz}$,

1H) $6.63(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta[\mathrm{ppm}]=24.7,27.8,28.5$, 81.9, 86.2, 113.0, 117.8, 129.6, 135.1, 149.3, 160.0; HRMS (EI+): calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrNO}_{4}[\mathrm{M}]^{+}: 359.0732$, found 359.0734.

3.4 Completion of the Total Synthesis

Di-tert-butyl 5-((E)-3-((2S,3R,4R)-3-acetoxy-4-(((tert-butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1H-pyrrole-1,2-dicarboxylate (7a)

$\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{NO}_{9} \mathrm{Si}, \mathrm{M}=621.8 \mathrm{~g} / \mathrm{mol}$

To a mixture of $7(54.0 \mathrm{mg}, 115 \mu \mathrm{~mol}, 1.0 \mathrm{eq}), \operatorname{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}(14.7 \mathrm{mg}, 28.8 \mu \mathrm{~mol}, 0.25 \mathrm{eq})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(60.1 \mathrm{mg}, 184 \mu \mathrm{~mol}, 1.6 \mathrm{eq})$ was added a solution of $\mathbf{8}(82.8 \mathrm{mg}, 330 \mu \mathrm{~mol}$, $2.87 \mathrm{eq})$ in a THF- $\mathrm{H}_{2} \mathrm{O}$ mixture ($11: 1,770 \mu \mathrm{~mL}$). The reaction mixture was stirred at room temperature for 16 hours before it was quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 3 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. Purification of the obtained crude product was performed by column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, $\left.97: 3 \rightarrow 6: 1\right)$ to give $7 \mathbf{7 a}(51.1 \mathrm{mg}, 82.1 \mu \mathrm{~mol}$, 71%) as a colorless liquid.
$\mathbf{R}_{f}=0.26 \quad($ cyclohexane $/ E t O A c=9 / 1) ; \quad[\alpha]_{D}^{20}=-14.5 \quad\left(\mathrm{c}=1.00, \quad \mathrm{CH}_{3} \mathrm{Cl}\right) ;{ }^{1} \mathbf{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=6.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.76(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=17.1 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=17.1 \mathrm{~Hz}, J=$
$7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08 ($\mathrm{s}, 3 \mathrm{H}$), 1.71 ($\mathrm{s}, 3 \mathrm{H}$), 1.57 ($\mathrm{s}, 9 \mathrm{H}$), 1.57 ($\mathrm{s}, 9 \mathrm{H}$), 1.06 ($\mathrm{s}, 3 \mathrm{H}$), 0.88 (s , 9 H), 0.08 ($\mathrm{s}, 3 \mathrm{H}$), $0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=177.2,169.7$, $159.8,149.6,138.1,132.4,127.1,126.8,118.4,108.7,84.8,83.9,80.7,72.5,65.7,49.8$, 28.4, 27.6, 26.5, 25.8, 20.6, 18.3, 13.8, 11.1, -5.6, -5.6; HRMS (ESI+) calculated for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{NO}_{9} \mathrm{SiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 644,3225$, found: 644,3223.

5-((E)-3-((2S,3R,4R)-3-Acetoxy-4-(((tert-butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1H-pyrrole-2-carboxylic acid (24)

$\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{Si}, \mathrm{M}=465.6 \mathrm{~g} / \mathrm{mol}$

To a mixture of ester $7 \mathrm{a}(88.0 \mathrm{mg}, 0.142 \mathrm{mmol}, 1.0 \mathrm{eq})$ and 2,6 -lutidine ($330 \mu \mathrm{~L}$, $2.84 \mathrm{mmol}, 20 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ TMSOTf ($256 \mu \mathrm{~L}, 1.42 \mathrm{mmol}, 10 \mathrm{eq}$) was added. After 1 hour the mixture was allowed to warm up to room temperature and it was stirred over night. It was diluted with $\mathrm{EtOAc}(4 \mathrm{~mL})$ and quenched by addition of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(3 \times 4 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. Purification by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc/HOAc, 5:5:1) followed by co-evaporation with toluene to remove residual acetic acid yielded 24 ($60.1 \mathrm{mg}, 0.129 \mathrm{mmol}, 91 \%$).
$\mathbf{R}_{f}=0.23$ (cyclohexane/EtOAc/HOAc $\left.=10 / 10 / 1\right) ;[\alpha]_{D}^{20}=-9.3\left(\mathrm{c}=0.3, \mathrm{CH}_{3} \mathrm{Cl}\right) ;{ }^{1} \mathbf{H}-$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta[\mathrm{ppm}]=6.77(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.84-5.77 (m, 2H), $4.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08$ $(\mathrm{s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta[\mathrm{ppm}]=179.1,171.6,164.5$,
137.5, 132.7, 129.3, 123.1, 117.4, 108.7, 85.2, 73.0, 66.4, 51.2, 27.0, 26.3, 20.4, 19.1, 13.8, 11.3, -5.5, -5.6. HRMS (ESI-): calculated for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{7} \mathrm{Si}^{+}[\mathrm{M}-\mathrm{H}]^{+}$: 464.2110, found: 464.2114 .
(S)-4-tert-Butyl 1-(((4R,5R)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)-dihydrofuran-3(2H)-ylidene)methyl)-2,2-dimethyl-3-((2-(trimethylsilyl)ethoxy)-carbonyl)oxazolidin-5-yl)methyl) 2-isobutylsuccinate (9a)

9a
$\mathrm{C}_{39} \mathrm{H}_{69} \mathrm{NO}_{9} \mathrm{Si}, \mathrm{M}=\mathbf{7 2 4 . 1} \mathrm{g} / \mathrm{mol}$

To a solution of $9(357 \mathrm{mg}, 1.55 \mathrm{mmol}, 2.2 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ was added NEt_{3} ($850 \mu \mathrm{~L}, 6.09 \mathrm{mmol}, 8.8 \mathrm{eq}$), MNBA ($530 \mathrm{mg}, 1.10 \mathrm{mmol}, 1.6 \mathrm{eq}$) and DMAP (140 mg , $1.15 \mathrm{mmol}, 1.6 \mathrm{eq}$) and the resulting mixture was stirred at room temperature for 10 minutes. 10 ($378 \mathrm{mg}, 739 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$, added to the reaction mixture and stirred for 60 minutes at room temperature. The reaction was quenched by the addition of saturated NaHCO_{3} solution (30 mL). The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc, 9:1) yielding $9 \mathbf{a}(528 \mathrm{mg}, 0.729 \mathrm{mmol}, 99 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.73$ (cyclohexane/EtOAc $=2 / 1$); $[\alpha]_{D}^{20}=-109.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(500 \mathrm{MHz}, 339 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta[\mathrm{ppm}]=0.03-0.06(\mathrm{~m}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-1.04(\mathrm{~m}, 2 \mathrm{H})$, $1.30-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.64$ $(\mathrm{s}, 3 \mathrm{H}), 1.65-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 3 \mathrm{H}), 2.02-2.11$ (m, 2H), $2.35(\mathrm{dd}, J=16.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=16.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{tt}, J=8.3$,
$6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.23(\mathrm{~m}, 2 \mathrm{H})$, 4.32-4.36 (m, 1H), 4.36-4.48 (m, 2H), $4.55(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dt}, J=10.9$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, 339 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta[\mathrm{ppm}]=-$ $1.2,19.7,20.2,22.5,22.8,23.3,24.5,25.0,26.3,27.0,28.4,28.5,28.7$ (3C), 34.9, 39.0, 41.2, 42.2, 42.7, 58.9, 59.6, 63.9, 63.9, 69.7, 73.0, 76.5, 80.0, 81.6, 95.1, 120.4, 131.8, 133.1, 145.2, 153.7, 172.0, 175.9; HRMS (ESI+): $\mathrm{C}_{39} \mathrm{H}_{69} \mathrm{NNaO}_{9} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 746.4634$, found 746.4646.

(S)-1-((2R,3R,Z)-3-amino-2-hydroxy-4-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)butyl) 4-tert-butyl 2-isobutylsuccinate (25)

TAS-F ($90 \%, 230 \mathrm{mg}, 0.75 \mathrm{mmol}, 2.0 \mathrm{eq}$) was dissolved in dry $\mathrm{MeCN}(2.3 \mathrm{~mL})$ and added dropwise to a solution of $\mathbf{9 a}(268 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry $\mathrm{MeCN}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The ice bath was removed and the reaction mixture was slowly heated to $45^{\circ} \mathrm{C}$ over 30 minutes. After stirring for 2 hours at this temperature the reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL) and diethyl ether (20 mL). The organic phase was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$ and EtOAc (25 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was filtered over a small pad of silica, eluating with cyclohexane/EtOAc/iPrNH $25 / 15 / 3$. The solvent was removed in vacuo yielding $\mathbf{2 5}$ ($200 \mathrm{mg}, 0.37 \mathrm{mmol}, 100 \%$) as yellow oil which was directly used without further purification. NMR analysis showed a purity of about 80%. (Note: slow column chromatography or purification by preparative TLC gave rise to small quantities of the more polar byproduct $\mathbf{S 1 1}$ by migration of the acyl group to the amine).

80\%
25

20\%
S10

S11
$\mathbf{R}_{\mathbf{f}}\left(\right.$ cyclohexane $\left./ E t O A c / i \mathrm{PrNH}_{2}, 85 / 15 / 3\right)=0.26$.

1-($(2 R, 3 R, Z)$-3-(5-((E)-3-($(2 S, 3 R, 4 R)$-3-Acetoxy-4-(($($ tert-

 butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1H-pyrrole-2-carboxamido)-2-hydroxy-4-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)butyl) 4-(tert-butyl) (S)-2-isobutylsuccinate (24a)

To a solution of $\mathbf{2 5}(40.2 \mathrm{mg}, 74.5 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ and crude acid 24 (max. $96.8 \mu \mathrm{~mol}$, $1.3 \mathrm{eq})$ in dry $\mathrm{MeCN}(2.6 \mathrm{~mL})$ at room temperature $\mathrm{NEt}_{3}(31 \mu \mathrm{~L}, 0.224 \mathrm{mmol}, 3.0 \mathrm{eq})$ and HATU ($56.7 \mathrm{mg}, 0.149 \mathrm{mmol}, 2.0 \mathrm{eq}$) were added. The resulting solution was stirred for 2 hours at $40^{\circ} \mathrm{C}$ before it was quenched by addition of a saturated solution of NaHCO_{3} $(4 \mathrm{~mL})$. The layers were separated and it was extracted with EtOAc $(3 \times 4 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated under reduced pressure. Purification by column chromatography (SiO_{2}, petroleum ether/EtOAc, 65:35) gave $\mathbf{2 4 a}(51.5 \mathrm{mg}, 52.1 \mu \mathrm{~mol}, 70 \%)$ as a colorless gum.
$\mathbf{R}_{f}=0.21$ (petroleum ether/EtOAc $\left.=70 / 30\right) ;[\alpha]_{D}^{20}=-128.4\left(c=0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=0.06(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08$ $(\mathrm{s}, 3 \mathrm{H}), 1.22-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.99-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, $2.39(\mathrm{dd}, J=16.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=16.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.83(\mathrm{~m}, 1 \mathrm{H}), 3.29$ $(\mathrm{s}, 3 \mathrm{H}), 3.32(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{dd}, J=16.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=16.4,7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.29$ $(\mathrm{m}, 1 \mathrm{H}), 4.38-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.74(\mathrm{~m}$, $1 \mathrm{H}), 4.84(\mathrm{dt}, J=10.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.76(\mathrm{~m}, 3 \mathrm{H}), 5.92(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.50-6.54 (m, 1 H), 9.14 (br. s, 1 H); ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta$ $[\mathrm{ppm}]=-5.4,-5.4,11.4,14.1,18.7,20.4,20.9,21.9,22.5,22.9,24.1,25.6,26.1,26.3$, $26.9,27.9,28.3,34.6,38.6,40.4,41.7,43.1,50.1,52.6,58.8,66.0,66.3,69.7,72.5,72.5$, $72.7,80.0,81.8,84.5,108.2,110.7,118.1,125.3,127.7,131.0,132.9,133.3,134.9$, 146.4, 161.0, 170.8, 172.6, 175.8, 177.3; HRMS (ESI+): calculated for $\mathrm{C}_{53} \mathrm{H}_{86} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Si}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1009.5791$, found: 1009.5788.

1-(((4R,5S)-2-(5-((E)-3-((2S,3R,4R)-3-Acetoxy-4-((tert-

butyldimethylsilyl)oxy)methyl)-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1H-pyrrol-2-yl)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-
ylidene)dihydrofuran-3(2H)-ylidene)methyl)-4,5-dihydrooxazol-5-yl)methyl) 4-(tertbutyl) (S)-2-isobutylsuccinate (26)

26
$\mathrm{C}_{53} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Si}, \mathrm{M}=\mathbf{9 6 9 . 3} \mathrm{g} / \mathrm{mol}$

To a solution of $\mathbf{2 4 a}(94.0 \mathrm{mg}, 95.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ a solution of DAST ($19 \mu \mathrm{~L}, 0.143 \mathrm{mmol}, 1.5 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.57 \mathrm{~mL})$ was added. The resulting solution was stirred for 1 hour at the indicated temperature before further DAST $(10 \mu \mathrm{~L}, 75.3 \mu \mathrm{~mol}, 0.8 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{~mL})$ was added. After an additional hour at $78{ }^{\circ} \mathrm{C}$ anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(19.7 \mathrm{mg}, 0.143 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added. The mixture was allowed to warm up to $-10^{\circ} \mathrm{C}$ before it was quenched by addition of a saturated solution of $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The layers were separated and it was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. Purification by HPLC (System C, column: Daicel Chiralpak IB, $5 \mu \mathrm{~m} ; 250 \times 20 \mathrm{~mm}$, n-heptane $/ \mathrm{iPrOH}=98: 2$, flow rate $18 \mathrm{~mL} / \mathrm{min}$, total running time: 22 min , detection at 280 nm) gave 26 ($74.4 \mathrm{mg}, 76.8 \mu \mathrm{~mol}, 81 \%$) as a colorless gum.
$\mathbf{R}_{f}=0.30$ (petroleum ether/EtOAc $\left.=70 / 30\right) ;[\alpha]_{D}^{20}=-42.5\left(c=0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=0.06(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84$ $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.07$ ($\mathrm{s}, 3 \mathrm{H}$), 1.18-1.26 (m, 1H), 1.35 (ddd, $J=14.1,9.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.41 (s, 9H), 1.46-1.60 $(\mathrm{m}, 3 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.97-2.06(\mathrm{~m}$, 2 H), 2.07 ($\mathrm{s}, 3 \mathrm{H}$), 2.32 (dd, $J=16.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.54(\mathrm{dd}, J=16.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-$ $2.87(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=16.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ $(\mathrm{dd}, J=16.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=$ $12.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (dt, $J=10.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.07$ (br. s, 1 H); ${ }^{13} \mathbf{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=-5.4,-5.4,11.4,14.1,18.7,20.4,21.0,22.0,22.4,22.9$, $24.1,25.5,26.1,26.3,26.9,27.9,28.3,34.7,38.3,40.2,41.7,44.0,50.2,58.8,64.7,66.0$, 68.6, 69.8, 72.4, 72.6, 79.8, 81.1, 83.6, 84.4, 108.3, 113.9, 119.6, 122.4, 127.7, 130.7, 133.1 (2C), 135.2, 144.7, 158.3, 170.6, 171.4, 175.5, 177.3; HRMS (ESI+): calculated for $\mathrm{C}_{53} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{NaO}_{12} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 991.5686$, found: 991.5686.
(S)-3-((($(4 R, 5 S)-2-(5-((E)-3-((2 S, 3 R, 4 R)-3-A c e t o x y-4-(($ tert-butyldimethylsilyl) oxy)-methyl)-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1H-pyrrol-2-yl)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)-4,5-dihydrooxazol-5-yl)methoxy)carbonyl)-5-methylhexanoic acid (26a)

To a solution of $26(27.8 \mathrm{mg}, 28.7 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ and $2,6-\mathrm{lutidine}(97 \mu \mathrm{~L}, 0.831 \mathrm{mmol}$, $30 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(640 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ TMSOTf ($78 \mu \mathrm{~L}, 0.431 \mathrm{mmol}, 15 \mathrm{eq}$) was added. The resulting solution was stirred for 30 minutes at $0^{\circ} \mathrm{C}$ before it was allowed to warm up to room temperature. After further 30 minutes the reaction was quenched by addition of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(4 \times 2 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo to give crude 26a as a yellow oil that was used without further purification.

An analytical sample was purified by preparative TLC (SiO_{2}, cyclohexane/EtOAc/HOAc, 5:5:0.2) followed by co-evaporation with toluene to remove residual acetic acid.
$\mathbf{R}_{f}=0.38$ (petroleum ether/EtOAc/HOAc $=50 / 50 / 3$); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $[\mathrm{ppm}]=0.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ ($\mathrm{s}, 9 \mathrm{H}$), $0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.26(\mathrm{~m}$, $1 \mathrm{H}), 1.31-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.65-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.22(\mathrm{~m}$, $2 \mathrm{H}), 2.38(\mathrm{dd}, J=16.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dd, $J=16.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.91(\mathrm{~m}, 1 \mathrm{H})$, 3.32 (s, 3H), $3.35-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ $(\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=12.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.60(\mathrm{~m}$,
$1 \mathrm{H}), 4.66(\mathrm{dd}, J=12.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.96-5.01(\mathrm{~m}$, $1 \mathrm{H}), 5.54(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta[\mathrm{ppm}]=-5.4$, $-5.3,11.5,14.0,19.3,20.4,20.6,22.3,22.5,23.3,24.3,26.3,26.4,27.1,27.2,28.5,35.1$, $38.2,41.2,42.7,44.9,51.3,58.9,64.5,66.6,68.3,70.4,73.0,73.2,80.7,84.5,85.3$, $108.9,115.9,119.1,123.4,129.3,131.4,133.0,134.1,137.0,145.4,161.0,171.6,176.1$, 177.1, 179.3;

HRMS (ESI+): calculated for $\mathrm{C}_{49} \mathrm{H}_{77} \mathrm{~N}_{2} \mathrm{NaO}_{12} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 913.5240$, found: 913.5247.
(S)-3-((($(4 R, 5 S)-2-(5-((E)-3-((2 S, 3 R, 4 R)-4-((t e r t-B u t y l d i m e t h y l s i l y l)) o x y) m e t h y l)-3-$ hydroxy-4-methyl-5-oxotetrahydrofuran-2-yl)but-2-en-1-yl)-1H-pyrrol-2-yl)-4-((Z)-((S,Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)-4,5-dihydrooxazol-5-yl)methoxy)carbonyl)-5-methylhexanoic acid (27)

Crude 26a (max. $28.7 \mu \mathrm{~mol}$) was dissolved in THF (1.7 mL) at room temperature. Then $\mathrm{MeOH}(1.7 \mathrm{~mL})$ was added followed by 1 m aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$-solution (1.7 mL). The resulting mixture was stirred at room temperature for 2 hours before it was quenched by addition of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(4 \times 4 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. Purification by preparative TLC $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc/HOAc, 50:50:2) followed by co-evaporation with toluene to remove residual acetic acid gave $27(21.0 \mathrm{mg}, 24.1 \mu \mathrm{~mol}, 84 \%$ over 2 steps $)$ as a colorless gum.
$\mathbf{R}_{f}=0.32$ (petroleum ether/EtOAc/HOAc $\left.=50 / 50 / 3\right) ;[\alpha]_{D}^{20}=-41.2\left(c=0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 3 H), 1.04 ($\mathrm{s}, 3 \mathrm{H}$), 1.21 (ddd, $J=13.4,7.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{ddd}, J=14.3,9.4,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.42-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{ddd}, J=14.3,10.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-$ $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.97(\mathrm{~m}, 3 \mathrm{H}), 2.02-2.09(\mathrm{~m}, 1 \mathrm{H})$, 2.09-2.16 (m, 1H), $2.38(\mathrm{dd}, J=16.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=16.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-$ $2.90(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=12.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.48(\mathrm{~m}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.67 (dd, $J=12.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=9.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.01(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=-5.4,-5.3,11.6,13.4,19.2,20.4,22.3$, $22.6,23.3,24.3,26.3,26.4,27.2,27.2,28.5,35.1,39.5,41.6,42.8,45.0,51.6,58.9,64.4$, 65.7, 68.3, 70.4, 71.5, 73.0, 80.7, 84.6, 88.0, 109.0, 116.0, 119.1, 123.4, 128.4, 131.4, 133.7, 134.1, 137.3, 145.5, 161.1, 177.4, 177.5, 180.7; HRMS (ESI+): calculated for $\mathrm{C}_{47} \mathrm{H}_{73} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Si}^{-}\left[\mathrm{M}_{\left.-\mathrm{H}^{+}\right]^{-}: ~ 869.4989 \text {, found: 869.4994. }}\right.$
$\left(1^{4} R, 1^{5} S, 6^{2} S, 6^{3} R, 6^{4} R, 10 S, E\right)-6^{4}$-(((tert-Butyldimethylsilyl)oxy)methyl)-10-isobutyl-1 ${ }^{4}$ ((Z)-((S, Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-ylidene)methyl)- $\mathbf{6}^{4}, 5$-dimethyl- $1^{4}, 1^{5}, 6^{2}, 6^{3}, 6^{4}, 6^{5}$-hexahydro-2 ${ }^{1} H$ - 7,12 -dioxa- $\mathbf{1}(2,5)$ -oxazola-2(2,5)-pyrrola-6(2,3)-furanacyclotridecaphan-4-ene-6 ${ }^{\mathbf{5}}$,8,11-trione (28)

28
$\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}, \mathrm{M}=\mathbf{8 5 3 . 2} \mathbf{~ g} / \mathrm{mol}$

2-Methyl-6-nitrobenzoic anhydride ($15.8 \mathrm{mg} 45.9 \mu \mathrm{~mol}, 5 \mathrm{eq}$), DMAP $(9.0 \mathrm{mg}$, $73.4 \mu \mathrm{~mol}, 8 \mathrm{eq}$) and molecular sieves ($4 \AA$) were dried under vacuum for 4 hours before $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.6 \mathrm{~mL})$ was added. To this, a solution of $27(8.0 \mathrm{mg}, 9.18 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.6 \mathrm{~mL})$ was added over a period of 16 hours by a syringe pump. After 4 more hours at room temperature, the reaction mixture was filtered and an aqueous solution of $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. Purification by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 65:35) gave $\mathbf{2 8}(7.2 \mathrm{mg}, 8.40 \mu \mathrm{~mol}, 92 \%)$ as a colorless gum.
$\mathbf{R}_{f}=0.29$ (petroleum ether/EtOAc $\left.=70 / 30\right) ;[\alpha]_{D}^{20}=+17.6\left(c=0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.12$ ($\mathrm{s}, 3 \mathrm{H}$), 1.25-1.31 (m, 1H), 1.36 (ddd, $J=14.3,9.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, J=14.3$, $10.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.88$ (m, 1H), 1.91 (t, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.99-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=16.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (dd, $J=16.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.88(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.48$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dq}, J=12.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.50(\mathrm{~m}$, $1 \mathrm{H}), 4.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{ddd}, J=8.7,6.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=11.7,8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.82(\mathrm{dt}, J=10.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73-5.78(\mathrm{~m}, 1 \mathrm{H}), 6.00-6.03(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=3.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.07$ (br. s, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta[\mathrm{ppm}]=-5.5,13.9,14.6,18.6,20.4,21.9,22.7$, $22.8,24.0,25.6,26.0,26.4,26.9,27.9,34.7,36.9,39.4,40.6,43.7,50.4,58.8,65.6,65.8$, $68.3,69.8,72.4,75.5,79.9,83.7,84.1,109.0,114.0,119.7,122.0,126.9,130.6,133.3$, 134.5, 135.1, 144.7, 158.3, 171.7, 174.9, 177.0; HRMS (ESI+): calculated for $\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{NaO}_{10} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 875.4848$, found: 875.4861.

Leupyrrin A_{1} (5)

To a solution of TBS protected alcohol $28(6.2 \mathrm{mg}, 7.27 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in $\mathrm{MeCN}(125 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ a solution of TASF $(90 \%, 8.9 \mathrm{mg}, 29.1 \mu \mathrm{~mol}, 4.0 \mathrm{eq})$ in $\mathrm{MeCN}(25 \mu \mathrm{~L})$ was added. The resulting mixture was stirred at this temperature for 1 hour before it was allowed to warm up to room temperature. After 2.5 hours further TASF ($90 \%, 4.4 \mathrm{mg}$, $15.5 \mu \mathrm{~mol}, 2.0 \mathrm{eq})$ in $\mathrm{MeCN}(12 \mu \mathrm{~L})$ was added. After 2 hours, when TLC indicated complete consumption of starting material 28 the reaction mixture was diluted with EtOAc (1 mL) and it was quenched by addition of a saturated solution of NaHCO_{3} $(1 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(3 \times 1.5 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. Purification by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 50:50) gave leupyrrin A_{1} (5) ($4.1 \mathrm{mg}, 5.55 \mu \mathrm{~mol}, 76 \%$).
$\mathbf{R}_{f}=0.31$ (petroleum ether/EtOAc $\left.=50 / 50\right) ;[\alpha]_{D}^{20}=+11.0\left(c=0.313\right.$ in MeOH); ${ }^{1} \mathbf{H}-$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.41$ (ddd, $J=14.3,9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, J=14.3,10.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.69(\mathrm{~m}$, $3 \mathrm{H}), 1.69-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.83-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{t}, J=1.5 \mathrm{~Hz}$, $3 \mathrm{H}), 2.02-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, \mathrm{J}=13.5,8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.73-$ $2.82(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59(\mathrm{dd}, J=15.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=12.0,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45$ (dq, $J=12.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.54(\mathrm{~m}, 1 \mathrm{H})$, $4.54(\mathrm{dd}, J=12.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{td}, J=5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=7.7,0.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96(\mathrm{ddd}, J=10.8,2.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=11.5,14.7,20.3,22.2,22.8,23.0,24.3,26.2,27.0,27.0$, $28.5,35.0,36.5,39.9,40.1,44.4,51.2,58.9,65.9,66.1,68.2,70.3,73.0,75.3,80.6,84.6$, 85.5, 109.7, 115.3, 119.5, 123.2, 128.6, 131.4, 134.1, 135.3, 136.6, 145.0, 160.8, 172.3, 175.6, 179.5; HRMS (ESI+): calculated for $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{10}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 739.4164$, found: 739.4165.

Scheme S 5: CD-Spectrum of synthetic leupyrrin $A_{1}\left(\mathrm{c}=10^{-4} \mathrm{~mol} / \mathrm{L}, \mathrm{MeCN}\right)$.

Scheme S 6: CD-Spectra-overlay of synthetic and natural leupyrrin $\mathrm{A}_{1}\left(\mathrm{c}=10^{-4} \mathrm{~mol} / \mathrm{L}, \mathrm{MeCN}\right)$.

Natural Leupyrrin: $\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right), 100 \mathrm{MHz}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right) ;{ }^{23}$
Synthetic Leupyrrin: $\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right), 125 \mathrm{MHz}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right)$.

Position	Natural leupyrrin $\mathbf{A}_{1}{ }^{24}$		Synthetic leupyrrin \mathbf{A}_{1}	
	H [δ (mult, J / Hz]	C	H [δ (mult, J / Hz]	C
1	---	179.3	---	179.5
2	---	51.1	---	51.2
3	5.58 (d, 8.0), 1H	75.4	5.54 (d, 7.7), 1H	75.3
4	4.76 (dd, 8.0, 1.0), 1H	85.5	4.73 (dd, 7.7, 0.4), 1H	85.5
5	---	135.1	---	135.3
6	5.89 (td, 7.5, 1.5), 1H	128.4	5.85 (m), 1H	128.6
$7 a$ $7 b$	$\begin{aligned} & 3.38(\mathrm{~m}), 1 \mathrm{H} \\ & 3.62(\mathrm{dd}, 15.5,9.0), 1 \mathrm{H} \end{aligned}$	26.9	$\begin{aligned} & 3.34(\mathrm{~m}), 1 \mathrm{H} \\ & 3.59(\mathrm{dd}, 15.5,9.0), 1 \mathrm{H} \end{aligned}$	27.0
8	---	136.5	---	136.6
9	6.07 (d, 3.5), 1H	109.6	6.03 (d, 3.6), 1H	109.7
10	6.79 (d, 3.5), 1H	115.2	6.75 (d, 3.6), 1H	115.3
11	---	119.3	---	119.5
12	---	160.6	---	160.8
13	4.70 (td, 5.5, 2.5), 1H	84.5	4.67 (td, 5.5, 2.5), 1H	84.6
14	4.56 (dd, 10.0, 5.5), 1H	$68.8{ }^{25}$	4.52 (dd, 10.1, 5.5), 1H	68.2
15	5.55 (dd, 10.0, 1.5), 1H	123.0	5.51 (d, 10.1), 1H	123.2
16	---	144.9	---	145.0
17	---	131.2	---	131.4
18	---	134.0	---	134.1

[^12]| $\begin{aligned} & 19 a \\ & 19 b \end{aligned}$ | $\begin{aligned} & 2.11 \text { (ddd, 13.5, 8.0, 7.0), 1H } \\ & 2.14 \text { (ddd, 13.5, 8.0, 7.0), 1H } \end{aligned}$ | 34.9 | $\begin{aligned} & 2.06(\mathrm{~m}), 1 \mathrm{H} \\ & 2.11(\mathrm{ddd}, 13.5,8.0,7.0), 1 \mathrm{H} \end{aligned}$ | 35.0 |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 20 a \\ & 20 b \end{aligned}$ | $\begin{aligned} & 1.70(\mathrm{~m}), 1 \mathrm{H} \\ & 1.76(\mathrm{~m}), 1 \mathrm{H} \end{aligned}$ | 28.3 | $\begin{aligned} & 1.68(\mathrm{~m}), 1 \mathrm{H} \\ & 1.73(\mathrm{~m}), 1 \mathrm{H} \end{aligned}$ | 28.5 |
| 21 | 3.39 (t, 6.0), 2H | 72.8 | 3.36 (t, 6.0), 2H | 73.0 |
| 21-OMe | 3.35 (s), 3H | 58.8 | 3.32 (s), 3H | 58.9 |
| $\begin{aligned} & 22 a \\ & 22 b \end{aligned}$ | $\begin{aligned} & 3.63(\mathrm{~d}, 11.0), 1 \mathrm{H} \\ & 3.77(\mathrm{~d}, 11.0), 1 \mathrm{H} \end{aligned}$ | 65.7 | $\begin{aligned} & 3.58(\mathrm{~d}, 11.0), 1 \mathrm{H} \\ & 3.73(\mathrm{~d}, 11.0), 1 \mathrm{H} \end{aligned}$ | 65.9 |
| 23 | 1.10 (s), 3H | 14.6 | 1.06 (s), 3H | 14.7 |
| 24 | 1.77 (d, 2.0), $1 \mathrm{H}^{26}$ | 11.4 | 1.72 (d, 1.0), 3H | 11.5 |
| $\begin{aligned} & 25 a \\ & 25 b \end{aligned}$ | $\begin{aligned} & 4.19(\mathrm{dd}, 12.0,2.5), 1 \mathrm{H} \\ & 4.59(\mathrm{dd}, 12.5,5.5), 1 \mathrm{H} \end{aligned}$ | 65.9 | $\begin{aligned} & 4.16(\mathrm{dd}, 12.0,2.5), 1 \mathrm{H} \\ & 4.54(\mathrm{dd}, 12.0,5.5), 1 \mathrm{H} \end{aligned}$ | 66.1 |
| 26 | 5.00 (ddd, 11.0, 3.0, 1.5), 1H | 80.5 | 4.96 (ddd, 10.8, 2.5, 1.7), 1H | 80.6 |
| $\begin{aligned} & 27 a \\ & 27 b \end{aligned}$ | $\begin{aligned} & 1.45(\mathrm{ddd}, 14.0,9.5,2.5), 1 \mathrm{H} \\ & 1.60(\mathrm{~m}), 1 \mathrm{H} \end{aligned}$ | 44.3 | $\begin{aligned} & 1.41 \text { (ddd, } 14.3,9.5,2.5), 1 \mathrm{H} \\ & 1.57 \text { (ddd, } 14.3,10.8,4.1), 1 \mathrm{H} \end{aligned}$ | 44.4 |
| 28 | 1.91 (m), 1H | 26.1 | 1.87 (m), 1H | 26.2 |
| 29 | 1.03 (d, 6.5), 3H | 24.1 | 0.99 (d, 6.6), 3H | 24.3 |
| 30 | 1.07 (d, 6.5), 3H | 22.0 | 1.03 (d, 6.6), 3H | 22.2 |
| $\begin{aligned} & \text { 31a } \\ & \text { 31b } \end{aligned}$ | $\begin{aligned} & 4.49(\mathrm{~m}), 1 \mathrm{H} \\ & 4.57(\mathrm{~d}, 10.0), 1 \mathrm{H} \end{aligned}$ | 70.1 | $\begin{aligned} & 4.45(\mathrm{dq}, 12.0,1.5), 1 \mathrm{H} \\ & 4.54(\mathrm{~m}), 1 \mathrm{H} \end{aligned}$ | 70.3 |
| 32 | 1.97 (t, 2.0), 3H | 20.2 | 1.93 (t, 1.5), 3H | 20.3 |
| 1^{6} | --- | 172.1 | --- | 172.3 |
| 2'a $2^{\prime} \mathrm{b}$ | $\begin{aligned} & 2.69(\mathrm{~m}), 1 \mathrm{H} \\ & 2.83(\mathrm{~m}), 1 \mathrm{H} \end{aligned}$ | 36.4 | $\begin{aligned} & 2.64(\mathrm{~m}), 1 \mathrm{H} \\ & 2.79(\mathrm{~m}), 1 \mathrm{H} \end{aligned}$ | 36.5 |
| 3^{6} | 2.79 (m), 1H | 39.8 | 2.75 (m), 1H | 39.9 |
| 46 | --- | 175.4 | -- | 175.6 |
| $\begin{aligned} & 5^{\prime} a \\ & 5^{\prime} b \end{aligned}$ | $\begin{aligned} & 1.33(\mathrm{~m}), 1 \mathrm{H} \\ & 1.68(\mathrm{~m}), 1 \mathrm{H} \end{aligned}$ | 40.1 | $\begin{aligned} & 1.29(\mathrm{~m}), 1 \mathrm{H} \\ & 1.65(\mathrm{~m}), 1 \mathrm{H} \end{aligned}$ | 40.1 |
| $6{ }^{6}$ | 1.65 (m), 1H | 26.9 | 1.61 (m), 1H | 27.0 |
| $7{ }^{6}$ | 0.94 (d, 6.5), 3H | 22.9 | 0.90 (d, 6.5), 3H | 23.0 |
| 8 ${ }^{6}$ | 0.92 (d, 6.5), 3H | 22.7 | 0.88 (d, 6.5), 3H | 22.8 |

[^13]

3.5 Copies of NMR spectra

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

OTBS

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 75.47 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: $\mathrm{CDCl} \mathrm{Cl}_{3}$

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}
\qquad

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Frequency: 75.48 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}
N.

Frequency: 500.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: $\mathrm{CD}_{3} \mathrm{OD}$

cmourew wow m

Frequency: 500.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Frequency: 125.76 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

$\overline{\text { N̈HTeoc }}$
Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Solens: CDCl_{3}
Some

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

$\begin{array}{lllllllllll}8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 \\ & & & & & & & & & & \\ \text { Chemical Shift (ppm) }\end{array}$
S112

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

$\begin{array}{lllllllllllllll}184 & 176 & 168 & 160 & 152 & 144 & 136 & 128 & 120 & 112 & 104 & 96 & 88\end{array}$ Chemical Shift (ppm)

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 125.76 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Frequency: 125.76 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

mwxw wh

176	168	160	152	144	136	128	120	112	104	96	88	80	72	64	56	48	40	32	24	16	Chemical Shift (ppm)

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Abstract

Frequency: 100.61 MHz Nucleus: ${ }^{13} \mathrm{C}$ Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: CDCl_{3}

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: CDCl_{3}

Frequency: 400.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: MeOD

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: MeOD
 4840

Frequency: 500.13 MHz
Nucleus: ${ }^{1} \mathrm{H}$
Solvent: $\mathrm{CD}_{3} \mathrm{CN}$

Nucleus: ${ }^{13} \mathrm{C}$
Solvent: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Frequency: 100.61 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: $\mathrm{CD}_{3} \mathrm{OD}$

Frequency: 125.76 MHz
Nucleus: ${ }^{13} \mathrm{C}$
Solvent: $\mathrm{CD}_{3} \mathrm{OD}$

184176

4 X-Ray Crystal Structure Analysis of Leupyrrin B ${ }_{1}$

Suitable crystals could be obtained from a biphasic mixture of diethyl ether and methanol (90:10) at $8^{\circ} \mathrm{C}$

Figure S 2: Crystal structure of leupyrrin B_{1} (2).

Table S 6 Crystal data for leupyrrin B_{1} (2).

Empirical formula	$\mathrm{C}_{41} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{10}$	
Formula weight	736.88	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P 21	
Z	4	
Unit cell dimensions	$\mathrm{a}=15.112(5) \AA$	$\alpha=90^{\circ}$
	$b=11.463(4) \AA$	$\beta=99.302(6)^{\circ}$
	$\mathrm{c}=23.854(8) \AA$	$\gamma=90^{\circ}$
Volume	4078(2) \AA^{3}	
Density (calculated)	$1.200 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.085 \mathrm{~mm}^{-1}$	
Crystal shape	polyhedron	
Crystal size	$0.18 \times 0.15 \times 0.04 \mathrm{~mm}^{3}$	
Crystal colour	colourless	
Theta range for data collection	1.73 bis $19.86{ }^{\circ}$	
Index ranges	$-14 \leq h \leq 14,-10 \leq k \leq 10,-22 \leq 1 \leq 22$	
Reflections collected	18935	
Independent reflections	3965 (R(int) = 0.1261)	
Observed reflections	3240 ($1>2 \mathrm{~s}$ (1)	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00 und 0.98	
Refinement method	Full-matrix least-squares an F^{2}	
Data/restraints/parameters	3965 / 279 / 958	
Goodness-of-fit on F^{2}	1.08	
Final R indices ($1>2 \sigma(\mathrm{I})$)	$\mathrm{R} 1=0.076, w R 2=0.157$	
Absolute structure parameter	-1(2)	
Extinction coefficient	0.047(3)	
Largest diff. peak and hole	0.49 und -0.40 e \AA^{-3}	

Table S 7 Atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for leupyrrin $B_{1}(\mathbf{2}) . U_{e q}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

atom	x	y	z	$\mathrm{U}_{\text {eq }}$
C11	0.4450(7)	1.1053(11)	0.6175(4)	0.035(3)
C21	0.3789(8)	1.0975(12)	0.5644(5)	0.056(3)
C31	0.4855(7)	1.0100(10)	0.6446(5)	0.034(3)
C41	0.4816(8)	0.8823(10)	0.6255(5)	0.043(3)
C51	0.5717(7)	0.8453(9)	0.6197(4)	0.031(2)
N61	0.6131(6)	0.8823(7)	0.5763(3)	0.031(2)
C71	$0.7012(7)$	0.8481(9)	0.5855(4)	0.031(2)
C81	0.7171(8)	0.7890(10)	0.6365(4)	0.039(3)
C91	0.6350(8)	0.7877(10)	0.6566(5)	0.042(3)
C101	$0.7643(7)$	0.8843(9)	0.5490(4)	0.027(2)
0111	0.8512(4)	0.8681(6)	0.5737(3)	0.0329(17)
C121	0.9052(7)	0.9218(9)	$0.5358(4)$	0.031(2)
C131	0.8366(6)	0.9498(9)	$0.4815(4)$	0.030(2)
N141	$0.7494(5)$	0.9284(7)	$0.4994(4)$	0.030(2)
C151	0.9511(6)	1.0248(9)	0.5639(5)	0.034(3)
0161	0.8855(4)	1.1122(6)	0.5712(3)	0.0239(16)
C171	0.8808(7)	1.2091(9)	0.5385(4)	0.026(2)
0171	0.9365(4)	1.2345(6)	0.5102(3)	$0.0347(19)$
C181	0.7963(6)	1.2766(9)	0.5375(4)	0.024(2)
C191	0.7261(6)	1.2241(9)	0.5541(4)	0.025(2)
C201	$0.6374(7)$	1.2812(10)	0.5525(5)	0.035(3)
0201	0.5983(5)	1.3340(8)	0.5124(3)	0.056(2)
0211	0.6047(4)	1.2621(6)	0.6004(3)	0.0289(17)
C221	0.5130(6)	1.2972(10)	0.6007(4)	0.032(2)
C231	0.4745(7)	1.2191(10)	0.6405(4)	0.032(2)
0241	0.3983(4)	1.2886(7)	0.6536(3)	$0.0382(19)$
C251	0.4161(7)	1.4032(12)	0.6486(5)	0.039(3)
0251	0.3660(5)	1.4764(8)	0.6616(4)	0.060(2)
C261	0.5015(7)	1.4217(10)	0.6240(4)	0.035(2)
C271	0.5747(7)	1.4537(11)	0.6738(5)	0.046(3)
C281	0.4908(7)	1.5215(10)	0.5816(4)	$0.038(3)$
0291	0.4306(4)	1.4965(7)	0.5303(3)	0.0372(19)
C301	0.8013(7)	1.3989(9)	0.5186(4)	0.032(2)
C311	0.8591(7)	1.4785(9)	0.5622(5)	0.036(3)
C321	0.8633(8)	1.5987(10)	0.5372(6)	0.056(4)
C331	0.8235(10)	1.4828(12)	0.6184(5)	0.070(4)
C341	0.8478(7)	0.8772(9)	$0.4313(4)$	0.035(3)
C351	0.8767(7)	0.9167(9)	0.3847(5)	0.034(2)

C361	0.8892(7)	0.8524(11)	0.3328(4)	0.037(3)
C371	0.9352(8)	0.9373(11)	0.2993(5)	0.052(3)
0381	0.9598(5)	1.0370(7)	0.3345(3)	0.045(2)
C391	0.8999(6)	1.0429(9)	0.3743(5)	0.029(2)
C401	0.8166(7)	1.1154(10)	0.3535(5)	0.038(3)
C411	0.8335(7)	1.2294(10)	0.3242(5)	0.040(3)
C421	0.9012(8)	1.3071(10)	0.3608(5)	0.052(3)
C431	0.7471(8)	1.2987(12)	0.3078(6)	0.068(4)
C441	$0.8654(7)$	0.7455(11)	0.3145(4)	0.039(3)
C451	0.8172(8)	0.6615(10)	0.3469(5)	0.046(3)
C461	0.8788(8)	0.7060(12)	0.2568(5)	0.053(3)
C471	0.7929(9)	0.6811(14)	0.2166(5)	0.070(4)
C481	$0.7237(9)$	0.7790(13)	0.2129(6)	0.068(4)
0491	$0.7622(6)$	0.8836(9)	0.1951(3)	0.070(3)
C501	$0.7058(10)$	0.9821(14)	0.2000(6)	0.075(4)
C12	-0.1953(7)	0.6445(11)	0.0183(5)	0.041(3)
C22	-0.1534(10)	0.6241(13)	-0.0345(5)	0.072(4)
C32	-0.2146(7)	0.5649(10)	0.0542(5)	0.037(3)
C42	-0.1903(7)	0.4372(10)	0.0561(5)	0.042(3)
C52	-0.1324(7)	0.4143(9)	0.1104(5)	0.035(3)
N62	-0.0449(5)	0.4479(7)	0.1197(4)	0.032(2)
C72	-0.0107(6)	0.4373(9)	0.1758(4)	0.027(2)
C82	-0.0772(7)	0.3966(9)	0.2030(5)	0.035(3)
C92	-0.1536(7)	0.3788(10)	0.1626(5)	0.040(3)
C102	0.0800(7)	0.4751(9)	0.1980(4)	0.025(2)
0112	0.1000(5)	0.4726(6)	0.2561(3)	0.0363(18)
C122	0.1860(7)	0.5321(9)	0.2708(4)	0.033(2)
C132	0.2189(6)	0.5432(9)	0.2138(4)	0.027(2)
N142	$0.1406(5)$	0.5120(7)	0.1713(3)	0.027(2)
C152	$0.1717(7)$	0.6461(9)	0.2987(4)	0.034(3)
0162	0.1193(4)	0.7217(6)	0.2566(3)	0.0271(17)
C172	0.1634(8)	0.8098(9)	0.2385(4)	0.029(2)
0172	$0.2359(5)$	0.8451(6)	0.2602(3)	0.040(2)
C182	0.1132(6)	0.8652(9)	0.1854(4)	0.025(2)
C192	0.0503(6)	0.8050(9)	0.1521(4)	0.030(3)
C202	0.0048(7)	0.8442(10)	0.0951(5)	0.032(3)
0202	0.0434(5)	0.8708(9)	0.0570(3)	0.063(3)
0212	-0.0839(4)	0.8401(7)	0.0907(3)	0.0368(19)
C222	-0.1354(6)	0.8529(10)	0.0345(4)	0.032(2)
C232	-0.2141(7)	0.7696(10)	0.0308(5)	0.037(2)
0242	-0.2788(5)	0.8212(7)	-0.0149(3)	0.044(2)

C252	$-0.2598(8)$	$0.9351(12)$	$-0.0199(5)$	$0.045(3)$
O252	$-0.3083(5)$	$0.9957(9)$	$-0.0535(4)$	$0.067(3)$
C262	$-0.1781(7)$	$0.9717(10)$	$0.0207(5)$	$0.035(2)$
C272	$-0.2074(8)$	$1.0330(11)$	$0.0713(5)$	$0.054(3)$
C282	$-0.1214(8)$	$1.0540(12)$	$-0.0079(5)$	$0.053(3)$
O292	$-0.0879(5)$	$1.0040(9)$	$-0.0545(3)$	$0.065(3)$
C302	$0.1454(7)$	$0.9867(9)$	$0.1741(5)$	$0.035(3)$
C312	$0.1058(7)$	$1.0789(9)$	$0.2111(5)$	$0.039(3)$
C322	$0.1611(9)$	$1.1892(11)$	$0.2142(6)$	$0.061(4)$
C332	$0.0080(8)$	$1.1045(12)$	$0.1873(6)$	$0.063(4)$
C342	$0.2983(6)$	$0.4695(10)$	$0.2067(4)$	$0.033(3)$
C352	$0.3788(7)$	$0.5136(9)$	$0.1994(4)$	$0.029(2)$
C362	$0.4610(6)$	$0.4537(10)$	$0.1917(4)$	$0.033(2)$
C372	$0.5350(7)$	$0.5443(11)$	$0.2006(5)$	$0.051(3)$
O382	$0.4956(5)$	$0.6467(7)$	$0.2185(3)$	$0.044(2)$
C392	$0.4007(7)$	$0.6428(9)$	$0.2010(4)$	$0.035(3)$
C402	$0.3708(8)$	$0.6984(10)$	$0.1433(5)$	$0.042(3)$
C412	$0.3766(8)$	$0.8309(11)$	$0.1423(5)$	$0.056(3)$
C422	$0.4688(10)$	$0.8799(13)$	$0.1532(7)$	$0.094(5)$
C432	$0.3239(10)$	$0.8804(13)$	$0.0857(6)$	$0.084(5)$
C442	$0.4735(7)$	$0.3415(11)$	$0.1749(5)$	$0.049(3)$
C452	$0.3998(8)$	$0.2529(11)$	$0.1637(6)$	$0.056(4)$
C462	$0.5645(8)$	$0.3008(13)$	$0.1642(6)$	$0.066(4)$
C472	$0.5647(9)$	$0.2611(14)$	$0.1030(6)$	$0.074(4)$
C482	$0.5273(9)$	$0.3526(15)$	$0.0597(6)$	$0.076(4)$
O492	$0.5813(6)$	$0.4540(10)$	$0.0674(4)$	$0.082(3)$
C502	$0.5442(10)$	$0.5428(16)$	$0.0304(7)$	$0.092(5)$

Table S 8 Hydrogen coordinates and isotropic displacement parameters $\left(\AA^{2}\right)$ for leupyrrin $B_{1}(2)$.

atom	x	y	z	$U_{\text {eq }}$
H2A1	0.3593	1.1761	0.5519	0.084
H2B1	0.3269	1.0519	0.5714	0.084
H2C1	0.4067	1.0594	0.5349	0.084
H31	0.5211	1.0249	0.6805	0.04
H4A1	0.4582	0.833	0.6538	0.052
H4B1	0.4412	0.8743	0.5887	0.052
H61	0.5872	0.9223	0.5467	0.037
H81	0.7722	0.7559	0.6542	0.047
H91	0.625	0.752	0.691	0.05

H121	0.9506	0.8646	0.5264	0.037
H131	0.8413	1.0342	0.4717	0.036
H15A1	0.9851	1.0023	0.6014	0.04
H15B1	0.9939	1.0564	0.5405	0.04
H191	0.7332	1.1462	0.5676	0.03
H221	0.4778	1.2898	0.5616	0.038
H231	0.5192	1.2084	0.6759	0.038
H27A1	0.5834	1.3888	0.7009	0.07
H27B1	0.5567	1.5235	0.6928	0.07
H27C1	0.6309	1.469	0.6596	0.07
H28A1	0.4687	1.591	0.5997	0.045
H28B1	0.5503	1.5409	0.5719	0.045
H291	0.3848	1.4628	0.5383	0.045
H30A1	0.7397	1.4312	0.5106	0.038
H30B1	0.8261	1.4001	0.4827	0.038
H311	0.9213	1.4459	0.5695	0.043
H32A1	0.8998	1.6495	0.5648	0.084
H32B1	0.8025	1.6308	0.5281	0.084
H32C1	0.8901	1.5941	0.5026	0.084
H33A1	0.8629	1.532	0.6454	0.105
H33B1	0.8221	1.4038	0.6339	0.105
H33C1	0.7628	1.5155	0.6122	0.105
H341	0.8335	0.7967	0.4326	0.042
H37A1	0.9892	0.9011	0.2882	0.062
H37B1	0.8943	0.9607	0.2644	0.062
H391	0.9319	1.0771	0.4105	0.035
H40A1	0.7866	1.1335	0.3865	0.046
H40B1	0.7746	1.0675	0.3268	0.046
H411	0.8577	1.2102	0.2887	0.048
H42A1	0.9113	1.3777	0.3395	0.079
H42B1	0.9579	1.2648	0.371	0.079
H42C1	0.8781	1.3287	0.3954	0.079
H43A1	0.7601	1.3713	0.289	0.102
H43B1	0.7216	1.3171	0.342	0.102
H43C1	0.7041	1.2523	0.2818	0.102
H45A1	0.8068	0.5884	0.3256	0.069
H45B1	0.7595	0.6951	0.3523	0.069
H45C1	0.8536	0.6461	0.384	0.069
H46A1	0.9159	0.6343	0.2609	0.064
H46B1	0.9127	0.7668	0.2398	0.064
H47A1	0.766	0.6087	0.229	0.085

H47B1	0.8076	0.6669	0.1782	0.085
H48A1	0.6698	0.7578	0.1854	0.082
H48B1	0.7053	0.791	0.2505	0.082
H50A1	0.7341	1.0527	0.1879	0.112
H50B1	0.6972	0.9909	0.2397	0.112
H50C1	0.6476	0.9703	0.1759	0.112
H2A2	-0.1474	0.6987	-0.0536	0.108
H2B2	-0.1916	0.5715	-0.0603	0.108
H2C2	-0.094	0.5888	-0.0237	0.108
H32	-0.2479	0.591	0.0823	0.045
H4A2	-0.2451	0.3888	0.0527	0.05
H4B2	-0.1583	0.4177	0.0242	0.05
H62	-0.0149	0.4728	0.0934	0.038
H82	-0.0723	0.3827	0.2427	0.042
H92	-0.2094	0.3484	0.1694	0.048
H122	0.2283	0.4824	0.2972	0.039
H132	0.2342	0.6267	0.2081	0.033
H15A2	0.1393	0.6334	0.3311	0.041
H15B2	0.2302	0.6829	0.3133	0.041
H192	0.0331	0.7318	0.1656	0.036
H222	-0.0976	0.8317	0.0053	0.038
H232	-0.2392	0.7735	0.0671	0.044
H27A2	-0.2455	0.9806	0.0895	0.081
H27B2	-0.2411	1.1036	0.0583	0.081
H27C2	-0.1543	1.0543	0.0988	0.081
H28A2	-0.1578	1.1234	-0.0212	0.064
H28B2	-0.0702	1.0806	0.0205	0.064
H292	-0.1157	1.0316	-0.0849	0.078
H30A2	0.127	1.0059	0.1334	0.042
H30B2	0.2117	0.9891	0.1826	0.042
H312	0.1091	1.0469	0.2504	0.047
H32A2	0.2233	1.1715	0.2307	0.091
H32B2	0.1367	1.2467	0.238	0.091
H32C2	0.1592	1.221	0.1759	0.091
H33A2	-0.0275	1.0332	0.1879	0.094
H33B2	0.0034	1.1325	0.1481	0.094
H33C2	-0.0148	1.1645	0.2105	0.094
H342	0.2918	0.3871	0.2074	0.04
H37A2	0.585	0.5179	0.2299	0.061
H37B2	0.5585	0.5585	0.1648	0.061
H392	0.3702	0.6823	0.2301	0.042

H40A2	0.308	0.6752	0.1295	0.05
H40B2	0.4081	0.6665	0.1163	0.05
H412	0.3454	0.8599	0.1735	0.068
H42A2	0.4657	0.9653	0.1526	0.141
H42B2	0.5023	0.8531	0.1237	0.141
H42C2	0.4994	0.8538	0.1905	0.141
H43A2	0.3289	0.9657	0.0857	0.126
H43B2	0.2606	0.8582	0.0823	0.126
H43C2	0.349	0.8485	0.0535	0.126
H45A2	0.4242	0.1791	0.1522	0.084
H45B2	0.3532	0.281	0.1333	0.084
H45C2	0.3739	0.2406	0.1983	0.084
H46A2	0.5847	0.2354	0.1902	0.079
H46B2	0.6081	0.3653	0.1731	0.079
H47A2	0.6269	0.2422	0.098	0.088
H47B2	0.5285	0.189	0.0958	0.088
H48A2	0.5263	0.3217	0.0208	0.091
H48B2	0.4651	0.3722	0.0642	0.091
H50A2	0.5814	0.613	0.037	0.138
H50B2	0.4834	0.5603	0.0374	0.138
H50C2	0.5417	0.517	-0.009	0.138

Table S 9 Anisotropic displacement parameters $\left(\AA^{2}\right)$ for leupyrrin B_{1} (2). The anisotropic displacement factor exponent takes the form: $-2 \mathrm{pi}^{2}\left(\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}_{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}_{12}\right)$.

atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C11	$0.027(7)$	$0.053(5)$	$0.025(6)$	$-0.013(5)$	$0.005(5)$	$-0.007(5)$
C21	$0.050(8)$	$0.059(9)$	$0.051(7)$	$-0.025(7)$	$-0.011(5)$	$-0.010(6)$
C31	$0.032(6)$	$0.044(6)$	$0.026(7)$	$-0.015(5)$	$0.011(5)$	$-0.020(5)$
C41	$0.053(6)$	$0.039(6)$	$0.042(7)$	$-0.014(6)$	$0.020(6)$	$-0.027(5)$
C51	$0.051(6)$	$0.021(6)$	$0.024(6)$	$-0.014(5)$	$0.014(5)$	$-0.023(5)$
N61	$0.042(5)$	$0.022(5)$	$0.031(5)$	$0.003(4)$	$0.011(4)$	$0.005(4)$
C71	$0.041(5)$	$0.023(7)$	$0.032(6)$	$-0.002(5)$	$0.010(5)$	$0.006(5)$
C81	$0.062(7)$	$0.026(7)$	$0.027(6)$	$0.003(5)$	$-0.003(5)$	$0.004(6)$
C91	$0.075(7)$	$0.032(7)$	$0.021(6)$	$-0.002(5)$	$0.015(5)$	$-0.017(6)$
C101	$0.034(5)$	$0.022(6)$	$0.024(6)$	$-0.004(5)$	$0.000(4)$	$0.003(5)$
O111	$0.038(4)$	$0.021(4)$	$0.041(4)$	$0.005(3)$	$0.009(3)$	$0.006(3)$
C121	$0.028(5)$	$0.035(6)$	$0.033(6)$	$0.002(5)$	$0.016(4)$	$0.011(5)$
C131	$0.042(6)$	$0.015(6)$	$0.034(5)$	$-0.006(4)$	$0.009(4)$	$-0.001(5)$

N141	0.038(5)	0.019(5)	0.031(5)	-0.005(4)	-0.001(4)	-0.001(4)
C151	0.010(6)	0.041(6)	0.049(7)	-0.001(5)	0.001(5)	0.012(4)
0161	0.023(4)	0.027(4)	0.023(4)	0.003(3)	0.006(3)	0.006(3)
C171	0.030(6)	0.026(6)	0.024(6)	0.001(5)	0.011(5)	0.003(5)
0171	0.033(4)	0.029(4)	0.047(5)	0.003(4)	0.021(4)	-0.003(3)
C181	0.026(5)	0.019(5)	0.026(6)	0.000(5)	0.002(5)	0.003(4)
C191	0.017(5)	0.025(6)	0.032(6)	-0.004(5)	0.001(4)	0.003(4)
C201	0.034(6)	0.033(7)	0.042(7)	0.006(6)	0.014(5)	0.002(5)
0201	0.032(4)	0.085(7)	0.056(5)	0.033(5)	0.020(4)	0.024(4)
0211	0.018(4)	0.041(5)	0.029(4)	-0.008(4)	0.011(3)	0.004(3)
C221	0.015(5)	0.046(6)	0.032(6)	-0.006(5)	-0.001(4)	0.004(5)
C231	0.020(6)	0.050(5)	0.026(6)	-0.015(5)	0.008(5)	-0.005(5)
0241	0.023(4)	0.053(5)	0.041(5)	-0.013(4)	0.013(3)	0.000(4)
C251	0.026(6)	0.050(6)	0.040(7)	-0.010(6)	0.001(5)	0.005(5)
0251	0.043(5)	0.058(6)	0.082(6)	-0.010(5)	0.022(5)	0.022(4)
C261	0.026(6)	0.048(6)	0.029(6)	-0.011(5)	0.000(4)	0.007(5)
C271	0.034(6)	0.044(8)	0.056(7)	-0.008(6)	-0.009(5)	-0.003(6)
C281	0.036(7)	0.039(6)	0.037(6)	-0.018(5)	0.001(5)	0.005(5)
0291	0.026(4)	0.052(5)	0.033(4)	-0.007(4)	0.005(3)	-0.001(4)
C301	0.030(6)	0.028(5)	0.038(6)	-0.001(5)	0.011(5)	0.007(4)
C311	0.034(7)	0.024(6)	0.051(7)	-0.003(5)	0.009(5)	0.002(5)
C321	0.052(8)	0.021(6)	0.098(10)	0.011(6)	0.019(7)	-0.001(6)
C331	0.105(11)	0.054(9)	0.056(7)	-0.029(7)	0.025(8)	-0.034(9)
C341	0.051(7)	0.013(6)	0.043(6)	-0.005(5)	0.009(5)	0.004(5)
C351	0.030(6)	0.031(6)	0.045(6)	-0.007(5)	0.013(5)	-0.002(5)
C361	0.032(6)	0.047(6)	0.034(6)	-0.011(5)	0.007(5)	-0.010(5)
C371	0.053(8)	0.059(8)	0.048(7)	-0.013(6)	0.023(6)	-0.007(6)
0381	0.041(5)	0.046(5)	0.054(5)	-0.003(4)	0.025(4)	-0.015(4)
C391	0.022(6)	0.031(5)	0.037(7)	0.002(4)	0.015(5)	-0.002(5)
C401	0.030(6)	0.035(6)	0.049(7)	0.008(6)	0.007(5)	-0.009(4)
C411	0.050(7)	0.031(6)	0.037(7)	0.005(5)	0.000(5)	-0.007(5)
C421	0.075(8)	0.033(7)	0.044(8)	0.000(6)	-0.007(6)	-0.022(6)
C431	0.066(8)	0.051(9)	0.079(10)	0.023(8)	-0.013(7)	0.002(7)
C441	0.023(6)	0.061(7)	0.034(6)	-0.018(6)	0.010(5)	-0.004(6)
C451	0.074(9)	0.032(7)	0.030(7)	0.000(6)	0.005(6)	0.004(6)
C461	0.063(7)	0.061(9)	0.042(7)	-0.021(6)	0.023(5)	-0.014(7)
C471	0.090(9)	0.087(9)	0.032(7)	-0.020(7)	0.003(6)	0.006(8)
C481	0.063(8)	0.081(8)	0.054(9)	-0.013(8)	-0.011(7)	-0.018(6)
0491	0.074(6)	0.088(6)	0.050(5)	0.007(5)	0.020(5)	-0.004(5)
C501	0.080(10)	0.087(9)	0.057(9)	-0.010(9)	0.014(8)	0.010(8)
C12	0.031(7)	0.053(6)	0.041(7)	-0.012(5)	0.007(5)	0.006(5)

C22	0.097(11)	0.073(11)	0.054(8)	-0.023(8)	0.035(8)	-0.016(9)
C32	0.024(6)	0.046(6)	0.040(7)	-0.012(5)	0.000(5)	0.000(5)
C42	0.028(6)	0.048(6)	0.049(6)	-0.012(6)	0.002(5)	0.002(6)
C52	0.032(6)	0.029(7)	0.044(6)	-0.002(5)	0.009(5)	-0.005(5)
N62	0.027(5)	0.037(6)	0.033(5)	0.002(5)	0.008(4)	-0.009(4)
C72	0.024(5)	0.020(6)	0.039(6)	-0.004(5)	0.009(4)	0.001(5)
C82	0.044(6)	0.024(7)	0.040(6)	-0.001(5)	0.015(5)	-0.002(5)
C92	0.035(6)	0.038(7)	0.051(6)	-0.001(6)	0.014(5)	-0.008(6)
C102	0.028(5)	0.017(6)	0.029(6)	0.005(5)	0.001(4)	0.007(5)
0112	0.048(4)	0.034(4)	0.027(4)	0.000(4)	0.009(3)	-0.010(4)
C122	0.032(6)	0.029(6)	0.036(5)	0.016(5)	0.005(4)	0.000(5)
C132	0.032(5)	0.014(6)	0.034(6)	-0.002(5)	-0.001(4)	0.001(4)
N142	0.023(4)	0.024(5)	0.034(5)	-0.004(4)	0.009(4)	0.001(4)
C152	0.039(7)	0.038(6)	0.024(6)	0.010(4)	-0.002(5)	-0.001(5)
0162	0.031(4)	0.021(4)	0.027(4)	0.001(3)	0.000(3)	-0.004(3)
C172	0.036(6)	0.015(6)	0.035(6)	-0.008(4)	0.004(5)	0.003(5)
0172	0.042(5)	0.033(5)	0.041(5)	0.002(4)	-0.006(4)	-0.011(4)
C182	0.031(6)	0.027(5)	0.019(5)	-0.003(4)	0.008(4)	-0.001(5)
C192	0.026(6)	0.029(7)	0.036(6)	0.006(5)	0.003(4)	0.006(5)
C202	0.025(5)	0.033(7)	0.037(6)	-0.002(6)	0.003(4)	0.007(6)
0202	0.040(5)	0.112(8)	0.034(5)	0.025(5)	-0.001(4)	-0.014(5)
0212	0.032(4)	0.060(5)	0.018(4)	0.005(4)	0.002(3)	0.008(4)
C222	0.025(5)	0.059(6)	0.012(5)	-0.001(5)	0.007(4)	0.004(4)
C232	0.028(6)	0.049(5)	0.031(6)	0.005(5)	0.000(5)	0.006(5)
0242	0.037(4)	0.062(5)	0.030(4)	0.005(4)	-0.006(3)	0.005(4)
C252	0.037(6)	0.060(7)	0.038(7)	0.008(6)	0.010(5)	0.012(5)
0252	0.036(5)	0.087(7)	0.071(6)	0.034(5)	-0.009(4)	0.008(5)
C262	0.027(6)	0.043(6)	0.037(6)	0.005(5)	0.008(4)	0.015(4)
C272	0.064(9)	0.059(9)	0.040(7)	0.007(6)	0.014(6)	0.025(7)
C282	0.042(7)	0.067(8)	0.052(8)	0.011(6)	0.013(6)	0.005(6)
0292	0.037(5)	0.119(8)	0.041(5)	0.022(5)	0.013(4)	0.036(5)
C302	0.035(6)	0.031(5)	0.039(7)	0.001(5)	0.009(5)	-0.005(5)
C312	0.054(7)	0.022(6)	0.040(7)	-0.003(5)	0.008(6)	0.002(5)
C322	0.074(9)	0.039(7)	0.065(9)	-0.003(7)	-0.001(7)	-0.014(6)
C332	0.058(7)	0.050(9)	0.078(10)	-0.013(8)	0.001(7)	0.015(6)
C342	0.026(5)	0.023(6)	0.049(7)	-0.005(6)	0.001(5)	-0.004(4)
C352	0.033(5)	0.034(5)	0.021(6)	0.005(5)	0.003(5)	0.000(4)
C362	0.023(5)	0.050(6)	0.025(6)	0.002(6)	-0.004(5)	0.007(4)
C372	0.032(6)	0.064(7)	0.053(8)	-0.008(7)	-0.003(6)	0.002(5)
0382	0.034(4)	0.049(5)	0.045(5)	0.001(4)	-0.007(4)	-0.002(4)
C392	0.034(6)	0.039(6)	0.031(6)	0.002(5)	0.005(5)	-0.009(5)

C402	$0.044(7)$	$0.038(6)$	$0.041(7)$	$0.002(5)$	$0.001(5)$	$-0.006(5)$
C412	$0.070(8)$	$0.045(7)$	$0.054(8)$	$0.020(6)$	$0.010(6)$	$-0.012(7)$
C422	$0.082(9)$	$0.048(9)$	$0.140(14)$	$0.014(10)$	$-0.015(9)$	$-0.026(8)$
C432	$0.093(10)$	$0.070(10)$	$0.083(10)$	$0.041(9)$	$-0.002(7)$	$-0.010(9)$
C442	$0.043(7)$	$0.053(7)$	$0.052(8)$	$-0.003(7)$	$0.015(6)$	$0.010(5)$
C452	$0.056(7)$	$0.036(7)$	$0.084(10)$	$-0.005(7)$	$0.035(7)$	$0.007(5)$
C462	$0.045(7)$	$0.076(10)$	$0.078(7)$	$-0.001(7)$	$0.015(7)$	$0.020(6)$
C472	$0.054(9)$	$0.085(10)$	$0.089(9)$	$-0.019(7)$	$0.030(8)$	$0.013(8)$
C482	$0.064(10)$	$0.108(11)$	$0.058(8)$	$-0.012(8)$	$0.020(7)$	$-0.002(8)$
O492	$0.046(6)$	$0.104(8)$	$0.100(8)$	$0.002(6)$	$0.021(6)$	$0.005(5)$
C502	$0.066(11)$	$0.115(12)$	$0.105(13)$	$0.012(9)$	$0.044(9)$	$0.009(9)$

Table S 10 Bond lengths (A°) and angles (deg) for		C191-C201	1.486(14)
Leupyrrin $\mathrm{B}_{1}(2)$.		C191-H191	0.95
atoms	bond length/angle	C201-0201	1.202(12)
C11-C31	1.363(15)	C201-0211	.335(12)
C11-C231	1.457(15)	O211-C221	1.443(11)
C11-C21	1.484(14)	C221-C231	1.491(15)
C21-H2A1	0.98	C221-C261	1.552(15)
C21-H2B1	0.98	C221-H221	1
C21-H2C1	0.98	C231-O241	1.473(12)
C31-C41	1.532(16)	C231-H231	1
C31-H31	0.95	O241-C251	1.350(14)
C41-C51	1.453(15)	C251-0251	1.204(13)
C41-H4A1	0.99	C251-C261	1.516(15)
C41-H4B1	0.99	C261-C281	1.518(15)
C51-N61	1.361(12)	C261-C271	1.532(14)
C51-C91	1.361(15)	C271-H27A1	0.98
N61-C71	1.371(12)	C271-H27B1	0.98
N61-H61	0.88	C271-H27C1	0.98
C71-C81	1.378(14)	C281-O291	1.430(12)
C71-C101	1.452(14)	C281-H28A1	0.99
C81-C91	1.401(15)	C281-H28B1	0.99
C81-H81	0.95	O291-H291	0.84
C91-H91	0.95	C301-C311	1.542(15)
C101-N141	1.272(12)	C301-H30A1	0.99
C101-0111	1.362(11)	C301-H30B1	0.99
O111-C121	1.450(12)	C311-C321	1.507(15)
C121-C151	1.475(14)	C311-C331	1.525(15)
C121-C131	1.557(14)	C311-H311	1
C121-H121	1	C321-H32A1	0.98
C131-N141	1.470(12)	C321-H32B1	0.98
C131-C341	1.489(14)	C321-H32C1	0.98
C131-H131	1	C331-H33A1	0.98
C151-0161	1.439(11)	C331-H33B1	0.98
C151-H15A1	0.99	C331-H33C1	0.98
C151-H15B1	0.99	C341-C351	1.338(14)
O161-C171	1.352(12)	C341-H341	0.95
C171-0171	1.198(11)	C351-C361	1.478(15)
C171-C181	1.489(14)	C351-C391	1.518(15)
C181-C191	1.333(13)	C361-C441	1.331(16)
C181-C301	1.479(14)	C361-C371	1.499(16)

C371-0381	1.431(13)	C22-H2C2	0.98
C371-H37A1	0.99	C32-C42	1.508(16)
C371-H37B1	0.99	C32-H32	0.95
O381-C391	1.416(12)	C42-C52	1.466(15)
C391-C401	1.523(14)	C42-H4A2	0.99
C391-H391	1	C42-H4B2	0.99
C401-C411	1.524(15)	C52-N62	1.361(12)
C401-H40A1	0.99	C52-C92	1.396(14)
C401-H40B1	0.99	N62-C72	1.358(12)
C411-C421	1.520(15)	N62-H62	0.88
C411-C431	1.524(16)	C72-C82	$1.365(14)$
C411-H411	1	C72-C102	1.454(14)
C421-H42A1	0.98	C82-C92	1.393(14)
C421-H42B1	0.98	C82-H82	0.95
C421-H42C1	0.98	C92-H92	0.95
C431-H43A1	0.98	C102-N142	1.271(12)
C431-H43B1	0.98	C102-0112	1.369(11)
C431-H43C1	0.98	O112-C122	1.459(12)
C441-C461	1.492(15)	C122-C152	1.499(15)
C441-C451	1.496(16)	C122-C132	1.527(14)
C451-H45A1	0.98	C122-H122	1
C451-H45B1	0.98	C132-N142	1.473(12)
C451-H45C1	0.98	C132-C342	1.499(14)
C461-C471	1.511(17)	C132-H132	1
C461-H46A1	0.99	C152-0162	1.459(12)
C461-H46B1	0.99	C152-H15A2	0.99
C471-C481	1.527(19)	C152-H15B2	0.99
C471-H47A1	0.99	O162-C172	1.322(12)
C471-H47B1	0.99	C172-0172	1.204(11)
C481-0491	1.428(16)	C172-C182	1.507(14)
C481-H48A1	0.99	C182-C192	1.330(14)
C481-H48B1	0.99	C182-C302	1.514(15)
O491-C501	1.431(16)	C192-C202	1.491(14)
C501-H50A1	0.98	C192-H192	0.95
C501-H50B1	0.98	C202-0202	1.196(11)
C501-H50C1	0.98	C202-0212	1.327(11)
C12-C32	1.316(15)	O212-C222	1.444(11)
C12-C232	1.502(16)	C222-C232	1.516(15)
C12-C22	1.517(16)	C222-C262	1.520(16)
C22-H2A2	0.98	C222-H222	1
C22-H2B2	0.98	C232-0242	1.468(12)

C232-H232	1	C252-0252	1.212(13)
O242-C252	1.346(14)	C252-C262	1.501(16)
C262-C282	1.510(16)	C422-H42A2	0.98
C262-C272	1.523(15)	C422-H42B2	0.98
C272-H27A2	0.98	C422-H42C2	0.98
C272-H27B2	0.98	C432-H43A2	0.98
C272-H27C2	0.98	C432-H43B2	0.98
C282-0292	1.417(13)	C432-H43C2	0.98
C282-H28A2	0.99	C442-C452	1.499(16)
C282-H28B2	0.99	C442-C462	1.513(16)
O292-H292	0.84	C452-H45A2	0.98
C302-C312	1.557(15)	C452-H45B2	0.98
C302-H30A2	0.99	C452-H45C2	0.98
C302-H30B2	0.99	C462-C472	1.530(17)
C312-C322	1.511(16)	C462-H46A2	0.99
C312-C332	1.524(15)	C462-H46B2	0.99
C312-H312	1	C472-C482	1.52(2)
C322-H32A2	0.98	C472-H47A2	0.99
C322-H32B2	0.98	C472-H47B2	0.99
C322-H32C2	0.98	C482-0492	1.415(17)
C332-H33A2	0.98	C482-H48A2	0.99
C332-H33B2	0.98	C482-H48B2	0.99
C332-H33C2	0.98	O492-C502	1.403(18)
C342-C352	1.355(13)	C502-H50A2	0.98
C342-H342	0.95	C502-H50B2	0.98
C352-C362	1.457(14)	C502-H50C2	0.98
C352-C392	1.517(15)	C31-C11-C231	116.9(9)
C362-C442	1.368(16)	C31-C11-C21	123.1(11)
C362-C372	1.516(16)	C231-C11-C21	119.9(11)
C372-0382	1.414(14)	C11-C21-H2A1	109.5
C372-H37A2	0.99	C11-C21-H2B1	109.5
C372-H37B2	0.99	H2A1-C21-H2B1	109.5
O382-C392	1.428(12)	C11-C21-H2C1	109.5
C392-C402	1.519(15)	H2A1-C21-H2C1	109.5
C392-H392	1	H2B1-C21-H2C1	109.5
C402-C412	1.522(16)	C11-C31-C41	129.2(10)
C402-H40A2	0.99	C11-C31-H31	115.4
C402-H40B2	0.99	C41-C31-H31	115.4
C412-C422	1.486(17)	C51-C41-C31	108.5(9)
C412-C432	1.560(17)	C51-C41-H4A1	110
C412-H412	1	C31-C41-H4A1	110

C51-C41-H4B1	110	C171-0161-C151	118.4(7)
C31-C41-H4B1	110	0171-C171-0161	123.3(9)
H4A1-C41-H4B1	108.4	O171-C171-C181	122.9(9)
N61-C51-C91	106.3(10)	O161-C171-C181	113.7(8)
N61-C51-C41	122.3(10)	C191-C181-C301	126.8(9)
C91-C51-C41	130.7(10)	C191-C181-C171	118.8(9)
C51-N61-C71	110.1(9)	C301-C181-C171	114.3(9)
C51-N61-H61	124.9	C181-C191-C201	123.5(10)
C71-N61-H61	124.9	C181-C191-H191	118.3
N61-C71-C81	107.9(9)	C201-C191-H191	118.3
N61-C71-C101	122.5(9)	O201-C201-0211	124.0(10)
C81-C71-C101	129.2(10)	O201-C201-C191	124.6(10)
C71-C81-C91	105.7(10)	O211-C201-C191	111.3(9)
C71-C81-H81	127.2	C201-O211-C221	116.6(8)
C91-C81-H81	127.2	O211-C221-C231	108.1(8)
C51-C91-C81	110.0(10)	O211-C221-C261	115.0(8)
C51-C91-H91	125	C231-C221-C261	104.2(8)
C81-C91-H91	125	O211-C221-H221	109.8
N141-C101-O111	118.0(9)	C231-C221-H221	109.8
N141-C101-C71	129.6(10)	C261-C221-H221	109.8
O111-C101-C71	112.4(9)	C11-C231-0241	111.2(8)
C101-O111-C121	105.8(7)	C11-C231-C221	115.2(9)
O111-C121-C151	109.1(8)	O241-C231-C221	102.1(8)
O111-C121-C131	103.9(7)	C11-C231-H231	109.4
C151-C121-C131	114.5(9)	O241-C231-H231	109.4
O111-C121-H121	109.7	C221-C231-H231	109.4
C151-C121-H121	109.7	C251-O241-C231	109.5(8)
C131-C121-H121	109.7	O251-C251-0241	120.8(10)
N141-C131-C341	111.4(8)	O251-C251-C261	127.7(11)
N141-C131-C121	103.3(8)	O241-C251-C261	111.4(9)
C341-C131-C121	114.0(8)	C251-C261-C281	111.0(9)
N141-C131-H131	109.3	C251-C261-C271	106.7(9)
C341-C131-H131	109.3	C281-C261-C271	108.8(9)
C121-C131-H131	109.3	C251-C261-C221	99.3(9)
C101-N141-C131	107.8(8)	C281-C261-C221	117.4(8)
O161-C151-C121	109.3(8)	C271-C261-C221	112.8(9)
O161-C151-H15A1	109.8	C261-C271-H27A1	109.5
C121-C151-H15A1	109.8	C261-C271-H27B1	109.5
O161-C151-H15B1	109.8	H27A1-C271-H27B1	109.5
C121-C151-H15B1	109.8	C261-C271-H27C1	109.5
H15A1-C151-H15B1	108.3	H27A1-C271-H27C1	109.5

H27B1-C271-H27C1	109.5
O291-C281-C261	113.8(9)
O291-C281-H28A1	108.8
C261-C281-H28A1	108.8
O291-C281-H28B1	108.8
C261-C281-H28B1	108.8
H28A1-C281-H28B1	107.7
C281-O291-H291	109.5
C181-C301-C311	114.0(9)
C181-C301-H30A1	108.8
C311-C301-H30A1	108.8
C181-C301-H30B1	108.8
C311-C301-H30B1	108.8
H30A1-C301-H30B1	107.7
C321-C311-C331	111.1(10)
C321-C311-C301	109.3(10)
C331-C311-C301	111.7(9)
C321-C311-H311	108.2
C331-C311-H311	108.2
C301-C311-H311	108.2
C311-C321-H32A1	109.5
C311-C321-H32B1	109.5
H32A1-C321-H32B1	109.5
C311-C321-H32C1	109.5
H32A1-C321-H32C1	109.5
H32B1-C321-H32C1	109.5
C311-C331-H33A1	109.5
C311-C331-H33B1	109.5
H33A1-C331-H33B1	109.5
C311-C331-H33C1	109.5
H33A1-C331-H33C1	109.5
H33B1-C331-H33C1	109.5
C351-C341-C131	125.0(10)
C351-C341-H341	117.5
C131-C341-H341	117.5
C341-C351-C361	129.1(10)
C341-C351-C391	124.9(10)
C361-C351-C391	106.0(9)
C441-C361-C351	132.1(10)
C441-C361-C371	123.1(10)
C351-C361-C371	104.8(9)

O381-C371-C361	8(8)
O381-C371-H37A1	110.1
C361-C371-H37A1	110.1
O381-C371-H37B1	110.1
C361-C371-H37B1	110.1
H37A1-C371-H37B1	108.5
C391-O381-C371	8)
O381-C391-C351)
O381-C391-C401	113.1(9)
C351-C391-C401	111.8(8)
O381-C391-H391	109
C351-C391-H391	109
C401-C391-H391	109
C391-C401-C411	115.2(9)
C391-C401-H40A1	108.5
C411-C401-H40A1	108.5
C391-C401-H40B1	108.5
C411-C401-H40B1	108.5
H40A1-C401-H40B1	107.5
C421-C411-C401	112.7(9)
C421-C411-C431	108.2(10)
C401-C411-C431	111.4(9)
C421-C411-H411	108.1
C401-C411-H411	108.1
C431-C411-H411	108.1
C411-C421-H2A1	109.5
C411-C421-H2B1	109.5
H42A1-C421-H42B1	109.5
C411-C421-H42C1	109.5
H42A1-C421-H42C1	109.5
H42B1-C421-H42C1	109.5
C411-C431-H43A1	109.5
C411-C431-H43B1	109.5
H43A1-C431-H43B1	109.5
C411-C431-H43C1	109.5
H43A1-C431-H43C1	109.5
H43B1-C431-H43C1	109.5
C361-C441-C461	120.9(11)
C361-C441-C451	123.4(10)
C461-C441-C451	115.5(10)
C441-C451-H45A1	109.5

C441-C451-H45B1	109.5
H45A1-C451-H45B1	109.5
C441-C451-H45C1	109.5
H45A1-C451-H45C1	109.5
H45B1-C451-H45C1	109.5
C441-C461-C471	114.4(10)
C441-C461-H46A1	108.7
C471-C461-H46A1	108.7
C441-C461-H46B1	108.7
C471-C461-H46B1	108.7
H46A1-C461-H46B1	107.6
C461-C471-C481	114.0(11)
C461-C471-H47A1	108.7
C481-C471-H47A1	108.7
C461-C471-H47B1	108.7
C481-C471-H47B1	108.7
H47A1-C471-H47B1	107.6
O491-C481-C471	109.0(11)
O491-C481-H48A1	109.9
C471-C481-H48A1	109.9
O491-C481-H48B1	109.9
C471-C481-H48B1	109.9
H48A1-C481-H48B1	108.3
C481-O491-C501	111.2(10)
O491-C501-H50A1	109.5
O491-C501-H50B1	109.5
H50A1-C501-H50B1	109.5
O491-C501-H50C1	109.5
H50A1-C501-H50C1	109.5
H50B1-C501-H50C1	109.5
C32-C12-C232	117.6(10)
C32-C12-C22	126.8(11)
C232-C12-C22	115.5(11)
C12-C22-H2A2	109.5
C12-C22-H2B2	109.5
H2A2-C22-H2B2	109.5
C12-C22-H2C2	109.5
H2A2-C22-H2C2	109.5
H2B2-C22-H2C2	109.5
C12-C32-C42	127.9(11)
C12-C32-H32	116.1

C42-C32-H32	116.1
C52-C42-C32	108.0(9)
C52-C42-H4A2	110.1
C32-C42-H4A2	110.1
C52-C42-H4B2	110.1
C32-C42-H4B2	110.1
H4A2-C42-H4B2	108.4
N62-C52-C92	107.1(9)
N62-C52-C42	121.2(10)
C92-C52-C42	130.7(10)
C72-N62-C52	109.9(8)
C72-N62-H62	125.1
C52-N62-H62	125.1
N62-C72-C82	107.9(9)
N62-C72-C102	121.3(9)
C82-C72-C102	130.6(10)
C72-C82-C92	108.2(9)
C72-C82-H82	125.9
C92-C82-H82	125.9
C82-C92-C52	106.9(9)
C82-C92-H92	126.5
C52-C92-H92	126.5
N142-C102-0112	117.1(9)
N142-C102-C72	129.0(10)
O112-C102-C72	113.9(9)
C102-O112-C122	106.1(7)
O112-C122-C152	109.2(8)
O112-C122-C132	103.3(8)
C152-C122-C132	114.4(8)
O112-C122-H122	109.9
C152-C122-H122	109.9
C132-C122-H122	109.9
N142-C132-C342	110.7(8)
N142-C132-C122	104.6(8)
C342-C132-C122	115.8(8)
N142-C132-H132	108.5
C342-C132-H132	108.5
C122-C132-H132	108.5
C102-N142-C132	107.4(8)
O162-C152-C122	108.2(8)
O162-C152-H15A2	110.1

C122-C152-H15A2	110.1
O162-C152-H15B2	110.1
C122-C152-H15B2	110.1
H15A2-C152-H15B2	108.4
C172-O162-C152	115.6(8)
O172-C172-0162	126.0(10)
O172-C172-C182	121.4(10)
O162-C172-C182	112.7(9)
C192-C182-C172	119.8(9)
C192-C182-C302	126.2(9)
C172-C182-C302	113.9(9)
C182-C192-C202	124.6(10)
C182-C192-H192	117.7
C202-C192-H192	117.7
O202-C202-O212	124.0(9)
O202-C202-C192	124.0(10)
O212-C202-C192	111.8(9)
C202-O212-C222	117.1(8)
O212-C222-C232	106.9(8)
O212-C222-C262	116.0(9)
C232-C222-C262	104.5(8)
O212-C222-H222	109.8
C232-C222-H222	109.8
C262-C222-H222	109.8
O242-C232-C12	111.2(9)
O242-C232-C222	102.2(8)
C12-C232-C222	116.2(9)
O242-C232-H232	109
C12-C232-H232	109
C222-C232-H232	109
C252-O242-C232	109.3(9)
O252-C252-O242	120.0(11)
O252-C252-C262	127.7(12)
O242-C252-C262	112.2(10)
C252-C262-C282	110.5(9)
C252-C262-C222	99.5(9)
C282-C262-C222	113.9(9)
C252-C262-C272	109.1(9)
C282-C262-C272	109.1(10)
C222-C262-C272	114.2(9)
C262-C272-H27A2	109.5

C262-C272-H27B2	109.5
H27A2-C272-H27B2	109.5
C262-C272-H27C2	109.5
H27A2-C272-H27C2	109.5
H27B2-C272-H27C2	109.5
O292-C282-C262	113.8(11)
O292-C282-H28A2	108.8
C262-C282-H28A2	108.8
O292-C282-H28B2	108.8
C262-C282-H28B2	108.8
H28A2-C282-H28B2	107.7
C282-O292-H292	109.5
C182-C302-C312	111.0(8)
C182-C302-H30A2	109.4
C312-C302-H30A2	109.4
C182-C302-H30B2	109.4
C312-C302-H30B2	109.4
H30A2-C302-H30B2	108
C322-C312-C332	110.6(10)
C322-C312-C302	109.6(9)
C332-C312-C302	111.0(9)
C322-C312-H312	108.5
C332-C312-H312	108.5
C302-C312-H312	108.5
C312-C322-H32A2	109.5
C312-C322-H32B2	109.5
H32A2-C322-H32B2	109.5
C312-C322-H32C2	109.5
H32A2-C322-H32C2	109.5
H32B2-C322-H32C2	109.5
C312-C332-H33A2	109.5
C312-C332-H33B2	109.5
H33A2-C332-H33B2	109.5
C312-C332-H33C2	109.5
H33A2-C332-H33C2	109.5
H33B2-C332-H33C2	109.5
C352-C342-C132	123.8(10)
C352-C342-H342	118.1
C132-C342-H342	118.1
C342-C352-C362	129.9(10)
C342-C352-C392	123.9(9)

C362-C352-C392	106.1(9)
C442-C362-C352	129.9(10)
C442-C362-C372	123.4(10)
C352-C362-C372	106.5(9)
O382-C372-C362	105.9(8)
O382-C372-H37A2	110.6
C362-C372-H37A2	110.6
O382-C372-H37B2	110.6
C362-C372-H37B2	110.6
H37A2-C372-H37B2	108.7
C372-O382-C392	109.8(8)
O382-C392-C352	104.0(8)
O382-C392-C402	112.8(8)
C352-C392-C402	110.8(9)
O382-C392-H392	109.7
C352-C392-H392	109.7
C402-C392-H392	109.7
C392-C402-C412	115.0(10)
C392-C402-H40A2	108.5
C412-C402-H4OA2	108.5
C392-C402-H40B2	108.5
C412-C402-H40B2	108.5
H40A2-C402-H40B2	107.5
C422-C412-C402	115.5(11)
C422-C412-C432	110.3(11)
C402-C412-C432	110.7(11)
C422-C412-H412	106.6
C402-C412-H412	106.6
C432-C412-H412	106.6
C412-C422-H42A2	109.5
C412-C422-H42B2	109.5
H42A2-C422-H42B2	109.5
C412-C422-H42C2	109.5
H42A2-C422-H42C2	109.5
H42B2-C422-H42C2	109.5
C412-C432-H43A2	109.5
C412-C432-H43B2	109.5
H43A2-C432-H43B2	109.5

C412-C432-H43C2	109.5
H43A2-C432-H43C2	109.5
H43B2-C432-H43C2	109.5
C362-C442-C452	123.7(10)
C362-C442-C462	120.8(11)
C452-C442-C462	115.5(11)
C442-C452-H45A2	109.5
C442-C452-H45B2	109.5
H45A2-C452-H45B2	109.5
C442-C452-H45C2	109.5
H45A2-C452-H45C2	109.5
H45B2-C452-H45C2	109.5
C442-C462-C472	113.3(11)
C442-C462-H46A2	108.9
C472-C462-H46A2	108.9
C442-C462-H46B2	108.9
C472-C462-H46B2	108.9
H46A2-C462-H46B2	107.7
C482-C472-C462	112.7(12)
C482-C472-H47A2	109
C462-C472-H47A2	109
C482-C472-H47B2	109
C462-C472-H47B2	109
H47A2-C472-H47B2	107.8
O492-C482-C472	109.7(12)
O492-C482-H48A2	109.7
C472-C482-H48A2	109.7
O492-C482-H48B2	109.7
C472-C482-H48B2	109.7
H48A2-C482-H48B2	108.2
C502-O492-C482	110.5(11)
O492-C502-H5OA2	109.5
O492-C502-H50B2	109.5
H50A2-C502-H50B2	109.5
O492-C502-H50C2	109.5
H50A2-C502-H50C2	109.5
H50B2-C502-H50C2	109.5

[^0]: ${ }^{1}$ Still, W. C.; Kahn, M.; Mitra A. J. Org. Chem. 1978, 43, 2923.

[^1]: ${ }^{2}$ Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176.

[^2]: ${ }^{3}$ The water-layer was acidified to pH 3 using aqueous HCl and extracted with EtOAc (1 portion of 2L, 2 portions of 1L). Finally the EtOAc-layer was neutralized and yielded crude material of Sorangicin after evaporation, which was not further purified.

[^3]: ${ }^{4}$ Bode, H. B.; Irschik, H.; Wenzel, S. C.; Reichenbach, H.; R. Müller, R.; Höfle, G. J. Nat. Prod. 2003, 66, 1203.
 ${ }^{5}$ Signal contains two carbon atoms.

[^4]: ${ }^{6}$ Bode, H. B.; Irschik, H.; Wenzel, S. C.; Reichenbach, H.; R. Müller, R.; Höfle, G. J. Nat. Prod. 2003, 66, 1203.

[^5]: ${ }^{7}$ Bode, H. B.; Irschik, H.; Wenzel, S. C.; Reichenbach, H.; R. Müller, R.; Höfle, G. J. Nat. Prod. 2003, 66, 1203.
 ${ }^{8}$ Debnar, T.; Wang, T.; Menche, D. Org. Lett. 2013, 15, 2774.

[^6]: ${ }^{9}$ Seco, J. M.; Quiñoa, E.; Riguera, R. Chem. Rev. 2004, 104, 17.

[^7]: ${ }^{10}$ Maestro, version 9.2, Schrödinger, LLC, New York, NY, 2011.
 ${ }^{11}$ Macromodel, version 9.7, Schrödinger, LLC, New York, NY, 2009.
 ${ }^{12}$ E. Polak, G. Ribiere, Review Francaise Inf. Rech. Oper. 1969, 16 RI, 35-43.
 ${ }^{13}$ R. Klessig, E. Polak, SIAM J. Control 1972, 10, 524-529.

[^8]: ${ }^{14}$ (a) Andruszkiewicz, R.; Franklin, L. C.; Schwindt, M. A.; Silverman, R. B.; Sobieray, D. M.; Yuen, P. W.; Pat. WO1993023383 A1, 1993, (b) Hoekstra, M. S.; Sobieray, D. M.; Schwindt, M. A.; Mulhern, T. A.; Grote, T. M.; Huckabee, B. K.; Hendrickson, V. S.; Franklin, L. C.; Granger, E. J.; Karrick, G. L. Org. Process Res. Dev. 1997, 1, 26.
 ${ }^{15}$ Fronza, G.; Fuganti, C.; Grasselli, P.; Malpezzi, L.; Mele, A. J. Org. Chem. 1994, 59, 3487.
 ${ }^{16}$ (a) Debnar, T.; Wang, T.; Menche, D. Org. Lett. 2013, 15, 2774. (b) Debnar, T.; Dreisigacker, S.; Menche, D. Chem. Commun. 2013, 49, 725.
 ${ }^{17}$ Katukojvala, S.; Barlett, K. N.; Lotesta, S. D. Williams, L. J. J. Am. Chem. Soc. 2004, 126, 15348.

[^9]: ${ }^{18}$ Katukojvala, S.; Barlett, K. N.; Lotesta, S. D. Williams, L. J. J. Am. Chem. Soc. 2004, 126, 15348.

[^10]: ${ }^{19}$ Seco, J. M.; Quiñoa, E.; Riguera, R. Chem. Rev. 2004, 104, 17.
 ${ }^{20}$ not in accordance with the expected configuration

[^11]: ${ }^{21}$ Olson, S.; Slossberg, L. H. Tetrahedron Lett. 2003, 44, 61.
 ${ }^{22}$ Ashkenazi, T.; Pinkert, D.; Nudelman, A.; Widberg, A.; Wexler, B.; Wittenbach, V.; Flint, D. Pest. Manag. Sci. 2007, 63, 974.

[^12]: ${ }^{23}$ Bode, H. B.; Irschik, H.; Wenzel, S. C.; Reichenbach, H.; R. Müller, R.; Höfle, G. J. Nat. Prod. 2003, 66, 1203-1206.
 ${ }^{24}$ The observed ${ }^{1} \mathrm{H}$-NMR chemical shifts values of synthetic leupyrrin A_{1} were systematically 0.03-0.05 ppm lower as compared to the reported data for natural leupyrrin A_{1}. They were however identical to the data for reisolated leupyrin A_{1}. This discrepancy may be explained by a difference of the calibtration. An overlay of the spectra of natural and synthetic leupyrrin A_{1} recorded in our group confirmed this observation (see below).
 ${ }^{25}$ For reisolated leupyrrin A_{1} a value of 68.1 ppm was found.

[^13]: ${ }^{26}$ Integral value does not match the expected amount of protons.

