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Aniridia is a pan‑ocular genetic developmental eye disorder characterized by complete or partial iris and 
foveal hypoplasia, for which there is no treatment currently. Progressive sight loss can arise from cataracts, 
glaucoma, and aniridia‑related keratopathy, which can be managed conservatively or through surgical 
intervention. The vast majority of patients harbor heterozygous mutations involving the PAX6 gene, which 
is considered the master transcription factor of early eye development. Over the past decades, several 
disease models have been investigated to gain a better understanding of the molecular pathophysiology, 
including several mouse and zebrafish strains and, more recently, human‑induced pluripotent stem 
cells (hiPSCs) derived from aniridia patients. The latter provides a more faithful cellular system to study 
early human eye development. This review outlines the main aniridia‑related animal and cellular models 
used to study aniridia and highlights the key discoveries that are bringing us closer to a therapy for patients.
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Aniridia is a sight‑threatening pan‑ocular disorder characterized 
primarily by partial or complete iris hypoplasia. Other ocular 
manifestations include foveal and optic nerve hypoplasia, 
early‑onset glaucoma, nystagmus, cataracts, and corneal 
keratopathy  [Fig.  1a–c].[1‑5] Aniridia is a rare disease with a 
prevalence of 1:40,000–100,000 births. The majority of cases are 
caused by heterozygous mutations resulting in haploinsufficiency 
of the PAX6 gene, either inherited in a highly penetrant 
autosomal dominant manner (70%) or caused by de novo sporadic 
mutations (30%).[1,5] Recent reports have also shown the presence 
of paternal mosaicism in four aniridia families.[6,7]

PAX6 and  Aniridia
Paired box 6, denoted as PAX6 in humans, is a highly evolutionary 
conserved transcription factor and has a fundamental role in 
the development and maintenance of eyes, as well as being 
expressed in regions of the central nervous system, pancreas, gut, 
and olfactory epithelium.[8‑10] PAX6 is located on chromosome 
11p13 with 14 exons, but the first three are noncoding.[11] 
Heterozygous mutations in the mouse Pax6 gene cause the small 
eye (Sey) mouse, a strain that phenotypically resembles human 
aniridia  [Fig. 1d].[12‑14] Additional PAX6 homologs have been 
detected in zebrafish (pax6a and pax6b)  [Fig.  1e], quail, and 
Drosophila.[15‑17] Overexpression of the PAX6 gene induces the 
formation of ectopic eyes in Drosophila and Xenopus; for this reason, 
PAX6 is categorized as the “master regulator” of the eye.[18,19]

It has been demonstrated that PAX6 is highly regulated 
and dosage sensitive. For this reason, several elements 
and promoters both within and upstream the gene are 
involved in precise regulation of its complex spatial and 
temporal expression [Fig. 1a].[8,20‑22] The PAX6 protein has two 
DNA‑binding sites – the paired domain and the homeodomain, 
which are adjoined by a linker region. The DNA‑binding 
ability of the homeodomain is regulated by a proline–serine–
threonine‑rich transactivation domain (PSTD) that is located 
immediately downstream of the homeodomain. Equivalently, 
the paired domain comprises an N‑terminal subdomain and a 
C‑terminal subdomain, each binding specific motifs and altering 
the conformation of the paired domain [Fig. 2b].[8] Canonical 
PAX6 and PAX6 (5a) are the two main protein isoforms that 
have been identified in humans; the isoforms are thought to 
have different downstream targets and are expressed at varying 
ratios throughout development [Fig. 2b].[8,10,23] Furthermore, a 
third isoform, Pax6ΔPD, has been found in mice and has also 
recently been detected in human retinal organoids.[24,25]

Over 600 PAX6 mutations have been observed in aniridia 
patients, with the most common introducing a premature 
termination codon  (PTC) through nonsense variants or 
insertion–deletion frameshift variants. In such cases, the PAX6 
protein is truncated and likely results in loss of function, 
or the mutated mRNA transcript is degraded through 
nonsense‑mediated decay preventing translation.[8,26,27] Because 
of the dosage sensitivity of PAX6, the reduction of protein 
levels induces haploinsufficiency.[8] A recent longitudinal 
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study of 86 aniridia patients in the UK supported the previous 
findings that missense variants are associated with milder 
phenotypes  (milder grades of foveal and iris hypoplasia, 
cataracts, and aniridia‑related keratopathy), with the exception 
to those that disrupt PAX6 DNA‑binding activity, such as 
the c.372C > A, p.(Asn124Lys) variant, which gives rise to a 
non‑aniridia phenotype of microphthalmia and coloboma.[28] 
Several studies have also shown that PTC and C‑terminal 
extension (CTE) mutations result in more severe phenotypes 
with poorer visual outcomes.[29,30] The mean age ±  standard 
deviation  (SD) of developing cataracts for patients with 
nonsense variants was 11.8  ±  11.8  years. It developed at a 
later age in patients with missense (17.2 ± 9.8 years), intronic 
(18.7 ± 16.2 years), and frameshift (22.9 ± 11.0 years) variants.[31] 
The mean age ± SD of glaucoma diagnosis was 25.0 ± 17.3 years, 
with missense (28.5 ± 26.0) and frameshift (50.7 ± 2.3) variants 
being diagnosed later. Overall, there was no significant 
difference observed in the mean age of glaucoma diagnosis 
between the mutation groups  (P  =  0.22). However, the 
prevalence of glaucoma was significantly different (P < 0.001), 
with a higher prevalence in those with whole gene deletions 
compared to those with frameshift mutations who showed the 
lowest prevalence.

Animal Models for Aniridia
Given the limited access to the human eye, animal and 
cellular disease models have been, and continue to be, crucial 
in identifying the genetics and pathophysiology underlying 
aniridia.[14,18,32,33] The function and structure of the mature eye 
is similar across different vertebrate species.[34] Animal models 
allow us to consider genotype–phenotype correlations, as 
well as potentiate the identification of molecular pathways of 
disease progression.[35]

Ever since the discovery of PAX6 homology across different 
species, Drosophila, zebrafish, quail, Xenopus, and mice have 
been used to model aniridia, the pathways affected by PAX6 
haploinsufficiency, and potential therapies. This review 
will focus on mice, zebrafish, and cellular models and their 
contributions to our knowledge of aniridia.

Mouse Models
Advantages of using mouse models
Genomic conservation of 99% between humans and mice 
has allowed mouse models to be the most commonly 
explored animal model for biomedical research.[36,37] Mice are 

Figure 1: (a) Right anterior segment showing complete iris hypoplasia. (b) Color fundus photograph lacking foveal reflex and (c)  Spectral domain 
optical coherence tomography (SD‑OCT) of the right macula showing complete foveal hypoplasia. (d) Pax6Sey/+ mouse H and E whole eye sections 
at postnatal (p) day 60 (top) showing a small eye, lens, and retinal dysplasia, and a thinned P14 corneal epithelium (bottom). (e) Brightfield 
images (top) and toluidine blue‑stained sections (bottom) displaying anterior segment dysgenesis (black arrow), small eye and lens (le) (white 
arrow), and thickened cornea (co) in 5dpf pax6bSa15822 zebrafish mutant. dpf = days post‑fertilization, H and E = hematoxylin and eosin, re = retina
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suitable for large‑scale studies because they are small, have 
a short generation time, and are relatively cost‑effective to 
maintain.[34,38] The mouse eye is similar to the human eye in 
terms of physiology, anatomy, and development, with the only 
major difference in development being the lack of cone‑rich 
macula. Additionally, the size of the mouse eye facilitates 
morphological analysis.[34] Mice are particularly a good model 
for congenital aniridia because the human PAX6 and mouse 
Pax6 genes are homologous and translate into the same amino 
acid sequence [Fig. 2a].[39]

Generation of mouse models and phenotypes
Pax6  mutat ions  in  mice  are  e i ther  spontaneous, 
chemically/radiation‑induced or targeted mutations [Table 1]. 

The “original” Sey mouse contains a spontaneous mutation 
and was characterized by Roberts in 1967.[13] Hill et  al.,[14] 
in 1991, demonstrated the link between the Pax6 gene on 
chromosome 2 and the small eye phenotype. Pax6Sey carries 
the point mutation c.622G>T p.(Gly208*) that results in a 
PTC. Homozygous Pax6Sey/Sey mice exhibit anophthalmia and 
lack nasal cavities and die shortly after birth.[14] However, the 
heterozygous Pax6Sey/+ mice display iris hypoplasia, abnormal 
lens morphology, cataracts, corneal opacification, and 
incomplete separation of lens from the cornea, all of which 
correspond to patient‑related aniridia features.[13,14,32,40] Similar 
to Pax6Sey, Pax6Sey‑Neu and the Pax6Neu series  (2Neu–10Neu) 
contain point mutations  (missense or nonsense), with the 
difference being that the mutation has been chemically induced 

Figure 2: (a) Human, mouse, and zebrafish PAX6 gene structure (boxes show exons and colors correspond to the respective protein domain as 
shown in b). (b) The two main PAX6 isoforms in humans. The DNA‑binding domains PD and HD are illustrated. CTS = C‑terminal subdomain, 
EE = ectodermal enhancer, HD = homeodomain, LNK = linker region, NTS = N‑terminal subdomain, P0, P1, Pα = promoters (blue boxes) and 
regulatory elements (parallelograms), PD = paired domain, PSTD = proline–serine–threonine domain

b
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Table 1: Animal (mouse and zebrafish) and cellular models of PAX6 mutant genes

Genotype Generation of mutation Mutation details PAX6 domain Predominant ocular phenotype References

Mouse

PAX6Sey/
PAX6+

Spontaneous Nonsense
Exon 7
c. 622G>T
p.(Gly208*)

Termination 
before the HD

Abnormal
cornea
Abnormal lens
Mic

Roberts, 
1967[13]

PAX6Leca1/
PAX6Leca1

Chemically induced Missense
Exon 10 c. 971T>A 
p.(Val270Glu)

HD Fused lens and
cornea
Mic

Thaung et al., 
2002[44]

PAX6Leca2/
PAX6Leca2

Chemically induced Missense
Exon 7
c. 586C>T
p.(Arg142Cys)

PD Fused lens and
cornea
Mic

PAX6Leca3/
PAX6Leca3

Chemically induced Nonsense
Exon 12 c. 1266C>A 
p.(Tyr369*)

PSTD Fused lens and cornea
Mic

PAX6Leca4/
PAX6Leca4

Chemically induced Missense
Exon 6
c. 354C>A 
p.(Asn64Lys)

PD Fused lens and
cornea
Mic

PAX6SeyDey/
PAX6+

Spontaneous Intergenic deletion
Large deletion of 
PAX6 gene affecting 
the Wt1 gene

Whole protein Coloboma
Small lens
Cataract
Retinal
abnormalities
Absent anterior chamber
Mic 

Theiler et al., 
1980[45]

PAX6SeyH/
PAX6+

Radiation induced Large deletion of 
PAX6 gene
Likely affects the 
Wt1 gene

Likely the whole 
protein

Coloboma
Mic

Hogan et al., 
1986[32]

PAX6SeyNeu/
PAX6+

Chemically induced Frameshift,
G T transversion 
at the +1 position 
of a splice donor 
site, retention of 
116 nucleotides of 
intronic sequence

Lacks 15 amino 
acids from the 
C terminus, 
including the 
transactivation 
domain

Abnormal cornea
Abnormal lens
Anterior
chamber defect
Mic

Hill et al., 
1992[46]

PAX62Neu/
PAX6+

Chemically induced Intron 9,
2T>C
5′ splice after 269

HD Abnormal iris
Abnormal pupil
Cataract
Mic

Favor et al., 
2001[42]

PAX63Neu/
PAX6+

Chemically induced Frameshift
Insertion
Exon 7
598insAla

Deletion of HD, 
LR, and PSTD

Abnormal iris
Abnormal pupil
Corneal opacity
Fused cornea
and lens
Cataract
Mic

PAX64Neu/
PAX6+

Chemically induced Missense
Exon 10
c. 979T>C 
p.(Ser273Pro)

HD Abnormal iris
Abnormal pupil
Cataract
Mic

PAX65Neu/
PAX6+

Chemically induced Nonsense
Exon 6
c. 517A>T 
p.(Arg119*)

Deletion of HD, 
LR, and PSTD

Abnormal iris
Abnormal pupil
Cataract
Mic

Contd...
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Contd...

Table 1: Contd...

Genotype Generation of mutation Mutation details PAX6 domain Predominant ocular phenotype References

Mouse

PAX66Neu/
PAX6+

Chemically induced Nonsense
Exon 10 c. 1092C>A 
p.(Tyr310*)

PSTD Abnormal iris
Abnormal pupil
Cataract
Mic

PAX67Neu/
PAX6+

Chemically induced Missense
Exon 4
c.‑3A>T

Kozak 
consensus 
sequence

Abnormal iris
Abnormal pupil
Cataract
Mic

PAX68Neu/
PAX6+

Chemically/radiation 
induced 

Nonsense
Exon 10 c. 1092C>A 
p.(Tyr310*)

PSTD Abnormal iris
Abnormal pupil
Mic

PAX69Neu/
PAX6+

Chemically induced Nonsense, deletion
Exon 5
7bp 261-267

PD Abnormal iris
Abnormal pupil
Mic

PAX610Neu/
PAX6+

Chemically induced Nonsense
Exon 6
c. 469C>T 
p.(Gln103*)

Deletion of PD, 
LR, HD, PSTD

Abnormal iris
Abnormal pupil
Mic

PAX6tm1Pgr/
PAX6+

Targeted Insertion of 
β‑galactosidase
The start codon in 
exon 4

HD is 
replaced with 
a β‑galactosidase 
gene followed 
by a neomycin 
cassette

Abnormal
iridocorneal
angle
Abnormal optic cup
Anterior iris
synechia
Fused cornea
and lens
Absent anterior
chamber

St‑Onge 
et al., 1997[47]

PAX6tm2Pgr/
PAX6+

Targeted Insertion of loxP 
sequences
flanking the initiator 
ATG and exons 4-6

PD Abnormal iris
Abnormal optic nerve
Mic

Ashery‑Padan 
et al., 2000[48]

PAX6Coop/
PAX6+

Chemically induced Nonsense
Exon 10 c. 1033C>T 
p.(Glu329*)

HD and PSTD Abnormal iris
Corneal opacity
Mic

Lyon, 2000[49]

PAX6Aey11/
PAX6Aey11

Chemically induced Nonsense
Exon 8
c. 644C>T
p.(Glu209*)

Loss of entire 
HD and PSTD

Small eye
Corneal adhesion
Corneal and lens opacities

Graw, 2005[50]

PAX6Aey18/
PAX6+

Chemically induced Splice defect
Last base of intron 
5a G>A
skipping exons 5a 
and 6

PD Small eye
Corneal
adhesion
Corneal and lens opacities

PAX6ADD4802/
PAX6+

Chemically induced Frameshift due to 
changed splicing 
intron 8 G>A

Loss of 
C‑terminal, half 
of the HD

Small eye
Corneal
adhesion
Corneal and
lens opacities

PAX613214Neu/
PAX6+

Radiation induced Missense 
c. 1099T>A 
p.(Phe272Ile)

HD Abnormal
cornea
Fused cornea
and lens
Abnormal lens
Cataract

Favor et al., 
2008[51]
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by ethyl nitrosourea (ENU).[41,42] Except for Pax64Neu and Pax67Neu, 
all of the discussed mice represent null mutants [Table 1]. More 
recently, Mohanna et al.[43] have tagged the mutant Sey allele 
with 3xFLAG, generating a model termed Fey. By doing this, 
it is possible to quantify Pax6 protein levels that are translated 
from the corrected mutant allele following gene editing.

Other commonly used mouse models for aniridia carry 
Pax6 deletions. Pax6Sey‑Dey, Pax6Sey‑H, and Pax6tm1Pgr  (Pax6lacZ) 
are examples of these models.[54,55] The latter two mutant 
strains contain large chromosomal deletions encompassing 
the whole Pax6 gene and culminate in more severe aniridia 
phenotypes.[9,14] However, in Pax6tm1Pgr mice, the entire sequence 
encoding the paired domain has been removed and replaced 
with a β‑galactosidase gene followed by a neomycin cassette.[9,47] 
The aforementioned gene replacement reflects the endogenous 
Pax6 expression and can be detected in live embryos. This 
model has recently been utilized by Voskresenskaya et al.[55] 
to compare the lens defects in aniridia, which revealed there 

may be differences in the PAX6/Pax6‑controlled mechanisms 
between humans and mice. For example, they found that 
in humans, unlike mice, PAX6 mutations do not delay lens 
placode development or alternatively, it recovers from the 
delay.

Contribution to our knowledge of aniridia
The Sey mouse has been crucial in understanding the 
pathophysiology of aniridia and testing potential therapeutics. 
Using mouse models, the dosage sensitivity of the Pax6 gene has 
been demonstrated and consequently, therapies that target gene 
dosage of Pax6 have been explored.[20] Nonsense suppression 
drugs have been shown to inhibit disease progression and rescue 
corneal, lens, and retinal malformations postnatally.[56,57] More 
recently, the inhibition of mitogen‑activated protein kinase 
kinase  (MEK) via small‑molecule drugs in Pax6Sey‑Neu/+ mice 
has illustrated upregulation of Pax6 and alleviation of Pax6 
haploinsufficiency‑related corneal phenotypes.[58] Identification 
of downstream Pax6 targets in the developing iris and ciliary 

Table 1: Contd...

Genotype Generation of mutation Mutation details PAX6 domain Predominant ocular phenotype References

Mouse

PAX6132‑14Neu/
PAX6132‑14Neu

Abnormal
cornea
Abnormal lens
Anterior
chamber defect
Coloboma
Mic

Zebrafish

PAX6btq253a/
PAX6btq253a 
(sri)

Chemically induced Missense
Exon 8
c. 770T>C 
p.(Leu244Pro)

HD Abnormal
cornea
Abnormal lens
Iris hypoplasia
Retinal
malformations
Shallow anterior chamber
Small eye

Heisenberg 
et al., 1996[52]

PAX6aka709/
PAX6aka709

CRISPR/Cas9 Small deletion
Exon 8-12
3011 bp

HD and PSTD Marginal anterior segment 
dysgenesis
Small eye and lens

Takamiya 
et al., 2020[53]

PAX6aka709/
PAX6aka709;
PAX6btq253a/
PAX6btq253a

Chemically induced and 
CRISPR/Cas9

PAX6b:
Missense
Exon 8
c.770T>C 
p.(Leu244Pro)
PAX6a:
Deletion
Exon 8-12
3011 bp

HD and PSTD Absent lens
Absent anterior chamber
Corneal endothelium 
malformation
Small eye 

hiPSCs

UCLi013‑A Patient‑derived skin 
fibroblasts 

Missense
Exon 7
c. 372C>A 
p.(Asn124Lys)

PD Aniridia
Cataracts
Optic nerve
Coloboma
Nystagmus
Mic

Harding 
et al., 2021[28]

CRISPR=clustered regularly interspaced short palindromic repeats, HD=homeodomain, hiPSCs=human‑induced pluripotent stem cells, LR=linker region, 
MGI=Mouse Genomic Informatics, mic=microphthalmia, PD=paired domain, PSTD=proline-serine-threonine‑rich domain Mouse genotype and phenotype have 
been taken from MGI database (http://www.informatics.jax.org/). Zebrafish data have been taken from The Zebrafish Information Network (ZFIN) (http://zfin.org/)
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body and of Pax6‑dependent gene regulatory network in 
the lens are among the other discoveries made using mouse 
models.[59‑61]

Limitations
Different mutant mice produce a spectrum of aniridia 
phenotypes; also, mice that carry genomic deletions could 
exhibit severe phenotypes that are not observed in patients, 
making them less appropriate for studying human aniridia.[9] 
Alternatively, mutations in the mouse could cause a less‑severe 
phenotype than that seen in patients.[55] The small eye mouse, as 
indicated by the name, develops microphthalmia, a symptom 
that is not common in human aniridia patients, as one of its 
main phenotypes. In contrast, foveal hypoplasia, one of the 
main manifestations in humans, is absent in mice due to the 
lack of fovea in these animals.[56]

Zebrafish Models
Advantages of using zebrafish models
Zebrafish  (Danio rerio) have become an increasingly 
popular organism to study vertebrate development and 
pathophysiology. Genomic sequencing revealed a significant 
genetic similarity between humans and zebrafish; 70% of 
human genes have a zebrafish ortholog and 84% of human 
disease‑causing genes have a zebrafish counterpart.[62] 
Zebrafish are easy to breed through external fertilization with 
a large number of eggs  (100–200) produced, making them 
cost‑effective to maintain with a short regeneration time of 
2–4 months.[63] The transparency of zebrafish embryos enables 
early visualization of organogenesis. Moreover, zebrafish eye 
development occurs rapidly with the retinal layers resembling 
adult‑like pattern by 72  h post‑fertilization  (hpf).[34,63] At 
this timepoint, a highly organized heterotypical mosaic 
photoreceptor structure is formed in the retina, which is rich 
in cone photoreceptors and is remarkably similar to humans.[64] 
Retinal regeneration is possible in zebrafish, although this 
does not always occur in the presence of pathogenic variants, 
resulting in ocular maldevelopment or retinal degeneration.[64] 
The overall zebrafish corneal structure is evident as early as 
5–7 days post‑fertilization (dpf) and is similar to that of humans 
with corneal epithelium, stroma, and endothelium layers.[65]

Generation of aniridia models and phenotypes
About 350 million years ago, zebrafish underwent a 
whole‑genome duplication; consequently, many genes, 
including pax6, have duplicates  (pax6a and pax6b).[66] There 
has been some division of roles between the two duplicates, 
with varying ratios of gene expression in different organs 
and tissues, similar to PAX6 isoforms in humans. This neutral 
partitioning of role is termed “subfunctionalization.”[66] 
Zebrafish can be easily genetically manipulated; in the 1990s, 
large‑scale chemical mutagenesis using ENU was carried out in 
zebrafish, resulting in the generation of thousands of mutants 
bearing developmental defects. One of the identified mutants is 
sunrise (sri), a mutant that carries a leucine to proline missense 
mutation c. 770T > C, p.(Leu244Pro) in the pax6b homeodomain 
gene  [Table  1].[52,66‑68] The sunrise  (sri) mutant was utilized 
to study the subfunctionalization of the pax6 gene and the 
spatiotemporal manner in which each ortholog is expressed.[66] 
Sunrise is the most widely explored zebrafish model with 
a pax6b mutation and exhibits aniridia‑like phenotypes, for 
example, abnormal lens and corneal structure, thick cornea, 

iris hypoplasia, retinal malformations, shallower anterior 
chamber, and a smaller eye.[65,66] The defects in the sri mutant are 
due to reduced DNA binding. Other than chemically induced 
mutations, pax6b‑mutant fish have been produced via retroviral 
insertions  [Table  1].[69] Several other mutants have been 
generated by either exposure to ENU or retroviral insertion; 
however, these have not been phenotypically characterized.

Limitations
Due to the genomic duplication and the consequent 
subfunctionalization of the pax6 gene, the phenotypes are 
milder in mutant zebrafish than in aniridia patients. The 
homozygous sunrise fish have milder phenotypes and can grow 
into adulthood and breed, suggesting a compensation by the 
unaffected pax6a gene.[66] Fish that have been injected with both 
pax6a and pax6b morpholinos show more severe phenotypes, 
like microphthalmia and general developmental delay.[66]

Human Cellular Models
As discussed previously, substantial genetic and phenotypic 
distinctions exist between human and animal models; 
thereupon, patient‑derived cells are important in  vitro 
models to investigate human disease mechanisms and test 
potential therapeutics including drug screening.[70] The 
use of representative cellular models could reduce or even 
replace the number of animals used in biomedical preclinical 
experiments.[71]

Primary cells
Primary cells are generated by isolating the cell type of interest 
from the patient. As they are not modified, they are useful for 
studying signaling pathways, pathophysiology, drug efficacy, 
and toxicity.[34] If a gene of interest is expressed in primary 
cells, it has the machinery to support protein production, 
modifications, assembly, and transport, whereas genes that are 
overexpressed may not have this innate intracellular support. 
The disadvantage of using primary cells is their senescence as 
they have limited capacity of growing and dividing in vitro.[34]

Aniridia-Related Keratopathy (ARK)  is one of the main 
manifestations of aniridia in patients and is mainly caused by 
limbal epithelial stem cell (LESC) deficiency.[72] Cultured LESCs 
previously extracted from aniridia patients showed a reduction 
in PAX6 protein.[73] This model was further used to identify 
morphological and molecular alterations, such as impaired 
migration and ability to differentiate into corneal epithelial 
cells, as well as novel PAX6 downstream targets, for instance, 
ADH7, ALDH1A1, and SPINK7.[73‑76] MEK/extracellular signal-
regulated kinases (ERK) signaling pathway repressor drugs, 
duloxetine and ritanserin, have been recently tested on mutant 
LESCs and have shown to rescue PAX6 haploinsufficiency and 
restore PAX6 production.[77,78]

Immortalized cell lines
Continuous  (immortalized) cell lines have the indefinite 
ability to proliferate and generate an unlimited supply of 
cells. They are generally more robust, easier to maintain, and 
more cost‑effective than primary cells. Immortalized cells 
are useful for the in  vitro study of gene function and their 
pathological role. Theoretically, the function of continuous 
cell lines should closely resemble that of primary cells, but 
the genetic manipulation of the cell lines predisposes them to 
varied phenotype, function, and responsiveness. For example, 
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ARPE‑19 cells lose their characteristic epithelial phenotype, the 
formation of tight junctions, after a few passages, consequently 
affecting the other roles of the cells, like fluid homeostasis, that 
were regulated through the epithelial characteristics.[79] There 
also exists the risk of further genotypic variation following 
prolonged passaging and contamination.[80] Roux et  al.[72] 
have used clustered regularly interspaced short palindromic 
repeats  (CRISPR)/Cas9 to introduce a PAX6 heterozygous 
nonsense mutation within an immortalized line of LESCs 
to establish an aniridia LESC model and, through the use of 
soluble recombinant PAX6 protein, illustrated a successful 
rescue of the ARK phenotype by activating the endogenous 
PAX6 gene.

Human‑induced pluripotent stem cells
Human‑induced pluripotent stem cells (hiPSCs) are generated 
through reprogramming of adult somatic cells and, like 
embryonic stem cells (ESCs), have the capacity of unlimited 
self‑renewal and differentiation into all adult cell types.[81] 
hiPSCs circumvent the ethical concerns associated with ESCs, 
which is mainly the use of human embryos.[82] Patient‑derived 
hiPSC lines are particularly valuable models to study congenital 
diseases because they carry the same disease‑causing 
mutation  (s) as the affected individuals, allowing for the 
in  vitro analysis of molecular pathways involved in disease 
development. Also, by differentiating into cell types of 
interest, these become important tools for drug screening and 
personalized medicine.[28,81] However, they can be costly and 
difficult to culture with variable differentiation efficiencies.[83] 
Thus far, only a few hiPSC lines carrying PAX6 mutations 
have been generated.[28,84] One of these lines has been derived 
by Zhang et al.[84] from a patient who suffered from optic nerve 
malformations, but not aniridia. Harding et al.[28] have most 
recently generated a heterozygous PAX6 missense c. 372C>A, 
p.(Asn124Lys)‑mutant hiPSC line from the dermal fibroblasts 
of a patient with aniridia, microphthalmia, cataracts, optic 
nerve coloboma, nystagmus, and type 2 diabetes. There are 
currently no publications available that explore hiPSC‑derived 
aniridia lines; however, this strategy would provide a novel 
and valuable human model to study the disease.

3D cellular models (organoids)
Although 2D cellular models provide researchers with 
information about molecular pathophysiology and drug action, 
they may not replicate the intercellular signaling or the tissue 
complexity that exists in  vivo.[34,85] Organoids are generated 
from hiPSCs or ESCs and closely resemble the temporal and 
spatial developmental stages of human organs in vitro, allowing 
to study human organogenesis in the early fetal stages.[85,86] 
Molecular characterization of events taking place in the optic 
vesicle or early retina is now possible using organoids, hence 
making it an increasingly popular model for the study of 
developmental eye diseases.[87‑91]

Ocular organoid models are still incapable of fully 
mimicking the in vivo complexity of the human eye. Retinal 
organoids are prone to degeneration and loss of orientation 
as they develop. This drawback is often caused by nutritional 
deficits and inadequate passive diffusion in the inner layers. 
Retinal pigment epithelium  (RPE) is an important ocular 
structure for the maintenance of the photoreceptors in the 
outer retina. The RPE in organoid cultures does not mature 
to a functional layer nor correctly localizes around the 

photoreceptors, making them susceptible to malfunction and 
degeneration.[92]

Another drawback of current retinal organoids is the lack 
of three distinctive nuclear layers, leading to disorganization 
of the rods and cones photoreceptors compared to the human 
retina in vivo.[93] More importantly, organoids lack vasculature 
and immune cells, both of which are important components 
of adult tissues. The variability of the differentiation process 
and low efficiency in organoid formation are other factors to be 
considered; different lines vary on differentiation effectiveness 
and their ability to assemble in 3D structures. To circumvent 
this issue, methodology improvements as well as isogenic 
controls are continuously being developed.[86,87]

The use of organoid models has not yet been explored for 
PAX6‑related conditions. The application of retinal and, very 
recently, corneal organoid technology to aniridia research 
would be paramount to understand the mechanisms behind 
PAX6 haploinsufficiency and its effects in the development and 
homeostasis of these tissues.[94,95]

Management of Aniridia and Potential 
Clinical Prospects
Management of aniridia is directed at the patient’s symptoms 
and preserving vision. Regular eye examination and correction 
of refractive error to improve visual acuity are recommended. 
Patients with photosensitivity secondary to their iris 
hypoplasia should use tinted lenses or glasses.[1] For those 
with cataracts, surgery can lead to improvement in vision,[96] 
although in one study with a mean of 16.3 years of follow‑up, 
no significant improvement in visual acuity was observed.[31] 
Serious complications like secondary glaucoma may arise 
after the surgery. Managing ARK can be achieved by topical 
preservative‑free lubricants in mild cases to slow down the 
progress. Cultured LESCs have been successfully transplanted 
in more severe cases of ARK and a variety of culture techniques 
have since been developed to optimize the transplant.[97] The 
common transplantation procedure is through injection; 
however, tissue‑engineered grafts for transplantation have 
been produced by combining the cells with a biomaterial, for 
example, amniotic membrane.[98] Glaucoma is also initially 
treated with topical antiglaucoma medications and requires 
surgery (cyclodiode laser, tube surgery, and trabeculectomy) 
in eyes that are unresponsive to medical treatment; however, 
surgical intervention for glaucoma was correlated with a worse 
visual acuity in the study carried out by Kit et al.[31]

It was previously discussed that topical application of 
nonsense suppression drugs was tested in mice postnatally, 
which showed the upregulation of Pax6 and stable rescue 
of the disease phenotype.[56,57] However, the Phase 3 clinical 
trial using ataluren (NCT02647359) to treat aniridia through 
oral delivery failed to meet its endpoints. This may have been 
due to the adoption of incorrect endpoints and the mode of 
delivery, that is, a topical application with a focus on corneal 
parameters may have been more optimal. Mouse models, as 
well as primary cells, have demonstrated that inhibitors of 
the MEK/ERK signaling pathway, either directly or indirectly, 
show promising results with rescue of the aniridia phenotype. 
Therefore, these are other promising pharmacological agents 
that could potentially upregulate PAX6 levels and prevent 
disease progression. The advantage of these drugs would 
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be their availability and not being selective on the type of 
mutation.[58,77,78] From a practical clinical perspective, family 
planning and preimplantation genetic diagnosis should be 
discussed with prospective parents.

Future Directions
Many aniridia mouse models have been identified and 
characterized that vary in phenotypic severity. Further 
work in other species, such as the zebrafish, could provide 
valuable insights due to their genetic homology to humans 
and their accessible and rapid eye development for the 
discovery of molecular pathways and testing potential 
pharmaceutical agents. Furthermore, generation of aniridia 
hiPSCs and 3D cellular models allows for more in‑depth and 
specific investigation of the genetic causes and genotype–
phenotype correlation, especially in fetal development. The 
patient‑derived nature of these models also allows for drug 
screening and the generation of personalized medicine, thus 
providing effective treatment options for aniridia patients.

Conclusion
PAX6 is expressed in several tissues including the adult eye, 
brain, and pancreas. Therefore, the effect of haploinsufficiency 
extends beyond the ocular tissue, and aniridia is starting 
to be recognized as a systemic disease.[6] Animal models 
allow the exploration of systemic manifestations within the 
whole organism and have thus far been fundamental in our 
understanding of aniridia, the role of PAX6, and its regulatory 
mechanisms.[99]
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