Supporting Information

Microwave-Promoted Tin-Free Iminyl Radical Cyclization with TEMPO Trapping: A Practical Synthesis of 2-Acylpyrroles

Yu Cai, Ankur Jalan, Aaron R. Kubosumi, and Steven L. Castle*

Department of Chemistry and Biochemistry

Brigham Young University, Provo, Utah, 84602

Table of Contents

General Experimental Details S2
Synthesis of Ketone Precursors to O-Phenyl Oxime Ethers S2-S7
Synthesis of O-Phenyl Oximes S7-S15
Iminyl Radical Cyclizations S15-S22
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S23-S84

General Experimental Details

Dichloromethane, diethyl ether, and pyridine were dried by passage through a solvent drying system containing cylinders of activated alumina. ${ }^{1}$ Other solvents and reagents were purchased from commercial vendors and used without purification. Flash chromatography was carried out using $60-230$ mesh silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were acquired on a 500 MHz spectrometer with chloroform (7.27 ppm) as internal reference. Signals are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), dd (doublet of doublets), dt (doublet of triplets), tt (triplet of triplets), qd (quartet of doublets), br s (broad singlet), m (multiplet). Coupling constants are reported in hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a spectrometer operating at 125 MHz with chloroform (77.23 ppm) as internal reference. Infrared spectra were obtained on an FT-IR spectrometer. Mass spectral data were obtained using ESI techniques. Microwave-promoted reactions were carried out by irradiating sealed reaction mixtures inside a CEM Discover S-Class microwave reactor that was set at 300 W .

Synthesis of Ketone Precursors to \boldsymbol{O}-Phenyl Oxime Ethers (note: all ketones not shown in this section are known compounds that were synthesized according to literature procedures)

6-(Methoxymethoxy)-1-phenylhex-4-yn-1-one (S3). A solution of 3-(methoxymethoxy) prop-1-yne ($114.1 \mathrm{mg}, 1.14 \mathrm{mmol}, 1.5$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(2.4 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$ under Ar was treated with n-butyllithium (1.57 M in hexane, $730 \mu \mathrm{~L}, 1.14 \mathrm{mmol}, 1.5$ equiv) and zinc

[^0]bromide (1.0 M in THF, $1.14 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.5$ equiv). The mixture was stirred at rt under Ar for 20 min , then cooled to $-40^{\circ} \mathrm{C}$ and treated with a solution of phenyl vinyl ketone $(\mathbf{S} 1,100.3$ $\mathrm{mg}, 0.759 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF $(1.1 \mathrm{~mL})$ followed by TBS-OTf $(260 \mu \mathrm{~L}, 299 \mathrm{mg}$, $1.13 \mathrm{mmol}, 1.5$ equiv). The resulting mixture was stirred at rt for 3 h , then treated with sat aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give crude silyl enol ether $\mathbf{S} \mathbf{2}$.

Crude $\mathbf{S} \mathbf{2}$ was treated with $1 \mathrm{NHCl}(3 \mathrm{~mL})$ and THF (3 mL), and the resulting mixture was stirred at rt for 3 h . Sat aq $\mathrm{NaHCO}_{3}(6 \mathrm{~mL})$ was added to neutralize the reaction, and it was extracted with EtOAc $(3 \times 6 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (25 mL of $\mathrm{SiO}_{2}, 2-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{S 3}(82.1 \mathrm{mg}, 0.353 \mathrm{mmol}, 47 \%$ from $\mathbf{S 1})$ as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}$, $2 \mathrm{H}), 4.20(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 197.8,136.5,133.3,128.7$ (2C), 128.0 (2C), 94.7, 85.6, 76.0, 55.5, 54.7, 37.7, 13.6; IR (film) $v_{\max }$ 2931, 2237, 1686, 1597, 1449, 1360, 1207, 1180, $1046 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 233.1162\left(\mathrm{MH}^{+}, \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{H}^{+}\right.$requires 233.1178).

6-Ox0-6-phenylhex-2-yn-1-yl acetate (S5). A solution of crude silyl enol ether S2 (prepared as described above from S1 (73.4 mg, $0.555 \mathrm{mmol}, 1.0$ equiv) and 3-(methoxymethoxy)prop-1-yne ($84.1 \mathrm{mg}, 0.840 \mathrm{mmol}, 1.5$ equiv)) in THF (3.0 mL) and $\mathrm{H}_{2} \mathrm{O}(2.0$ $\mathrm{mL})$ was treated with $6 \mathrm{~N} \mathrm{HCl}(5.0 \mathrm{~mL})$ and heated at $55^{\circ} \mathrm{C}$ for 8 h . The mixture was then
poured into brine $(8.0 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (25 mL of $\mathrm{SiO}_{2}, 0.5-5 \%$ MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution) afforded 6-hydroxy-1-phenylhex-4-yn-1-one ($\mathbf{S 4}, 37.9 \mathrm{mg}$, $0.201 \mathrm{mmol}, 36 \%$ from $\mathbf{S 1}$).

A solution of $\mathbf{S} 4\left(32.1 \mathrm{mg}, 0.171 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}(50 \mu \mathrm{~L}, 54 \mathrm{mg}, 0.53 \mathrm{mmol}$, 3.1 equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was treated with $\mathrm{Et}_{3} \mathrm{~N}(71 \mu \mathrm{~L}, 52 \mathrm{mg}$, $0.51 \mathrm{mmol}, 3.0$ equiv) and DMAP ($2.1 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.1$ equiv). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min and at rt for 1.5 h . The reaction was quenched by the addition of sat aq NaHCO_{3} $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 6 \mathrm{~mL})$. The combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(4 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (10 mL of $\mathrm{SiO}_{2}, 10-20 \%$ EtOAc in hexanes gradient elution) afforded $\mathbf{S 5}$ (37.2 $\mathrm{mg}, 0.162 \mathrm{mmol}, 95 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$ 2.71-2.66 (m, 2H), $2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 197.7,170.4,136.4,133.3$, 128.7 (2C), 128.0 (2C), $86.3,74.5,52.7,37.5,20.8,13.6$; IR (film) $v_{\max } 2923,2360,2342,1742$, 1686, 1225, $1024 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 231.1009\left(\mathrm{MH}^{+}, \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{H}^{+}\right.$requires 231.1021).

1-(2-(Prop-1-yn-1-yl)cyclopentyl)ethan-1-one (S8). A solution of ZnBr_{2} (1.0 M in THF, $2.5 \mathrm{~mL}, 2.5 \mathrm{mmol}, 1.25$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ under Ar was treated with 1-propynylmagnesium bromide (0.5 M in THF, $5.0 \mathrm{~mL}, 2.5 \mathrm{mmol}, 1.25$ equiv), and the mixture was stirred at rt for 20 min . The formed alkynylzinc reagent was then cooled to $-40{ }^{\circ} \mathrm{C}$ and
treated with a solution of 1-acetyl-1-cyclopentene ($\mathbf{S 6}, 230 \mu \mathrm{~L}, 220 \mathrm{mg}, 1.99 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ followed by TBS-OTf ($570 \mu \mathrm{l}, 656 \mathrm{mg}, 2.48 \mathrm{mmol}, 1.24$ equiv). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ under Ar for 3 h , then treated with sat aq $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 12 \mathrm{~mL})$. The combined organic layers were washed with brine (12 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give crude silyl enol ether $\mathbf{S 7}$.

Crude $\mathbf{S} 7$ was treated with $1 \mathrm{~N} \mathrm{HCl}(6.0 \mathrm{~mL})$ and THF $(6.0 \mathrm{~mL})$, and the resulting mixture was stirred at rt for 3 h . Sat aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added to neutralize the reaction, and it was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (70 mL of $\mathrm{SiO}_{2}, 3-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded S8 (189.4 mg, $1.26 \mathrm{mmol}, 63 \%$ from $\mathbf{S 6})$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 3.11-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84$ $(\mathrm{m}, 2 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 209.1,79.1,78.5,56.5,33.8,33.7,30.2,25.3,23.6,3.5$; IR (film) $v_{\max } 2961,2251,1711,1360,1172 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 151.1119\left(\mathrm{MH}^{+}, \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{OH}^{+}\right.$requires 151.1123).

1-(2-(Prop-1-yn-1-yl)cycloheptyl)ethan-1-one (S11). A solution of ZnBr_{2} (1.0 M in THF, $2.7 \mathrm{~mL}, 2.7 \mathrm{mmol}, 1.26$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(6.8 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ under Ar was treated with 1-propynylmagnesium bromide (0.5 M in THF, $5.4 \mathrm{~mL}, 2.7 \mathrm{mmol}, 1.26$ equiv), and the mixture was stirred at rt for 20 min . The formed alkynylzinc reagent was then cooled to $-40{ }^{\circ} \mathrm{C}$ and
treated with a solution of 1-acetyl-1-cycloheptene ${ }^{2}(\mathbf{S} 9,296.4 \mathrm{mg}, 2.14 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(4.5 \mathrm{~mL})$ followed by TBS-OTf ($620 \mu \mathrm{~L}, 714 \mathrm{mg}, 2.70 \mathrm{mmol}, 1.26$ equiv). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ under Ar for 3 h , then treated with sat aq $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 12 \mathrm{~mL})$. The combined organic layers were washed with brine (12 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give crude silyl enol ether $\mathbf{S 1 0}$.

Crude $\mathbf{S 1 0}$ was treated with $1 \mathrm{~N} \mathrm{HCl}(6.5 \mathrm{~mL})$ and THF (6.5 mL), and the resulting mixture was stirred at rt for 3 h . Sat aq $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ was added to neutralize the reaction, and it was extracted with EtOAc $(3 \times 12 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (75 mL of $\mathrm{SiO}_{2}, 3-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded S11 ($153.5 \mathrm{mg}, 0.861 \mathrm{mmol}, 40 \%$ from $\mathbf{S 9})$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 3.19-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 3 \mathrm{H})$, $1.79(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 210.5,79.1,79.0,56.8,33.9,32.1,28.2,27.6,26.3,25.1,24.6,3.6$; IR (film) $v_{\max } 2923,1711,1446,1353,1178 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $m / z 179.1434\left(\mathrm{MH}^{+}, \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{OH}^{+}\right.$ requires 179.1436).

A solution of 1-bromo-2-butyne $(68 \mu \mathrm{~L}, 103 \mathrm{mg}, 0.78 \mathrm{mmol})$ and $i \operatorname{Pr}_{2} \operatorname{NEt}(130 \mu \mathrm{~L}, 96 \mathrm{mg}$, $0.75 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was treated with freshly prepared 1-(1-phenylprop-1-en-1-

[^1]yl)pyrrolidine ${ }^{3}$ ($\mathbf{S 1 2}$, ca. 70% purity, $201.1 \mathrm{mg}, 0.75 \mathrm{mmol}$). The resulting mixture was refluxed for 12 h , then treated with $1 \mathrm{~N} \mathrm{HCl}(1.5 \mathrm{~mL})$ and stirred at $65^{\circ} \mathrm{C}$ for 4 h . The resulting biphasic mixture was extracted with diethyl ether $(3 \times 6 \mathrm{~mL})$, and the combined organic layers were washed with water $(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (18 mL of $\mathrm{SiO}_{2}, 0-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{S 1 3}$ $(122.4 \mathrm{mg}, 0.657 \mathrm{mmol}, 87 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.98(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~h}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.51$ $(\mathrm{m}, 1 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 202.8,136.1,133.0,128.6$ (2C), 128.4 (2C), 77.1, 76.9, 40.7, 22.8, 17.4, 3.5; IR (film) $\nu_{\max }$ 2973, 2359, 1683, 1448, $1199 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 187.1151\left(\mathrm{MH}^{+}, \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{OH}^{+}\right.$ requires 187.1123).

Synthesis of \boldsymbol{O}-Phenyl Oximes

1-Phenylhex-4-yn-1-one O-phenyl oxime (3a). A solution of O-phenyl hydroxylamine hydrochloride ${ }^{4}$ ($288.3 \mathrm{mg}, 1.98 \mathrm{mmol}, 1.5$ equiv) in anhydrous pyridine (5.4 mL) under Ar at rt was treated with 1-phenylhex-4-yn-1-one ${ }^{5}$ ($227.7 \mathrm{mg}, 1.32 \mathrm{mmol}, 1.0$ equiv). The resulting mixture was stirred at rt for 16 h , then poured into $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 12 \mathrm{ml})$. The combined organic layers were washed with sat aq $\mathrm{CuSO}_{4}(12 \mathrm{~mL})$ to remove traces of pyridine, dried $\left(\mathrm{NaSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (30 mL of $\mathrm{SiO}_{2}, 1-5 \%$ EtOAc in hexanes gradient elution) afforded 3a ($254.7 \mathrm{mg}, 0.967 \mathrm{mmol}$,

[^2]73%) as a colorless oil that was a $3.2: 1$ mixture of isomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) 7.85-$ $7.79(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32$ and $7.19(2 \mathrm{~d}, J=7.2$ and $7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.06 and $7.02(2 \mathrm{t}, J=7.1$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ and $2.89(2 \mathrm{t}, J=7.6$ and $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.51$ and $2.50-2.42(2 \mathrm{~m}, 2 \mathrm{H}), 1.80$ and $1.74(2 \mathrm{t}, J=2.4$ and $2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 160.2$ and $159.9,159.5$ and $159.4,134.9,129.8,129.3$ and $129.2(2 \mathrm{C}), 128.6$ and 128.2 (2C), 127.8 and $126.8,122.3$ and $122.0(2 \mathrm{C}), 114.9$ and 114.7 (2C), 77.8 and $77.6,76.9,35.2$ and 27.2, 16.4, 3.4; IR (film) $v_{\max } 3060$, 2917, 2361, 1593, 1490, $1214 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z 264.1373 $\left(\mathrm{MH}^{+}, \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NOH}^{+}\right.$requires 264.1388).

1-Phenylnon-4-yn-1-one O-phenyl oxime (3b). Subjection of 1-phenylnon-4-yn-1-one ${ }^{5}(36.6 \mathrm{mg}, 0.171 \mathrm{mmol})$ to the procedure described above for the synthesis of 3a with purification by flash chromatography (10 mL of $\mathrm{SiO}_{2}, 1-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{3 b}(43.7 \mathrm{mg}, 0.143 \mathrm{mmol}, 84 \%)$ as a colorless oil that was a 2.1:1 mixture of isomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 4 \mathrm{H})$, $7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30$ and $7.18(2 \mathrm{~d}, J=7.6$ and $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05$ and $7.00(2 \mathrm{t}, J=7.1$ and 7.3 $\mathrm{Hz}, 1 \mathrm{H}), 3.16$ and $2.88(2 \mathrm{t}, J=7.7$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56$ and $2.46(2 \mathrm{tt}, J=7.7,2.2 \mathrm{~Hz}$ and 7.6 , $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.15$ and $2.09(2 \mathrm{tt}, J=6.8,2.3 \mathrm{~Hz}$ and $6.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.91-$ $0.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 160.3$ and $159.8,159.5$ and 159.4, 135.0 and 133.1, 129.7 and 129.3 (2C), 129.2 and $129.1,128.5$ and 128.2 (2C), 127.8 and 126.9 (2C), 122.2 and $122.0,114.9$ and $114.7(2 \mathrm{C}), 81.6,78.4,35.3$ and $31.0,31.1$ and $27.3,21.9,18.4,16.5$ and 16.4 , 13.6; IR (film) $v_{\max } 2930,2359,1593,1490,1214,1023 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 306.1867\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NOH}^{+}$requires 306.1858).

1-Phenylundec-6-yn-3-one \boldsymbol{O}-phenyl oxime (3c). Subjection of 1-phenylundec-6-yn-3-one ${ }^{6}(24.7 \mathrm{mg}, 0.102 \mathrm{mmol})$ to the procedure described above for the synthesis of 3a with purification by flash chromatography (8 mL of $\mathrm{SiO}_{2}, 1-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{3 c}(27.7 \mathrm{mg}, 0.0831 \mathrm{mmol}, 82 \%)$ as a colorless oil that was a 1:1 mixture of isomers: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H})$, 7.20 and $7.14(2 \mathrm{~d}, J=7.8$ and $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 1 \mathrm{H}), 2.99$ and $2.93(2 \mathrm{t}, J=8.0,8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.80$ and $2.74(2 \mathrm{t}, J=7.9,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70$ and $2.54-2.43(\mathrm{t}$ and $\mathrm{m}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.21-$ $2.09(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 162.6$ and $162.5,159.5$ and $159.4,141.3$ and $141.0,129.2$ (2C), 128.5 (2C), 128.4 and 128.3 (2C), 126.3 and $126.1,121.9$ and $121.8,114.7$ and $114.6(2 \mathrm{C}), 81.4$ and $81.2,78.7$ and $78.5,36.6$ and 34.4, 32.2 and $32.0,31.3$ and $31.1,29.0,22.0$ and $21.9,18.4,16.0$ and $15.7,13.6$; IR (film) $v_{\max }$ 2930, 2360, 1591, 1489, 1213, $1072 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 334.2143\left(\mathrm{MH}^{+}, \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NOH}^{+}\right.$ requires 334.2171).

6-(Benzyloxy)-1-phenylhex-4-yn-1-one O-phenyl oxime (3d).

 Subjection of 6-(benzyloxy)-1-phenylhex-4-yn-1-one ${ }^{6}(37.5 \mathrm{mg}, 0.135 \mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{3 a}$ with purification by flash chromatography (18 mL of $\mathrm{SiO}_{2}, 3-5 \%$ EtOAc in hexanes gradient elution) afforded $\mathbf{3 d}(35.6 \mathrm{mg}, 0.964 \mathrm{mmol}, 72 \%)$ as a colorless oil that was a $6.1: 1$ mixture of isomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.86-7.77(\mathrm{~m}$, 2 H), 7.49 and $7.45-7.40(\mathrm{~d}$ and $\mathrm{m}, ~ J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.38-7.28$ and $7.17(\mathrm{~m}$ and $\mathrm{d}, J=7.9 \mathrm{~Hz}$,[^3]$8 \mathrm{H}), 7.06$ and $7.00(2 \mathrm{t}, J=7.1$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ and $4.51(2 \mathrm{~s}, 2 \mathrm{H}), 4.16$ and $4.10(2 \mathrm{t}, J=2.0$ and $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.21$ and $2.94(2 \mathrm{t}, J=7.7$ and $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.66$ and $2.58(2 \mathrm{tt}, J=7.7,2.0 \mathrm{~Hz}$ and 7.5, $2.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 159.8,159.4,137.6,134.8,129.9,129.3$ and $129.2(2 \mathrm{C}), 128.6(2 \mathrm{C}), 128.4$ and $128.3(2 \mathrm{C}), 128.1$ and $128.0(2 \mathrm{C}), 127.9$ and $127.8,126.8$ (2C), 122.4 and $122.1,114.8$ and 114.7 (2C), 85.4, 77.2, 71.5 and $71.4,57.6,34.7$ and 26.7, 16.4; IR (film) $v_{\max } 3062,2360,1653,1489,1351,1214,1072 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 370.1780$ $\left(\mathrm{MH}^{+}, \mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{H}^{+}\right.$requires 370.1807$)$.

6-(Methoxymethoxy)-1-phenylhex-4-yn-1-one O-phenyl oxime (3e). Subjection of 6-(methoxymethoxy)-1-phenylhex-4-yn-1-one (S3, $33.2 \mathrm{mg}, 0.143 \mathrm{mmol}$) to the procedure described above for the synthesis of $\mathbf{3 a}$ with purification by flash chromatography (12 mL of $\mathrm{SiO}_{2}, 5-10 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{3 e}(36.9 \mathrm{mg}, 0.114 \mathrm{mmol}$, $80 \%)$ as a colorless oil that was a $4.7: 1$ mixture of isomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.83-$ $7.77(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30$ and $7.18(2 \mathrm{~d}, J=7.6$ and $7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.06 and $7.01(2 \mathrm{t}, J=7.2$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ and $4.65(2 \mathrm{~s}, 2 \mathrm{H}), 4.21$ and $4.15(2 \mathrm{t}, J=2.0$ and $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.20$ and $2.92(2 \mathrm{t}, J=7.8$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.61$ and $2.58-2.54$ $(2 \mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 159.8,159.4$ and 159.3, 134.7 and 133.0, 129.9, 129.3 and $129.2(2 C), 128.6$ and $128.3(2 C), 127.8$ and $126.8(2 C), 122.4$ and $122.1,114.8$ and 114.7 (2C), 94.7 and $94.6,85.3$ and $85.2,76.7$ and $76.6,55.5,54.6$ and $54.5,34.7$ and 26.7, 16.4; IR (film) $v_{\max } 2946,2236,1592,1490,1214,1150,1072 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 324.1603\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{H}^{+}$requires 324.1600).

6-(Phenoxyimino)-6-phenylhex-2-yn-1-yl acetate (3f). Subjection of 6-oxo-6-phenylhex-2-yn-1-yl acetate $(\mathbf{S 5}, 27.7 \mathrm{mg}, 0.120 \mathrm{mmol})$ to the procedure described above for the synthesis of 3a with purification by flash chromatography (25 mL of $\mathrm{SiO}_{2}, 1-5 \%$ EtOAc in hexanes gradient elution) afforded $\mathbf{3 f}(35.1 \mathrm{mg}, 0.109 \mathrm{mmol}, 91 \%)$ as a colorless oil that was a 1.7:1 mixture of isomers: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.81-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.41$ $(\mathrm{m}, 4 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ and $7.01(2 \mathrm{t}$, $J=7.2$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ and $4.60(2 \mathrm{t}, J=2.2$ and $2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.20$ and $2.92(2 \mathrm{t}, J=7.8$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.63$ and $2.57(2 \mathrm{tt}, J=7.8,2.2 \mathrm{~Hz}$ and $7.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 170.4$ and 170.3, 159.6 and 159.4, 159.3 and 159.1, 134.7 and 132.9, 129.9 and $129.34,129.30$ and 129.2 (2C), 128.6 and 128.3 (2C), 127.8 and 126.8 (2C), 122.4 and $122.1,114.8$ and $114.7(2 \mathrm{C}), 85.9$ and $85.8,75.2$ and $75.1,52.7$ and $52.6,34.5$ and $26.5,20.8$, 16.4 and 16.3; IR (film) $v_{\max }$ 2938, 2238, 1744, 1591, 1216, $1024 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z $322.1455\left(\mathrm{MH}^{+}, \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{H}^{+}\right.$requires 322.1443).

5-Methyldodec-6-yn-3-one O-phenyl oxime (3g). Subjection of 5-methyldodec-6-yn-3-one ${ }^{5}(34.7 \mathrm{mg}, 0.179 \mathrm{mmol})$ to the procedure described above for the synthesis of 3a with purification by flash chromatography (12 mL of $\mathrm{SiO}_{2}, 1-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{3 g}(49.8 \mathrm{mg}, 0.174 \mathrm{mmol}, 98 \%)$ as a colorless oil that was a 2.0:1 mixture of isomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.92$ and $2.91-2.82(2 \mathrm{~m}, 1 \mathrm{H}), 2.75-2.69$ and $2.44-2.38$ $(2 \mathrm{~m}, 1 \mathrm{H}), 2.60-2.47(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.27-$ $1.16(\mathrm{~m}, 6 \mathrm{H}), 0.96-0.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 164.1$ and 164.0, 159.6 and
159.5, 129.2 (2C), 121.7 and 121.6, 114.6 (2C), 83.6 and $83.4,81.3$ and $81.2,41.1$ and 36.2 , 31.0, 28.7 and 28.6, 23.7 and 23.5, 22.4, 22.2, 21.9 and $21.4,18.7,14.0,10.7$ and 10.5; IR (film) $v_{\max }$ 2932, 2360, 1592, 1489, $1211 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $m / z 286.2149\left(\mathrm{MH}^{+}, \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NOH}^{+}\right.$ requires 286.2171).

3-Methyl-1-phenylhex-4-yn-1-one O-phenyl oxime (3h). Subjection of 3-methyl-1-phenylhex-4-yn-1-one ${ }^{5}(29.6 \mathrm{mg}, 0.159 \mathrm{mmol})$ to the procedure described above for the synthesis of 3a with purification by flash chromatography (12 mL of $\mathrm{SiO}_{2}, 1-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{3 h}(39.1 \mathrm{mg}, 0.141 \mathrm{mmol}, 89 \%)$ as a colorless oil that was a 1.4:1 mixture of isomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.87-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 4 \mathrm{H})$, $7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ and $7.01(2 \mathrm{t}, J=7.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ and $2.88(2 \mathrm{dd}, J=10.4,7.7$ and $10.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ and $2.74(2 \mathrm{dd}, J=10.2,7.5$ and $10.6,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.99-2.91$ and $2.70-2.57(2 \mathrm{~m}, 1 \mathrm{H}), 1.77$ and $1.67(2 \mathrm{~d}, J=2.2,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 159.9$ and 159.8, 159.5 and 159.4, 135.4 and 133.2, 129.6 and 129.3, 129.2 and 129.1 (2C), 128.4, 128.2 and 127.9 (2C), 127.1, 122.2 and 122.0, 114.9 and $114.8(2 \mathrm{C}), 82.6$ and $82.3,77.2$ and $76.9,42.7$ and $34.5,24.0$ and $23.8,21.3$ and 20.9, 3.5 and 3.4 ; IR (film) $v_{\max } 2968,2360,1593,1490,1216 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 278.1575$ $\left(\mathrm{MH}^{+}, \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NOH}^{+}\right.$requires 278.1545).

2-Methyl-1-phenylhex-4-yn-1-one O-phenyl oxime (3i). Subjection of 2-methyl-1-phenylhex-4-yn-1-one ($\mathbf{S 1 3}, 23.7 \mathrm{mg}, 0.127 \mathrm{mmol}$) to the procedure described above for the synthesis of $\mathbf{3 a}$ with purification by flash chromatography (15 mL of $\mathrm{SiO}_{2}, 1-5 \% \mathrm{EtOAc}$
in hexanes gradient elution) afforded $\mathbf{3 i}(29.3 \mathrm{mg}, 0.106 \mathrm{mmol}, 83 \%)$ as a colorless oil that was a 1.9:1 mixture of isomers: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.65-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 3 \mathrm{H})$, $7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ and $6.99(2 \mathrm{t}, J=7.2$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ and $3.02(2 \mathrm{~h}, J=7.2$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.62$ and $2.35-2.29(2 \mathrm{~m}, 1 \mathrm{H})$, $2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.82$ and $1.75(2 \mathrm{t}, J=2.4$ and $2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.42$ and $1.32(2 \mathrm{~d}, J=7.1$ and 6.9 $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 165.1$ and 164.0, 159.5 and 159.3, 135.6 and 133.4, 129.2 and $129.14,129.12$ and $128.8(2 \mathrm{C}), 128.3$ and 128.1 (2C), 128.0 and 127.6 (2C), 122.2 and $121.9,114.8$ and $114.7(2 \mathrm{C}), 77.3$ and $77.2,77.1,40.1$ and $35.9,24.0$ and $23.3,17.9$ and 17.0 , 3.5; IR (film) $v_{\max } 2918,2359,1594,1490,1215 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 278.1543\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NOH}^{+}$requires 278.1545).

1-(2-(Prop-1-yn-1-yl)cyclopentyl)ethan-1-one \boldsymbol{O}-phenyl oxime (3j). Subjection of 1-(2-(prop-1-yn-1-yl)cyclopentyl)ethan-1-one (S8, $38.6 \mathrm{mg}, 0.257 \mathrm{mmol}$) to the procedure described above for the synthesis of 3a with purification by flash chromatography (25 mL of $\mathrm{SiO}_{2}, 3-5 \%$ EtOAc in hexanes gradient elution) afforded $\mathbf{3 j}(47.2 \mathrm{mg}, 0.196 \mathrm{mmol}, 76 \%)$ as a colorless oil that was a $4.6: 1$ mixture of isomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.31(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ and $2.86(2 \mathrm{q}, J=8.6$ and 8.0 Hz,$$ $1 \mathrm{H}), 3.38-3.32$ and $3.08-3.01(2 \mathrm{~m}, 1 \mathrm{H}), 2.12$ and $2.10(2 \mathrm{~s}, 3 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.81$ $(\mathrm{m}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 163.3$ and $162.4,159.7$ and $159.5,129.2(2 \mathrm{C}), 121.8$ and $121.5,114.9$ and $114.6(2 \mathrm{C}), 80.5$ and $79.7,78.4$, 49.9 and $43.4,34.4,33.4$ and $33.2,27.3$ and $26.8,23.6$ and $23.5,19.2$ and $15.3,3.6$; IR (film) $v_{\max } 2960,2871,1595,1490,1214,1159 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 242.1526\left(\mathrm{MH}^{+}, \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NOH}^{+}\right.$ requires 242.1545).

1-(2-(Prop-1-yn-1-yl)cyclohexyl)ethan-1-one \boldsymbol{O}-phenyl oxime (3k). Subjection of 1-(2-(prop-1-yn-1-yl)cyclohexyl)ethan-1-one ${ }^{5}(31.0 \mathrm{mg}, 0.189 \mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{3 a}$ with purification by flash chromatography (25 mL of $\mathrm{SiO}_{2}, 3-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{3 k}(47.6 \mathrm{mg}, 0.186 \mathrm{mmol}, 99 \%)$ as a colorless oil that was a $6.7: 1$ mixture of isomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.30(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ and $2.40(2 \mathrm{dt}, J=12.7,3.3 \mathrm{~Hz}$ and $12.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ and $3.01(2 \mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 163.4,159.7,129.2$ and 129.1 (2C), 121.8 and $121.5,114.9$ and 114.7 (2C), 79.2, 79.0, 47.1 and $40.2,32.1$ and $32.0,31.4$ and $29.8,25.8,24.5,21.5$ and $21.3,18.3$ and $13.5,3.6$; IR (film) $v_{\max } 2932,2362,1594,1490,1212,1158,1023 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 256.1680\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NOH}^{+}$requires 256.1701).

1-(2-(Prop-1-yn-1-yl)cycloheptyl)ethan-1-one \boldsymbol{O}-phenyl oxime (31). Subjection of 1-(2-(prop-1-yn-1-yl)cycloheptyl)ethan-1-one ($\mathbf{S 1 1}, 31.6 \mathrm{mg}, 0.177 \mathrm{mmol}$) to the procedure described above for the synthesis of $\mathbf{3 a}$ with purification by flash chromatography (20 mL of $\mathrm{SiO}_{2}, 1-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $31(34.7 \mathrm{mg}, 0.129 \mathrm{mmol}, 73 \%)$ as a colorless oil that was a $5.7: 1$ mixture of isomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.30(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.45$ and $2.63-2.59(2 \mathrm{~m}, 1 \mathrm{H})$, 3.09-3.05 and 3.02-2.96(2m, 1H), 2.13 and $2.10(2 \mathrm{~s}, 3 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 165.9$ and $164.9,159.6$ and 159.4, 129.2 (2C), 121.8 and 121.6, 114.8 (2C), 80.0 and
79.9, 79.3 and 79.0, 51.8 and 48.7, 34.4, 34.2, 28.0 and $27.4,27.0$ and 26.9, 26.3, 24.9 and 24.6, 17.8 and $13.2,3.6$; IR (film) $v_{\text {max }} 2924,2360,1594,1489,1213 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z $270.1875\left(\mathrm{MH}^{+}, \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NOH}^{+}\right.$requires 270.1858).

2,2-Dimethyl-1-phenylhex-4-yn-1-one O-phenyl oxime (6). Subjection of 2,2-dimethyl-1-phenylhex-4-yn-1-one ${ }^{5}(35.4 \mathrm{mg}, 0.177 \mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{3 a}$ with purification by flash chromatography $\left(20 \mathrm{~mL}\right.$ of $\mathrm{SiO}_{2}, 1-5 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $6(34.5 \mathrm{mg}, 0.118 \mathrm{mmol}, 67 \%)$ as a colorless oil that was a single isomer of undetermined configuration about the $\mathrm{C}=\mathrm{N}$ bond: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 7.46-7.39(m, 3H), 7.28-7.18 (m, 4H), $7.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{q}$, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 167.4$, $159.6,133.4,129.0$ (2C), 128.0, 127.9 (2C), 127.4 (2C), 121.7, 114.6 (2C), 78.3, 76.3, 41.5, 30.7, 25.8 (2C), 3.6; IR (film) $v_{\max } 3059,2970,2919,1594,1490,1213, \mathrm{~cm}^{-1}$; HRMS (ESI) m / z 292.1679 $\left(\mathrm{MH}^{+}, \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NOH}^{+}\right.$requires 292.1701).

Iminyl radical cyclizations

2,2,6,6-Tetramethyl-1-((5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methoxy)-

piperidine (2). An oven-dried microwave reaction vessel was charged with 1-phenylpent-4-en-1-one O-phenyl oxime ${ }^{7,8}(1,21.6 \mathrm{mg}, 0.0859 \mathrm{mmol}, 1.0$ equiv), TEMPO $(20.1 \mathrm{mg}, 0.129 \mathrm{mmol}$, 1.5 equiv), and trifluorotoluene (0.86 mL). The vessel was sealed under an Ar atmosphere and

[^4]subjected to microwave irradiation (300 W) for 15 min at $98^{\circ} \mathrm{C}$. The mixture was cooled to rt and concentrated in vacuo. Flash chromatography (10 mL of SiO $2,0.5-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution) afforded $2(24.4 \mathrm{mg}, 0.0776 \mathrm{mmol}, 90 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.86(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=8.7,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H})$, $1.59-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 173.5,134.7,130.3,128.4$ (2C), 127.7 (2C), 79.1, 72.3, 59.9 (2C), 39.6, 35.4 (2C), 33.2, 33.0, 25.9, 20.3, 20.0, 17.1; IR (film) $v_{\max }$ 2931, 1616, 1450, 1373, cm^{-1}; HRMS (ESI) m / z $315.2461\left(\mathrm{MH}^{+}, \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OH}^{+}\right.$requires 315.2436$)$.

1-(5-Phenyl-1H-pyrrol-2-yl)ethan-1-one (4a). An oven-dried microwave reaction vessel was charged with O-phenyl oxime $\mathbf{3 a}(20.4 \mathrm{mg}, 0.0775 \mathrm{mmol})$, TEMPO (18.2 $\mathrm{mg}, 0.116 \mathrm{mmol}, 1.5$ equiv), and trifluorotoluene $(0.8 \mathrm{~mL})$. The vessel was sealed under an Ar atmosphere and subjected to microwave irradiation (300 W) for 30 min at $98^{\circ} \mathrm{C}$. The mixture was treated with additional TEMPO ($18.2 \mathrm{mg}, 0.116 \mathrm{mmol}, 1.5$ equiv) and irradiated by microwaves for 30 additional min at $98^{\circ} \mathrm{C}$. The mixture was then cooled to rt and concentrated in vacuo. Flash chromatography (15 mL of $\mathrm{SiO}_{2}, 5-20 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{4 a}(11.9 \mathrm{mg}, 0.0642 \mathrm{mmol}, 83 \%)$ as a colorless powder: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 9.53 (br s, 1H), $7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ $(\mathrm{dd}, J=3.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=3.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 187.6,138.2,132.5,130.9,129.1$ (2C), 128.2, 125.0 (2C), 118.2, 108.3, 25.3; IR (film) $v_{\max } 3300,2360,1634,1470,1273 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 186.0898\left(\mathrm{MH}^{+}, \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NOH}^{+}\right.$ requires 186.0919).

1-(5-phenyl-1H-pyrrol-2-yl)pentan-1-one (4b). An oven-dried microwave reaction vessel was charged with O-phenyl oxime 3b ($17.6 \mathrm{mg}, 0.0576 \mathrm{mmol}$), TEMPO ($27.0 \mathrm{mg}, 0.173 \mathrm{mmol}, 3.0$ equiv), and trifluorotoluene $(0.6 \mathrm{~mL})$. The vessel was sealed under an Ar atmosphere and subjected to microwave irradiation (300 W) for 30 min at $98{ }^{\circ} \mathrm{C}$. The mixture was cooled to rt and concentrated in vacuo. Flash chromatography (8 mL of SiO_{2}, 5-20\% EtOAc in hexanes gradient elution) afforded $\mathbf{4 b}(9.9 \mathrm{mg}, 0.044 \mathrm{mmol}, 76 \%)$ as a white powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=4.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=4.2,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~h}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 190.9,137.9,132.4,131.0,129.1$ (2C), 128.1, 124.9 (2C), 117.4, 108.2, 37.6, 27.6, 22.6, 13.9; IR (film) $v_{\max } 3322,2360,1638 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z $228.1382\left(\mathrm{MH}^{+}, \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NOH}^{+}\right.$requires 228.1388).

1-(5-Phenethyl-1H-pyrrol-2-yl)pentan-1-one (4c). Subjection of O-phenyl oxime $3 \mathbf{c}(11.7 \mathrm{mg}, 0.0351 \mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{4 b}$ with purification by flash chromatography (8 mL of $\mathrm{SiO}_{2}, 5-20 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{4 c}(8.2 \mathrm{mg}, 0.032 \mathrm{mmol}, 92 \%)$ as a yellow powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 8.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.82(\mathrm{dd}, J=3.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 4 \mathrm{H}), 2.71(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.69(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~h}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 190.4,140.7,139.2,131.0,128.6$ (2C), 128.3 (2C), 126.4, 116.7, 108.6,
37.4, 35.4, 29.7, 27.6, 22.6, 13.9; IR (film) $v_{\max } 3261,2951,2359,1623,1496,1203,1054 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 256.1711\left(\mathrm{MH}^{+}, \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NOH}^{+}\right.$requires 256.1701).

2-(Benzyloxy)-1-(5-phenyl-1H-pyrrol-2-yl)ethan-1-one (4d). Subjection of O-phenyl oxime $\mathbf{3 d}(11.3 \mathrm{mg}, 0.0306 \mathrm{mmol})$ to the procedure described above for the synthesis of 4 a with purification by flash chromatography (5 mL of $\mathrm{SiO}_{2}, 5-20 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{4 d}(4.7 \mathrm{mg}, 0.016 \mathrm{mmol}, 53 \%)$ and $5(1.4 \mathrm{mg}, 0.0032 \mathrm{mmol}$, $11 \%)$. For 4d: yellow powder, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=3.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=3.3$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 186.2, 137.2, 130.7, 129.1 (3C), 128.6 (2C), 128.3, 128.1 (4C), 125.0 (2C), 118.5, 108.6, 77.2, 73.6; IR (film) $v_{\max }$ 3315, 2923, 2359, 1653, 1265, 1078, $1018 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 292.1345\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{H}^{+}$requires 292.1338). For 5: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 3.06$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H})$, $1.13(\mathrm{~s}, 6 \mathrm{H})$; HRMS (ESI) $m / z 433.2875\left(\mathrm{MH}^{+}, \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}^{+}\right.$requires 433.2855).

2-(Methoxymethoxy)-1-(5-phenyl-1H-pyrrol-2-yl)ethan-1-one

(4e).
Subjection of O-phenyl oxime $\mathbf{3 e}(10.2 \mathrm{mg}, 0.0315 \mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{4 b}$ with purification by flash chromatography (12 mL of $\mathrm{SiO}_{2}, 0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution) afforded $4 \mathbf{e}(4.8 \mathrm{mg}, 0.020 \mathrm{mmol}, 62 \%)$ as a white film: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J$
$=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=4.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}$, 2H), 3.45 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 185.6, 138.6, 130.7, 130.0, 129.2 (2C), 128.4, 125.0 (2C), 118.0, 108.6, 96.7, 69.1, 55.8; IR (film) $v_{\max } 3307,2943,2360,1649,1469,1042$ cm^{-1}; HRMS (ESI) $m / z 246.1141\left(\mathrm{MH}^{+}, \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{H}^{+}\right.$requires 246.1130).

2-Oxo-2-(5-phenyl-1H-pyrrol-2-yl)ethyl acetate (4f). Subjection of O-phenyl oxime $\mathbf{3 f}(11.9 \mathrm{mg}, 0.0370 \mathrm{mmol})$ to the procedure described above for the synthesis of 4b with purification by flash chromatography (12 mL of $\mathrm{SiO}_{2}, 10-30 \%$ EtOAc in hexanes gradient elution) afforded $\mathbf{4 f}(8.3 \mathrm{mg}, 0.034 \mathrm{mmol}, 92 \%)$ as a yellow powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 9.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{dd}, J=3.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=3.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 182.3,170.5,139.0,130.6,129.22,129.20$ (2C), 128.6, 125.1 (2C), 117.8, 108.7, 65.0, 20.7; IR (film) $v_{\max } 3303,1744,1645,1228 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 244.0954$ $\left(\mathrm{MH}^{+}, \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{H}^{+}\right.$requires 244.0974).

1-(5-Ethyl-3-methyl-1H-pyrrol-2-yl)hexan-1-one (4g). Subjection of O-phenyl oxime $\mathbf{3 g}(16.4 \mathrm{mg}, 0.0575 \mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{4 b}$ with purification by flash chromatography $\left(10 \mathrm{~mL}\right.$ of $\mathrm{SiO}_{2}, 5-20 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{4 g}(9.7 \mathrm{mg}, 0.047 \mathrm{mmol}, 81 \%)$ as a yellow powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 8.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J$ $=5.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 190.0,139.9,128.2,127.4,111.0,39.5,31.8$,
24.4, 22.6, 20.8, 14.5, 14.0, 13.1; IR (film) $v_{\max } 3269,2953,2360,1619,1491 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 208.1715\left(\mathrm{MH}^{+}, \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NOH}^{+}\right.$requires 208.1701).

1-(3-Methyl-5-phenyl-1H-pyrrol-2-yl)ethan-1-one (4h). Subjection of O-phenyl oxime $\mathbf{3 h}(12.5 \mathrm{mg}, 0.0451 \mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{4 b}$ with purification by flash chromatography (12 mL of $\mathrm{SiO}_{2}, 5-20 \%$ EtOAc in hexanes gradient elution) afforded $\mathbf{4 h}(8.8 \mathrm{mg}, 0.044 \mathrm{mmol}, 98 \%)$ as a colorless powder: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 9.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 187.4$, $136.2,130.9,130.1,129.1(2 C), 128.6,128.1,124.8(2 C), 111.2,27.9,14.5$; IR (film) $v_{\max } 3311$, 2360, 1636, 1448, $1271 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 200.1053\left(\mathrm{MH}^{+}, \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NOH}^{+}\right.$requires 200.1075).

1-(4-Methyl-5-phenyl-1 \boldsymbol{H}-pyrrol-2-yl)ethan-1-one (4i). Subjection of O-phenyl oxime $3 \mathbf{i}(12.7 \mathrm{mg}, 0.0458 \mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{4 b}$ with purification by flash chromatography $\left(12 \mathrm{~mL}\right.$ of $\mathrm{SiO}_{2}, 10-20 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{4 i}(8.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 88 \%)$ as a white powder: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 9.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 187.4,135.2$, 131.9, 130.7, 128.9 (2C), 127.8, 127.0 (2C), 119.5, 118.7, 25.2, 12.5; IR (film) $v_{\max } 3307,1461$, 1263, $1184 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 200.1065\left(\mathrm{MH}^{+}, \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NOH}^{+}\right.$requires 200.1075).

1-(3-Methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-yl)ethan-1-one
(4j). Subjection of O-phenyl oxime $\mathbf{3 j}$ ($20.2 \mathrm{mg}, 0.0837 \mathrm{mmol}$) to the procedure described above for the synthesis of $\mathbf{4 a}$ with purification by flash chromatography (10 mL of $\mathrm{SiO}_{2}, 5-20 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{4 j}(7.0 \mathrm{mg}, 0.0429 \mathrm{mmol}, 51 \%)$ as a yellow powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{p}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 186.0,139.6,130.5$, $127.6,123.5,30.8,27.7,26.2,24.3,12.2$; IR (film) $v_{\max } 3242,2955,1624,1278,1069 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 164.1102\left(\mathrm{MH}^{+}, \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NOH}^{+}\right.$requires 164.1075).

1-(3-Methyl-4,5,6,7-tetrahydro-2H-isoindol-1-yl)ethan-1-one (4k). Subjection of O-phenyl oxime $\mathbf{3 k}(25.3 \mathrm{mg}, 0.0991 \mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{4 b}$ with purification by flash chromatography (10 mL of $\mathrm{SiO}_{2}, 5-20 \% \mathrm{EtOAc}$ in hexane gradient elution) afforded $\mathbf{4 k}(16.5 \mathrm{mg}, 0.0931 \mathrm{mmol}, 94 \%)$ as a white powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 186.0, 130.9, 128.7, 126.7, $119.8,27.5,24.3,23.4,23.0,21.3,11.2$; IR (film) $v_{\max } 3269,2939,1613,1434,1277 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 178.1232\left(\mathrm{MH}^{+}, \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NOH}^{+}\right.$requires 178.1232).

Subjection of O-phenyl oxime $31(11.7 \mathrm{mg}, 0.0434 \mathrm{mmol})$ to the procedure described above for
the synthesis of $\mathbf{4 b}$ with purification by flash chromatography (12 mL of $\mathrm{SiO}_{2}, 10-20 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $41(7.9 \mathrm{mg}, 0.041 \mathrm{mmol}, 95 \%)$ as a yellow powder: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45$ $(\mathrm{s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 186.8,133.7,130.3,126.5,125.2,32.8,28.7,28.4,28.1,27.5,25.8,11.3 ;$ IR (film) $v_{\max } 3311,2918,2360,2342,1616,1496,1420,1273 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $m / z 192.1386$ $\left(\mathrm{MH}^{+}, \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NOH}^{+}\right.$requires 192.1388).

[^0]: ${ }^{1}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

[^1]: ${ }^{2}$ Hudlicky, T.; Srnak, T. Tetrahedron Lett. 1981, 22, 3351.

[^2]: ${ }^{3}$ Kawai, N.; Shioiri, T.; Chem. Pharm. Bull. 1983, 31, 2564.
 ${ }^{4}$ Petrassi, H. M.; Sharpless, K. B.; Kelly, J. W. Org. Lett. 2001, 3, 139.
 ${ }^{5}$ Kusama, H.; Ishida, K.; Funami, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47, 4903.

[^3]: ${ }^{6}$ Ishida, K.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2010, 132, 8842.

[^4]: ${ }^{7}$ Portella-Cubillo, F.; Scott, J. S.; Walton, J. C. Chem. Commum. 2007, 4041.
 ${ }^{8}$ Portella-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2008, 73, 5558.

