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Abstract
Due to the wave nature of light, optical microscopy has a lower-bound lateral
resolution limit of approximately half of the wavelength of visible light, that
is, within the range of 200 to 350 nm. Fluorescence fluctuation-based super-
resolution microscopy (FF-SRM) is a term used to encompass a collection of
image analysis techniques that rely on the statistical processing of temporal
variations of the fluorescence signal. FF-SRM aims to reduce the uncertainty
of the location of fluorophores within an image, often improving spatial reso-
lution by several tens of nanometers. FF-SRM is suitable for live-cell imaging
due to its compatibility with most fluorescent probes and relatively simple
instrumental and experimental requirements, which are mostly camera-based
epifluorescence instruments. Each FF-SRM approach has strengths and weak-
nesses, which depend directly on the underlying statistical principles through
which enhanced spatial resolution is achieved. In this review, the basic con-
cepts and principles behind a range of FF-SRM methods published to date are
described. Their operational parameters are explained and guidance for their
selection is provided.
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1 INTRODUCTION

1.1 Basic concepts of fluorescence and
the resolution limit of optical microscopy

Fluorescence microscopy, in which organic and inorganic
fluorophores are used as molecular dyes, is by far the
most popular technique for the observation of biologi-
cal specimens with molecular specificity.1 This level of
discrimination is achieved either by labeling cellular com-
ponents with fluorescent dyes or by linking an engineered
fluorescent protein to a molecule of interest.2

The Jablonski diagram represents the electronic tran-
sitions between energy states during the excitation and
relaxation of a fluorophore (Figure 1A). Fluorescence
occurs when a fluorophore in a ground electronic state
(S0) absorbs photonic energy at a specific wavelength
range, which promotes an electron to shift to a higher-
energy excited state (Sn). Energy is released upon return
of the electron to S0, either by non-radiative relaxation
or as fluorescence emission in a characteristic spectrum
of wavelengths of lower energy. During the excitation
cycle, energy is lost, that is, through molecular kinetics
and vibrational relaxation.3 The cycle of excitation and

F IGURE 1 Fluorescence process described by the Jablonski diagram and the spatial resolution limit according to the Rayleigh criterion.
(A) Simplified Jablonski diagram representing energy states of a fluorescent molecule and their characteristic timescales. The excitation
photon transfers energy hν to the fluorophore that promotes the transition of an electron from the ground state S0 to the excited state S1. The
excited electrons can return to S0 through radiative emission of a photon (fluorescence) or by a non-radiative transition. Less frequently, the
electrons can reach a triplet state (T1) by intersystem crossing (ISC) upon which a change occurs to the spin of the electron. (B) Bidimensional
representation of the point spread function (PSF) formed by the Airy pattern of one emitter and (C) the corresponding Rayleigh criterion for
optical resolution when two of these patterns are in close enough proximity to each other. (D) Fluorescence distributions of two fluorescence
emitters separated at three different distances. From left to right, the emitters are spatially resolved, at the limit of resolution (according to the
Rayleigh criterion) or unresolved. ‘d’ refers to the distance between two points. FWHM, full width at half maximum
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fluorescence emission commonly occurs in the range of a
few nanoseconds.2
In addition to non-radiative relaxation and radiative

fluorescence emission, electrons may cross over into the
triplet state (T1) by intersystem crossing (ISC), a much
longer-lived excited state. From T1, an electron may return
to the ground electronic state through radiative phospho-
rescent emission, which typically occurs on the millisec-
ond to seconds timescale and thus is easily distinguished
from fluorescence emission.2
In the wave description of light, the light emitted by a

single fluorophore seen through an opticalmicroscopewill
undergo diffraction as it travels through the microscope
optics. Once the light reaches the eye or the microscope
detector, it will be observed in the form of a diffraction
pattern, a bidimensional representation of the response
function of the instrument, also known as the point spread
function (PSF). The PSF takes the form of a series of con-
centric disks (the Airy disk pattern) (Figure 1B) with the
highest intensity at its center (Airy disk of order 0).3
The shape of the PSF depends on the wavelength of

the traveling light and the numerical aperture (NA) of the
microscope objective. To compare the resolving power of
a microscope, the full width at half maximum (FWHM)
of the PSF intensity profile is calculated (Figure 1B); the
lower the FWHM value, the greater the resolving power of
the microscope.3,4
According to the Rayleigh criterion, the resolution limit

at which two light-emitting objects cannot be resolved is
the distance at which the peak of the Airy pattern of one
emitter overlaps with the first minimum of the Airy disk
of zero-order of the other (R= 0.61 (λem)/NA)5 (Figure 1C).
At higher NA values, the width of the zero-order disk on
the PSF equals approximately half of the wavelength of the
light emitted by the fluorophore, and thus the resolution
limit of an optical microscope is commonly 200–350 nm
(Figure 1D)

1.2 Super-resolution microscopy (SRM):
A new era of optical microscopy

Fluorescence microscopy enables the observation of bio-
logical phenomena with molecular specificity. However,
many aspects of these processes remain unknown due to
the spatial limit of resolution of the optical microscope.
The development of enhanced optical instrumentation,
fluorescent probes and mathematical algorithms to over-
come this limitation has accelerated considerably in recent
years. These efforts have ushered in a new era for the study
of nature through light: optical SRM.
The SRM era began with stimulated emission deple-

tion (STED) fluorescence microscopy6,7 and structured

illumination microscopy (SIM).8 At that time, the maxi-
mum spatial resolution achieved with STEDwas∼100 nm.
Subsequent refinements of these approaches have further
pushed the resolution limit to 20–40 nm.9–11 However,
these techniques require highly specialised microscopes,
whose cost and complexity have limited their application
to a limited fraction of the bioimaging community.1
With the development and applications of suitable

photobleaching-resistant and photoconvertible flu-
orophores, single molecule localisation microscopy
(SMLM) techniques were created, a set of SRM techniques
based on the localisation of blinking fluorophores that
obviated the requirement of a STED microscope setup1
(although there are some SRM variants based on STED,
such as reversible saturable optical fluorescence tran-
sitions and MINFLUX [Minimal photon fluxes], which
require fluorophores with drastic fluorescence fluctuation
(FF) capacity such as blinking12,13).
SRM based on single-molecule localisation can con-

struct a super-resolved image because only a few emitters
(around 10 emitters μm−2) are collected in a single frame,
diminishing the probability that the fluorescence distri-
butions of any two emitting fluorophores overlap.14 The
position of those single emitters can be estimated with
greater precision through the fitting of a Gaussian func-
tion to identify the centroid position. Since only a small
fraction of the total fluorophores are emitting, it is impera-
tive to acquire several thousands of frames of the observed
field. Depending on the exact characteristics of the SMLM
protocol used (such as STORM,15 [DNA]-PAINT16,17 or
photoactivation localisation microscopy [PALM]18), the
maximum resolution achievable has been reported to be
in the range of up to ∼ 5 nm.14,16
SMLM requires the use of fluorophores capable of tran-

sitioning between prolonged (in the order of millisecond)
emitting ‘on’ and non-emitting ‘off’ states until eventually
the fluorophore enters an irreversible photobleached state
(Figure 2A). With adequate sample preparation (e.g., flu-
orophore selection, oxygen scavenging buffers and laser
power selection) the probability of the fluorophore to tran-
sition between the ‘on’ and the ‘off’ state can be optimised
to the frame acquisition rate.14,19 Such tuning is highly
experiment-dependent, and much time must be invested
to optimise the acquisition protocol for each set of experi-
mental conditions and microscope used. Disadvantages of
SMLM techniques include the need for high-power laser
illumination (from ∼62 to 7.8 kW/cm2),20 avoidance of
sample drift in x, y and z positions, robust photon detec-
tion at the last set of acquired images and prevention of
photodamage and phototoxicity.1
FF-based SRM (FF-SRM) relies on the statistical anal-

ysis of FFs over time.21–27 It can be used for blinking
fluorophores in which the fluctuations are conspicuous

 13652818, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13135 by T
est, W

iley O
nline L

ibrary on [08/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ALVA et al. 221

F IGURE 2 Fluorescence intermittency
(A) Naturally, the fluorophores change
between the ‘on’ and the ‘off" state, which
manifests as a blinking pattern of emission.
In some cases, a set of fluorophores transition
from the triplet state to a photobleached
irreversible state. Under the same
fluorophore dynamics, a constant fluorescent
emission is characterised by a short ‘off’ state
but it also has fluorescence fluctuations (FFs)
as a minor contribution. (B) FF contributions
depend on fluorophore emission state.
Blinking fluorophores will contribute
fluctuations of higher amplitude in
comparison to constant emitting
fluorophores, and every detector will register
variable background ‘noise’ even with no
fluorophores present

or with more constantly emitting fluorophores where the
fluctuations are generated by intrinsic variations of the
fluorescence and not by prolonged ‘off’ states. In both
cases, the fluorescence detected must be above the back-
ground signal28 (Figure 2B). The main difference between
the SMLM and FF-SRMmethods is that the former’s algo-
rithms are based on the localisation of individual emitters,
making SMLM more precise at the cost of more complex
sample preparation and image acquisition.29
Most of the FF-SRM methods are compatible with

epifluorescence, confocal and total internal reflection flu-
orescence (TIRF) microscopy as long as image sampling
satisfies the Nyquist–Shannon criteria, meaning that the
effective pixel size should be at least equivalent to the
FWHM.3 As shown in Figure 3, FF-SRM methods have
been constantly improved, generating a family of FF-SRM
tools that can achieve increased spatial resolution at the
nanoscopic scales.
All FF-SRMmethodsworkwith relatively similar funda-

mentals; they gather nanoscopic information through an
analysis of temporal fluorescence intermittency.21–27 Each
method has particular requirements for its image acquisi-
tion strategy, which include aspects of sample preparation
and imaging parameters employed such as the minimum
number of frames, optical and software parameters, and

image amplification, among others.1 Figure 3B and Table 1
summarise the strengths and weaknesses of the FF-SRM
methods described in this review.

2 STOCHASTIC OPTICAL
FLUCTUATION IMAGING (SOFI)

Published in 2009, SOFI was the first FF-SRM method21
and is considered the founder of this family. SOFI is
grounded on the analysis of the temporal dynamics of FFs
at nanoscopic scales. In this section, we will cover the
first and second SOFI implementations.21,30 To differenti-
ate one work from another, we will refer to them as classic
SOFI (cSOFI) and cross-cumulants SOFI (XC-SOFI).
cSOFI embraces the analysis of a temporal stack of

fluorescent images. It considers a fluorescence image as
a digitised collection of N emitters, located at rk posi-
tions (with k = 1, 2, . . . , N), with constant molecular
brightness. At each pixel, the fluorescence signal fluctu-
ates in a time-dependent manner, due to the fluorescence
intermittency of the emitters it harbours. Within a sin-
gle fluorescence image, each emitter is considered to be
convolved with the PSF of the optical system. Hence, a
cSOFI experiment encompasses the analysis of a temporal
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222 ALVA et al.

F IGURE 3 History and objective parameters related to FF based super resolution microscopy (FF-SRM) (A) Timeline of FF-SRM
methods release. The methods located on the central branch represent their first publication and implementation. A different colour is
assigned to each method and each branch from the original method contains the corresponding improved versions following the seeding
colour scheme. (B) Comparative scheme of the strengths and weaknesses of the discussed FF-SRMmethods. The radar charts compare the
most relevant experimental aspects to consider before FF-SRMmethod selection. Higher (outermost) values are better, with the exception of
spoke 3 (chart key provided in the lower-right corner). For example, DL-FFSRMmethods offer great resistance to image noise and
independence from blinking dynamics, at the cost of requiring a considerable amount of programming expertise. On the other hand, methods
such as entropy-based super-resolution imaging (ESI) and super-resolution radial fluctuations (SRRF) require a relatively small dataset to
operate but fall relatively short in terms of the highest resolution they can achieve. Abbreviations: cSOFI, classical stochastic optical
fluctuation imaging; XC-SOFI, cross-cumulants SOFI; bSOFI, balanced SOFI; PALM SOFI, photoactivation localisation microscopy SOFI; SI
SOFI, structured-illumination SOFI; DNA-PAINT SOFI, DNA-points accumulation for imaging in nanoscale topography SOFI; 3B, Bayesian
analysis of blinking and bleaching; FID3B, fluorescence intensity distribution; SIMBA, single molecule guided Bayesian localisation
microscopy; DLBI, deep learning guided Bayesian inference; BAMF: Bayesian multiple-emitter fitting; RFBA, radial fluctuation Bayesian
analysis; SCORE, spatial covariance reconstructive microscopy; MUSICAL, multiple signal classification algorithm; fFE-SIM, fast
fluctuation-enhanced structured illumination microscopy; eSRRF, enhanced SRRF; SPARCOM, sparsity-based super-resolution correlation
microscopy; LSPARCOM, learned SPARCOM; MSSR: mean-shift super resolution; DL-FFSRM, deep-learning based FF-SRM
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ALVA et al. 223

TABLE 1 Features of relevant fluorescence fluctuation-based super-resolution microscopy methods

Minimal
frames
required

Maximal
resolution
(nm)

Fluorophore
blinking

Susceptibility
to noise Availability

XC-SOFI 3000 50 High Medium Plugin for Igor Pro
3B 300 50 Medium Medium Plugin for ImageJ
ESI 100 ∼ 120 Medium Medium PLUGIN for ImageJ
SRRF 100 60 Low High Plugin for ImageJ
MUSICAL 50 50 High High PLUGIN for ImageJ
MSSR 30 40 Low Medium Plugin for ImageJ
LSPARCOM 25 once trained ∼ 40 Low Low Python

Abbreviations: XC-SOFI, cross-cumulants SOFI; 3B, Bayesian analysis of blinking and bleaching; ESI, Entropy-Based Super-Resolution Imaging; SRRF, Super-
ResolutionRadial Fulctuation;MUSICAL,multiple signal classification algorithm;MSSR,mean-shift super resolution; LSPARCOM, learned sparsity-based super-
resolution correlation microscopy.

sequence of images gathered from a static scene, in which
the FF contains nanoscopic information not available in
the spatial domain of a single diffraction-limited image
(Figure 4A).
An ideal sample for a cSOFI experiment is one for

which the fluorophores are spatio-temporally static (i.e.,
no sample drift) and FFs due to transition through excited
states are the main cause of change in the fluorescence
signal. The fluctuations from the background (pixel i)
are different from the FFs; hence, they can be separated
(Figure 4B). To separate the fluorescence from the back-
ground, cSOFI seeks temporal self-similarities of the signal
of each pixel with itself at a time τ, which is achieved
through computing the temporal autocorrelation func-
tion or related mathematical treatments.21 This is the
elemental form of cSOFI, which improves the resolution
by a factor of

√
2 and it is called second-order SOFI

(Figure 4C).
For further resolution enhancement, it is possible to

compute cSOFI of higher orders (𝑛 ≥ 3). This approach
does not auto-correlate the FF signal; instead, it computes
further statistical descriptors of the fluorescence dynam-
ics called temporal cumulants, which are similar to the
statistical moments.31 Higher-order auto-cumulant cSOFI
improves the resolution by a factor of

√
𝑛, where 𝑛 is

the order of cSOFI (Figure 4C). In theory, a fourth-order
cSOFI generates a two-fold improvement in resolution
(
√
4 = 2), and a 16th-order cSOFI can achieve a four-

fold resolution increase (
√
16 = 4). Irrespective of the

order of cSOFI used, it has been demonstrated that
the maximal experimental cSOFI resolution is ∼ 60 nm
(Figure 4D).21
The increase in resolution in cSOFI can be scored by

measuring the reduction of the PSF as a function of the
order of cSOFI. However, a limitation of cSOFI is that the
image pixel size is constant between the input diffraction-

limited dataset and the super-resolved image. This issue
imposes a boundary to the achievable resolution.30 If the
pixel size of the diffraction-limited dataset is oversampled
(greater than two pixels covering the full width of the
zeroest-order peak of the PSF), higher orders of cSOFI will
deliver images with enhanced spatial resolution. However,
if the pixel size of the diffraction-limited dataset is exactly
at the limit specified by the Nyquist–Shannon sampling
criterion or undersamples it (fewer than 2 pixels covering
the zeroest-order peak of the PSF), the gain of resolution
provided by higher orders of cSOFI will be nullified due to
the undersampling of higher spatial frequencies.
To generate a super-resolved image with a greater

number of smaller pixels, XC-SOFI replaces the
auto-cumulants approach and instead applies a cross-
cumulants analysis.30 This mathematical modelling
approach generates novel virtual pixels that increase
in number and reduce in dimension with the order of
XC-SOFI (Figure 4E). The amplification of the original
image generates a checkerboard effect. To circumvent
this problem, the fluorescence intensity assigned to each
virtual and original pixel is modulated by a distance factor.
At this point, a preliminary image of XC-SOFI has already
been generated. The XC-SOFI algorithm finalises with
a deconvolution step that balances the contrast of the
images, facilitating the observation of the gained spatial
frequencies.
In the Fourier space, the objective lens of a microscope

acts at a finite aperture that limits the spatial frequencies
of the diffraction-limited image. This can be represented
by the optical transfer function (OTF), which is itself the
Fourier transform of the PSF. The Abbe criterion and the
NA of the lens can be directed linked by the maximum
observable spatial frequency K0 = 2 NA/λem, which can be
conveniently represented by a circle of radiusK0 within the
real part of the OTF (also called the modulation transfer
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224 ALVA et al.

F IGURE 4 Classical stochastic optical fluctuation imaging (cSOFI) and cross-cumulants SOFI (XC-SOFI). (A) Original single emitter
positions (ground truth) and their respective diffraction-limited image sequence. (B) FF signal registered across time corresponding to pixels
(I − 1), (i) and (I + 1). (C) Super-resolved cSOFI of second and higher SOFI orders. (D) Resolution limit of cSOFI.21 (E) Generation of novel
pixels by the cumulants in XC-SOFI. (F) PSF in Fourier space (OTF) diffraction limited and extended by several SOFI orders. (G)
Super-resolved microtubules by second-order XC-SOFI. Image was reconstructed using XC-SOFI within Localizer, Igor Pro 8.0.4.44 Data
obtained from Sage et al.95 Scale bar: 5 μm
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ALVA et al. 225

function; Figure 4F, white dashed circles) and reviewed by
Vangindertael and colleagues.3,29,30,32
The deconvolution step used by XC-SOFI is a Wiener

deconvolution.30,33 Figure 4 shows themaximal spatial fre-
quency obtained after each order of XC-SOFI followed by
Wiener deconvolution. This strategy extends the K0 radius
by the SOFI order (K0 ∙ 𝑛). The resolution enhancement
of XC-SOFI is 𝑛 rather than

√
𝑛 as in cSOFI.29,30,32

cSOFI and XC-SOFI have shown capabilities for 3D
SRM by analyzing Z-stack datasets acquired on a wide-
field microscope.34 Moreover, XC-SOFI has also been used
for dual-colour SRM.35 SOFI has been used in several
biological models and the theory has been developed far
beyond the seminal publication of cSOFI and XC-SOFI. In
2012, the mathematical principle of XC-SOFI was restruc-
tured with special consideration of molecular brightness,
on-time ratio, and density of fluorophores; as a result,
balanced SOFI (bSOFI) was published.36
In 2014, bSOFI, was applied to images acquired by a

custom microscope capable of multi-channel and simul-
taneous multi-plane imaging of fixed 3D mitochondria
networks in C2C12 cells and live-cell imaging of HeLa
cells.37 A combination of PALM18 with bSOFI36 was
reported for the imaging of focal adhesion dynamics, and
by combining both methods on the same data, the authors
generated an improved SR image in comparison with each
super-resolution method applied independently.38
Meanwhile, in another merger of techniques at the

fluorophore level, the combination of bimolecular flu-
orescence complementation39 with the photoswitchable
fluorescent protein Dronpa resulted in a novel strategy
for determining protein–protein interactions in live cells,
with the application of XC-SOFI analysis to obtain the
nanoscopic position of the interacting proteins.40
SOFI does not demand the use of controllably blink-

ing fluorophores due to the analysis of FF over time.
Nonetheless, with better blinking kinetics, the more sig-
nificant improvement in resolution in the super-resolved
image.28,29
The number of frames required to reconstruct a super-

resolved image using SOFI depends on the SOFI variant,
and on the SNR and the desired SOFI order to be calcu-
lated, that is, 3000 to 5000 frames for the third order and
>10,000 frames for the fourth order. Like other SRMmeth-
ods, SOFI is not artefact-free and one should be cautious
when interpreting the super-resolved image. The math
behind second-order SOFI relies only on positive values,
while the third- or higher-order SOFI involves negative val-
ues that are prone to cause a type of artefact called ‘cusp’.41
It has been proposed to use statistical moments and local
dynamic range compression to mitigate cusp artefacts.42
Several software packages are available for a SOFI anal-

ysis. Localizer is an open-source software optimised with

the most recent version of XC-SOFI43; it is accessible as a
MATLAB script or a user-friendly plug-in for Igor pro.44
bSOFI can be executed as aMATLAB script36; and recently,
open-source Python implementations of SOFI have been
published (PySOFI).45 Formicroscopists interested in delv-
ing deeper into the principles and applications of SOFI, we
suggest reading a recent and exhaustive SOFI review.32

3 BAYESIAN ANALYSIS OF BLINKING
AND BLEACHING (3B)

3B estimates the position of the molecules using Bayesian
inference, factorial hidden Markov chains, and Markov
chain Monte Carlo (MCMC) sampling (Figure 5A).22
3B works with a high density of fluorophores, that is,
each frame can contain overlapping fluorophores, and
may require as few as 300 images to compute an SRM
image.22,46 For this reason, 3B can be used for both fixed or
live-cell imaging on wide-field images of samples express-
ing typical levels of fluorescent proteins, achieving a spatial
resolution of ∼ 50 nm.
In the 3B analysis, each fluorophore is modelled as a

Markov chain transiting between three possible states: S0,
S1 and S2 (Figure 5B). S0 and S1 are excited states. Emis-
sion of fluorescence takes place at the S0 state, whereas the
S1 state encompasses transition towards non-fluorescent
excited states such as the triplet state. The S2 state indicates
that the fluorophore has reached an irreversible dark state
(photobleached). The transition between states is charac-
terised by transition probabilities (Pn where n = 1, . . . , 6
as depicted in Figure 5B). Throughout the image acquisi-
tion, the fluorophores in S0 or S1 can persist in the same
state (P1 and P4, respectively), or switch between S0 and
S1 (P2 and P3). Fluorophores that have entered the S2 (P5),
cannot regress to S0 or S1 (P6). These transitions define the
transition probability matrix that is related to the temporal
stochasticity of fluorescence dynamics.
The 3B algorithm initialises by placing random seeds,

assuming that fluorophores have the same probability of
appearance over the entire region of analysis (Figure 5B).
In the following step, the model is computed for each
added fluorophore, F, and it is compared with the given
input data (stack of images), D. These seeds are removed or
added in such a way that the proposed model approaches
the input data (Figure 5C). A set of models are generated
with a different number of fluorophores to maximise the
probability of the model, compared to the input data.
In summary, the comparison is performed by adding

or removing fluorophores in the entire region, making
local decisions, and then the model is re-optimised until
the algorithm is stopped. Model convergence is said to be
achieved when there is no significant variance between
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226 ALVA et al.

F IGURE 5 Bayesian analysis of blinking and bleaching (3B) microscopy. (A) The input data are a diffraction-limited stack of
fluorescence images containing ensemble fluorophores undergoing a time-dependent blinking due to transitions towards excited (S0, S1) and
dark states (S1, S2). (B) First, the initial model of the emitters’ positions is created by placing random seeds over the analysed region, where
each seed represents a fluorophore. (C) For each seed placed in the model, the behaviour over time is sampled based on the transition matrix
and the initial probability as a Markov chain Monte Carlo sampling. Local decisions are made by adding and removing one fluorophore at a
time from the model. Using Bayesian Inference, the probability that the model with M fluorophores (FM) generates the diffraction-limited
data is computed. Finally, the SR image is created by accumulating the quantised positions of the probability map to the nearest pixel in the
high resolution density image, applying a blurring to each fluorophore. (D) The parallelised version of 3B allows for multi-core parallel
processing of subregions (or ‘patches’) of the input image stack, which aims for reduced computation times. (E) Super-resolved micrography
using the parallelised version of 3B49,52 of rotavirus viroplasm where the green and red channels correspond to the VP6 and NSP2 proteins,
respectively. Scale bars: 2 μm, insets: 1 μm

reconstructions of consecutive iterations (200 iterations
are recommended for model convergence).22 The recon-
structed super-resolution image is a probability map of the
position of the fluorophores, where the intensity of the pix-
els depends on the probability that a fluorophore is located
in the region of interest.
When the 3B analysis was released, the execution

required a sufficient level of programming skills; neverthe-
less, an Image-J plug-in was developed.22,47 Both the script
and the plug-in have the drawback of the high computa-
tion time required to analyse a set of images. The Image-J
plug-in still required 6 h to analyse a 1.5 × 1.5 μm area with
200 frames in the stack.22,47 Despite the extended com-
pute time, the Image-J plug-in is user friendly since it only
requires information about the FWHMassociated with the
PSF, the pixel size (in nm) and the initial number of seeds
(region of Interest [ROI] width per height/10), which is an
estimation of the number of emitters in the ROI.

Subsequent developments of 3B aimed to reduce the
computational cost by parallelising the analysiswithmeth-
ods such as cloud computing48 and cluster computing or in
a conventional personal computer (Figure 5D).49 Since the
computation time for 3B depends on the size of the images
to be analysed, one way to reduce the computational cost
was to divide the size of the images to be analysed by
regions of smaller size; in this way, each region is analysed
separately. In the end, the SR (super-resolution) image is
generated by stitching the results of each SR region. As this
process can result in artefacts in the SR image, a study of
the optimal overlap between the ROIs was carried out to
reduce these artefacts.49
A more recent development, Bayesian localisation

microscopy based on fluorescence intensity distribution
performs a statistical analysis to improve the accuracy of
the initial seeds of the emitters based on the pixel intensity,
reducing the computational time and improving the SR
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ALVA et al. 227

image.46 Later, Quick-3B was developed. It combines the
k-means clustering algorithm and a modified 3B analysis
with a limited forward algorithm, which accelerates com-
putation time 17-fold, compared to 3B.50 Also in this work,
single molecule-guided Bayesian localisation microscopy
(SIMBA) is presented as a way to reduce the discontinuous
structures that the 3B method creates as artefacts.50 How-
ever, SIMBA requires two types of emission fluorescent
signals, using an SMLM algorithm (PALM) as an initial
guide for the Bayesian analysis. Recently, Live-SIMBAwas
published, a plug-in for ImageJ based on SIMBA that does
not necessarily require a dual-channel dataset. It is charac-
terised by a computation time reduced thousands of times,
compared with 3B, and an acceleration 25-fold, compared
to SIMBA.51
In 2019, another variant of the original 3B algorithm (3B-

ODE: 3B-Ordinary Differential Equations) was presented
to improve the convergence of the model, and the accu-
racy for estimating the probability map of the fluorophore
positions.52 It consists in calculating the transition proba-
bilities between states by fitting the experimental datawith
ordinary differential equations. 3B-ODE models and fits
velocity constants for the electronic transition between on
and off state experienced by the fluorophores within the
diffraction-limited image stack.52 The Bayesian multiple-
emitter fitting (BAMF) is also based on a 3B algorithm,
which uses reversible jumpMCMCcombinedwithMCMC
sampling. The advantage of BAMF is that it incorporates
the photophysical information of the sample and the den-
sity of the emitters for the creation of the model as prior
information, allowing the adjustment of multiple emit-
ters and removing the heterogeneous background. This
method also provides the uncertainties in the number of
emitters and the locations of the most likely model.53
Finally, radial fluctuation Bayesian analysis is a pro-

posedmethod that uses light-sheetmicroscopywith Bessel
plane illumination for 3D SR imaging.54 For this, the initial
points of the 3B algorithm are calculated using super-
resolution radial fluctuations (SRRFs, see Section 5) and
the model optimisation is based on these same locations
generated by SRRF, reducing the computation time to half
of that required for 3B.
3B analysis is a powerful technique that can be used

for live-cell imaging of samples labelled with standard
fluorescent proteins. In a wide-field experiment, rela-
tively few frames (hundreds) are needed to reconstruct a
super-resolution image. It can accommodate overlapping
of fluorophores and achieves a resolution of ∼ 40 nm.52
All current 3B analysis implementations require program-
ming skills (except the ImageJ plug-in, canonical 3B
and Parallel3B) and, in some cases, are no longer being
maintained or there is no open-source implementation
available. Overall, the main drawback of the 3B analysis

is the high computation time. However, this problem has
been addressed by improvements or optimisations in the
algorithm or by adjusting the parameters such as the num-
ber of initial seeds or the transition matrix for a faster
model convergence.

4 ENTROPY-BASED
SUPER-RESOLUTION IMAGING (ESI)

At the time of the publication of ESI,23 improved ver-
sions of cSOFI and 3B had been published that solved
some problems from their original publications, like the
consideration of non-linear brightness, blinking of the flu-
orophores and the computational time to analyse the input
data.36,48
ESI was the first FF-SRM method that required only

100 frames collected in a fluorescent scene to reconstruct
a super-resolution image.23 This is achieved by analysing
FFs through the local information content, pixel-wise, of
the temporal dynamics of the fluorescences stored in the
image stack. The rationale of ESI is that, in a time-lapse
stack, each pixel harbours the intensity fluctuation of a
specific place in space. The information-based entropy
depends on the frequency of occurrence of fluorescence
events, and by doing so, a highly fluctuating source will
have high entropy, while a constant signal (such as a non-
blinking emitter) or a backgroundpixelwould be discarded
(Figure 6A). If a fluorophore is found in a pixel, its tem-
poral fluctuations will containmore information (entropy)
than the background due to the photon emission process.
ESI, like SOFI and its variants, uses a pixel-wise calcu-

lation to extract the temporal information, with the dif-
ference that it calculates the information-based entropy,23
instead of cumulants as in SOFI.21 While cumulants are
an alternative to moments of a distribution (fluorescence
intensities in this case), entropy measures the information
content of the fluorescence signal. This entropy is weighed
by the central moment (moments of the mean) of order
n in the pixel, meaning that the central moment of order
2 is the pixel variance. Also, it is important to note that
the second and third central moments are equal to the sec-
ond and third cumulants, respectively, although at higher
orders moments and cumulants generally differ.
A similarity between the ESI and SOFI is that ESI

generates virtual pixels by exploiting the cross-entropy of
neighbouring pixels (combined with higher-order
statistics),23 and XC-SOFI generates extra pixels by com-
puting the cross-cumulants of neighbouring pixels.30 Since
the cross-entropy is non-commutative, ESI calculates the
average of the two possible cross entropies between two
pixels. In the process of generating a new super-resolved
image, ESI creates a magnified grid of the original image
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228 ALVA et al.

F IGURE 6 ESI. (A) The input image stack consists of a set of fluctuating and non-fluctuating fluorophores. (B) The super-resolved ESI
image is created by interpolation of the purple pixels in between the corresponding original green pixels. The orange pixels in the new image
have a value that corresponds to the information content of the original image pixels (green), while the interpolating pixels (purple) consider
the information of their neighbors. This scheme represents a single iteration; more iterations can be performed by using several output ESI
images as new input. (C) The resulting image contains only the information of those emitters whose degree of variation (entropy) was high
enough for detection. (D) Super-resolved micrography of simulated microtubules.95 Example generated using the ESI plugin for ImageJ with
parameters: output images = 100, bins for entropy = 100, order = 1, multicore = enabled. Scale bars: 2 μm

by interpolating one pixel in between each original pixel
as shown in Figure 6B.
Regarding their ability to reduce the PSF width (mean-

ing enhancing resolution), while SOFI directly raises the
PSF to the order n of the cumulant (thus achieving
improvement of √n in resolution for cSOFI and of n for
bSOFI),21,36 ESI considers 2n while obtaining the higher-
order statistic of the pixels, and the authors show that ESI
improves the resolution by √(2n).
In ESI, the pixels in the new grid that correspond to

the original image (green) are assigned the value of their
entropy weighted by a higher-order statistical measure
selected by the user. This higher-order statistic is the cen-
tral moment of the mean, meaning that an order of n
= 2 will yield the variance at that specific pixel. For the
interpolated pixels, their new value is calculated from
the cross-entropy of the neighbouring pixels weighted
by the joint centralised moment of those same neigh-

bouring pixels. Following the example of XC-SOFI, this
cross-correlation betweenneighbouring pixels yields a true
signal in contrast to a typical interpolation on the final
image (Figure 6C,D)
ESI has been deployed as a plug-in for ImageJ, which

generates a 2X increase in spatial sampling per iteration
of the analysis.23 In this implementation, each new itera-
tion takes the ESI stack (output) and uses it as input, so
ESI will calculate the entropy and cross-entropy of this
new input data. No more than three iterations are recom-
mended due to the non-linear decrease in contrast, as well
as information loss by pixel size reduction.23 The plug-in
also requires the number of images in the output that will
define how the initial stack will be subdivided to generate
the SR images.
Overall, ESI is an FF-SRM approach that can work with

as few as 100 wide-field images to provide reconstruction
with narrower structures. The combination of orders and
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ALVA et al. 229

F IGURE 7 Super-resolution radial fluctuations. (A) Each image of the input sequence is (B) subpixel interpolated and on each of them a
radiality measure is performed. (C) A radiality map is generated on every image from the sequence and (D) they are correlated along time in
order to (e) form the reconstructed image. (F) Super-resolved images of Escherichia coli imaged on HILO microscopy, where the green and red
channels correspond to mClover3 and mRuby3, respectively. Reconstructions were generated with the NanoJ SRRF plugin of ImageJ /FIJI
with the parameters: Ring radius = 0.5, magnification = 10, axes in ring = 8. Scale bars: 350 nm

iterations remains user-dependent, which can be adjusted
for achieving noise suppression; however, there is always
the possibility that this suppression eliminates signals
from fluorophores. In addition, the iterative process itself
has a drawback since the plug-in is restricted to produce
only a two-fold increase in spatial sampling and analyses
only a fraction of the frames per iteration when more than
one image in the output is desired. Additional settings to
aid the reconstruction had included the use of chip-based
waveguides for alternative illumination set up.55

5 SUPER-RESOLUTION RADIAL
FLUCTUATION (SRRF)

SRRF was developed in 2016,24 and consists of two main
parts: a spatial analysis in which the algorithm generates a
radiality map per each raw image and a temporal analysis
of each radiality map by higher-order temporal statistics
to generate a single super-resolved image (Figure 7A–C).24
SRRF is capable of reconstructing an SRM imagewith only
100 frames, achieving lateral resolution of ∼ 60 nm on
TIRF, confocal laser scanning microscopy, wide-field and
traction force microscopy datasets.24,56,57

The spatial analysis of SRRF begins with the generation
of digital subpixels per each ‘real’ pixel of the raw image
sequence by a bicubic interpolation (Figure 7B). Next, each
subpixel is assigned a value according to the probability
that it has an emitting fluorophore. This value is generated
by radialitymaps (Figure 7C), whichmeasure the degree of
convergence of intensity gradient vectors on one subpixel
basis. If the subpixel has a fluorophore, the convergence
of the vectors will be higher than those coming from the
image background.
The radiality maps can achieve better results for the

SRM reconstruction by using a smaller ring radius and
more axes in the ring. On the SRRF ImageJ plug-in (NanoJ-
SRRF), the default ring radius is 0.5 pixels and the number
of axes is six. It is important to consider that modification
in these values will affect the computing time, the reso-
lution achieved and the propensity to generate artefacts
on the final SRM reconstruction.24,56 The maximal digi-
tal increase generated by SRRF (defined by the authors
as ‘magnification factor’) is 10x, and users can define it
according to their necessities.
Within a single radiality map, SRRF is capable of distin-

guishing two fluorophores separate by 0.7 the FWHM of
the PSF; however, the noise of the image can be interpreted
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230 ALVA et al.

as a fluorophore signal and generate artefacts. Temporal
analysis is needed to mitigate artefacts as the radiality
peak on the background subpixels will be uncorrelated
over time (Figure 7D). Like the other FF-SRM methods,
the temporal analysis is affected by the sample movement,
thus the NanoJ-SRRF plugin allows the application of a
drift correction table, defined by the user or calculated by
the algorithm.
SRRF encompasses any of four temporal analyses:

temporal radiality maximum (TRM), temporal radiality
average (TRA), temporal radiality pairwise product mean
(TRPPM) and temporal radiality auto-cumulant (TRAC).24
The temporal analysis method should be chosen depend-
ing on the acquired data; for example, TRA is recom-
mendedwith noisy images, andTRM is preferredwhen the
images contain constantly emitting sources. Either TRA or
TRM denoise the radiality map because they project the
maximum and average values from the stack of the radial-
ity maps. The TRPPM and TRAC orders 2, 3 and 4 (similar
to those used in cSOFI) are higher-order statistics methods
that improve contrast, fidelity and resolution on the SRM
image.24
SRRF has been extensively utilised in bioimaging

because it does not require the use of specific fluorophores,
buffers or microscopes, and it only needs 100 frames to
reconstruct a super-resolved image. It is compatible with
live-cell imaging since the use of high illumination power
is unnecessary, which diminishes phototoxicity on the
sample. SRRF has been used in combination with SIM
(fFE-SIM),58 stochastic optical reconstruction microscopy
(STORM),59 AiryScan (FEAST) and expansionmicroscopy
with Airyscan60 achieving resolutions of ∼ 32, ∼40 and
∼26 nm, respectively.
Unfortunately, SRRF is prone to generate artefacts on

noisy images and very high-density fluorophore samples,
and often over-narrows the structures on the image.32,61
Therefore, it is recommended to optimise the input param-
eters (especially ring radius, axes and temporal analysis)
with error mapping approaches.62
An improved version has been released named

enhanced SRRF (eSRRF),24,63 which improves the orig-
inal algorithm by changing three main aspects; the first
corresponds to the interpolation performed to generate
subpixels in eSRRF—this process is performed by Fourier
transform interpolation, which minimises the artefacts in
the final SR image. Second, the radiality maps are now
calculated by radial gradient convergence (RGC), which is
calculated by a weighted factor map based on the radius
(R-value) defined by the user and the intensity gradient of
each pixel on the original image. Finally, a new parameter
defined as sensitivity (S-value) is included that allows
better control of the PSF sharpening performed by the
RGC.

The eSRRF plug-in has become more user-friendly by
adding a parameter ‘sweep’ by which different values of
the radius and sensitivity are compared using the error
and mapping tool SQUIRREL, diminishing the probabil-
ity of generating artefacts by a non-optimised selection of
the algorithmic parameters. In general, low sensitivity and
radius values increase image fidelity; in contrast, the reso-
lution is increased with higher S-values at the cost of lower
image fidelity.
Currently, SRRF and eSRRF are available as ImageJ

/FIJI plug-in NanoJ SRRF and NanoJ eSRRF.24,63 In addi-
tion, SRRF has been deployed in python,59 with a decrease
of up to 78-fold for the processing time (compared with
the imageJ SRRF plug-in) by allowing parallel computing
supported by compute unified device architecture (CUDA;
code not available). SRRF can be performed in real-time
with parallel GPU (Graphics Processing Unit) computing
with SRRF-Stream and SRRF-Stream+, which are only
available for microscopes with specific Andor and Sona
cameras.

6 MULTIPLE SIGNAL
CLASSIFICATION (MUSIC) ALGORITHM
(MUSICAL)

Just a few months after SRRF was published back in
2016, the MUSICAL for FF-SRM was released, presented
as an ideal tool for live-cell nanoscopy due to the min-
imum dataset size requirement: as few as 50 frames
(Figure 8A) can provide a resolution enhancement, achiev-
ing ∼50 nm in live-cell experiments. Because of the low
number of frames required, MUSICAL can reconstruct
super-resolved images at a temporal spacing of less than
50 ms (with a maximum frame rate of 1000 fps) and rep-
resents a powerful option to study fast biological processes
with nanoscopic resolution.25
Based on the MUSIC approach,64 MUSICAL relies on

the singular value decomposition (SVD) principle. Briefly,
SVD highlights the most prominent sources of variation
within a system or a set of measurements by project-
ing the data onto a feature space.65 Unlike MUSIC,
MUSICAL overcomes the need for impractically large
datasets by applying a sliding soft window in which
the MUSIC algorithm is implemented (Figure 8B). Given
that the number of images required by MUSIC scales
proportionally to the number of contrast sources (fluo-
rophores) that are present, this sliding window feature
restrains computational demands while providing accu-
rate signal reconstructions in terms of resolution and
image quality.25
First, once the sliding window function is defined

and the image patches are created (Figure 8A), MUSIC
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ALVA et al. 231

F IGURE 8 Multiple signal classification algorithm. (A) For every pixel of the input image stack, a spatial window with a size that is
approximate to the full width at half maximum the microscope’s PSF (in pixels) is considered. This window is then scanned across the whole
image. (B) This generates multiple temporal image ‘patches’, over each of which singular value decomposition is performed and the
eigenimages that represent the distribution of fluorophores for each of these regions are calculated. Then, based on the signal and noise
boundaries established for each image patch, structural information is recovered. Each pixel is then divided into a subpixel grid and the
coordinates of the emitters are estimated. (C) Finally, all the subpixel multiple signal classification (MUSIC) patches are stitched together and
the super-resolved image is formed. (D) Super-resolved image of a synthetic nanoscopic structure with simulated blinking fluorophores
placed along each ring25. Example generated using the MusiJ plugin for ImageJ with parameters: emission = 510 nm, numerical aperture =
1.49, magnification = 1, pixel size = 65 nm, threshold = −0.5, alpha = 2, subpixels per pixel = 5. Scale bars: 500 nm

calculates their eigenimages and their corresponding
eigenvalues in order to recover the most prominent fea-
tures of the sample by identifying the contrast sources
within the signal (fluorescence; Figure 8B). Eigenimages
are a collection of images that, summed together using
their eigenvalue as weights, can be used to obtain the input
image.66–68 The SVD principle also helps to suppress noise
by filtering out those eigenimages with lower eigenval-
ues, for which a user-defined threshold is used. Small (or
near-zero) eigenvalues are typically linked to a poor image
signal and high noise. MUSICAL relies on the decompo-
sition of the observation space (in this case, an image)
into a source/signal (range) subspace and noise (null)
subspace. This information helps the algorithm establish
the boundaries of what is signal and what is background
noise.
Next, structural information provided by MUSIC is

enriched with prior knowledge of the PSF of the optical
system, which provides regions of the likely position of the
emitters by computing their projection in both the range
andnull The algorithmdetermines if the PSF is statistically

represented by each subspace by analyzing their corre-
sponding eigenvalues. To improve the estimation of the
emitter location when the PSF calibration accuracy is low,
a parameter alpha is used to narrow down the expected
spread of the emitter. Typically, this parameter is chosen
to be alpha ≥ 2. Finally, using the user-defined parame-
ter sigma_0, which serves as a threshold for the singular
values of each eigenimage, the pixels in the image that cor-
respond to the signal (range subspace) are separated from
those that correspond to background noise (null subspace;
Figure 8B). This last step generates the super-resolved
patches that are then stitched together to reconstruct the
entire image (Figure 8C). An example of the processing of
MUSICAL over simulated data is presented in Figure 8D.
Worthmentioning is that this patch (or subregion) anal-

ysis is different from that carried out by the parallelised
version of 3B, which physically assigns each data patch
to a specific core of the CPU (Central Processing Unit)
(Figure 5D) for parallel processing, with the only aim
to reduce the processing time. For the case of MUSI-
CAL, the use of patch-level analysis impacts directly the
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232 ALVA et al.

quality of the reconstruction since the MUSIC approach
performs differently as a function of image size and emitter
density.
MUSICAL does not require special blinking-inducing

photochemical treatment. It also performs relatively well
in high-density fluorophore conditions.25,69 Unlike other
methods such as STORM, which rely on long dark flu-
orophore states, MUSICAL performs well in both long-
and short-term dark state conditions. Additionally, despite
blinking behaviour, the sliding window feature of MUSI-
CAL allows the faithful reconstruction of the nanoscopic
structures within the sample while maintaining the
required dataset size small enough (a minimum of ∼50
frames).25 This facilitates the study of dynamic biological
phenomena. Although less computationally demanding,
MUSICAL performs poorly as the SNR diminishes.70 This
condition becomes inconvenient in reduced light level
experiments andmakes thismethod prone to noise-related
artefact generation. Also on MUSICAL, both reconstruc-
tion ability and precision decrease proportionally with
the sample brightness, which means that a poor photon
emission will likely lead to false negatives in the result-
ingMUSICAL super-resolution image. Increasing the laser
power may help but it can lead to bleaching and photo-
toxicity. It is worth mentioning that MUSICAL requires
a relatively accurate prior knowledge of the PSF of the
microscope, which may otherwise lead to mild artefact
generation. However, it behaves somewhat flexibly with
respect to the estimation due to the alpha parameter men-
tioned above. The MUSICAL ImageJ plug-in includes an
automatic PSF estimation tool based on optical parameters
(emission wavelength, NA, magnification and pixel size;
code available at https://github.com/sebsacuna/MusiJ).
Similar to MUSICAL, another SRM method that pro-

vides resolution enhancement based on eigenimages
calculation is SCORE (spatial covariance reconstructive
microscopy).71 This method relies only on the information
related to the range subspace, which limits its ability to
reduce background-induced artefacts. Also, SCORE lacks
a sliding window function, which, in combination with
a cost-minimisation iteration-like procedure, makes it a
more computationally demanding method.
Overall,MUSICALoffers comparable and often superior

results against most previously reported SRM methods,
increasing resolution to below 50 nm. It performs com-
petitively in a variety of experimental scenarios (such as
fixed or live-cell imaging and 3D nanoscopy) and also
in terms of complexity, dataset size, computational times
and highest resolution attainable. Its ability to recon-
struct a super-resolved image from a dataset of as small
as ∼ 50 frames makes it a favoured choice for live-cell
nanoscopy. It is currently implemented in the MATLAB
and FIJI/ImageJ platforms and does not require spe-

cialised instrumentation or complex sample treatment.72
However, reconstruction quality is severely affected by
factors related to the overall quality of the signal, which
includes fluorophore brightness, blinking dynamics and
SNR.

7 MEAN-SHIFT SUPER-RESOLUTION
(MSSR) MICROSCOPY

The MSSR microscopy approach can obtain a super-
resolved image from a single diffraction-limited image,
achieving a resolution improvement of about a half (up to
∼140 nm; Figure 9A).26 MSSR is based on an idea similar to
the radiality maps in SRRF. In addition, MSSR can be used
as an FF-SRM method by incorporating a temporal analy-
sis, providing further spatial resolution enhancement and
allowing the reliable discrimination of neighbouring emit-
ters separated by 40 nm, by means of analyzing fewer than
30 frames (Figure 9B).
MSSRanalysis shows striking denoising capabilities that

outperformother FF-SRMapproaches, allowing the robust
scrutiny of nanoscopic scales in a wide range of signal-to-
noise ratio (SNR) conditions.26 MSSR is relatively robust
in processing low- or high-density fluorophore images and
achieves comparable results in processing images collected
with either CCD (Charge-Coupled Device), sCMOS (sci-
entific Complementary Metal-Oxide-Semiconductor) or
photomultiplier-based laser scanning technologies.
MSSR is based on MeanShift (MS) theory, which esti-

mates local similarity properties between a central point
and its neighbors.73,74 MS is a vector that lies in the second-
order derivative space related to the data points and always
points to the direction of the maximum local density of
information. MS was conceptualised to iteratively climb
through data points until reaching local density modes
(stationary points for the iterative procedure) in the data
space.75,76 Most MS applications are distinguished by two
main features: the search type for local density modes
and the application of iterative procedures to find these
modes.76–79 These two features define the classical iterative
procedure of MS. However, unlike the classical iterative
procedure of MS, MSSR does not search modes along the
data space and computes only the first MS value; this
means that MSSR does not require MS iterations on its
calculations.26
The single-frame MSSR analysis (sf-MSSRn; Figure 9A)

is based on local kernel density estimation; hence,
both spatial and range parameters are required.26 The
spatial parameter is calculated from the optical properties
of the imaging system and fluorophore features, namely,
the pixel size of the diffraction-limited image, the NA
of the imaging lens and the emission wavelength of the
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F IGURE 9 Mean-shift super resolution (MSSR) microscopy. (A) Single-frame MSSR (sf-MSSRn) of a given order n reduces emitter width
resulting in a super-resolved image. This can be applied to either each image of a diffraction-limited stack or to its average projection. (B) In
MSSR temporal analysis (t-MSSRn) the super-resolved stack is obtained (a common step in both processing modalities) and then a given
pixel-wise temporal function is used to generate the reconstruction. (C) sf-MSSRn (i and ii) and t-MSSRn (iii) result from MSSR applied on a
simulated microtubules dataset.96 Example generated using the MSSR plugin for ImageJ with parameters: Amp = 5, FWHM = 2, order = 1,
interpolation = bicubic, meshing minimisation = enabled, temporal analysis = variance. Scale bars: 1 μm

fluorophore. The range parameter is defined automati-
cally by the maximum difference of intensities in each
neighbourhood that slides over the image.
MSSR offers the ability to select an iterative approach

that provides higher spatial resolution (MSSRn).26 The
authors refer to this as MSSR order, denoted by n. MSSR
zero order (n = 0) is constituted by the computation of
MS, reducing the FWHMof isolated emitters by about half.
MSSR of higher orders (integer n > 0) is performed as
an iterative procedure that applies basic algebraic func-
tions, such as subtraction,multiplication, complement and
normalisation, on consecutive resulting images, which
reduces even further the FWHM of emitters. MSSR pro-
vides a further improvement in resolution as the order
increases.

The sf-MSSRn resolution limit is reduced to 0.64 times
the FWHM, and emitters at a smaller distance cannot be
distinguished by sf-MSSR analysis (for comparison, SRRF
radiality map analysis provides an improvement in the res-
olution equivalent to 0.7 times the FWHM). In general,
higher-orderMSSR analysis preserves the highest intensity
of the original image but decreases the lower intensities
progressively. For this reason, it is suitable to remove noise
but harmful to the quality of the reconstructed image.
Authors recommend using MSSR orders no greater than
3.
The MSSR temporal analysis (t-MSSRn) integrates all

the information over the sf-MSSRn super-resolved stack by
applying a pixel-wise temporal function (PTF; Figure 9B).
Each type of PTF has advantages depending on the nature
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of the fluorescence dynamics of the image stack to be pro-
cessed. The t-MSSRn analysis achieves a higher resolution
corresponding to 0.21 times the FWHM.
Since MSSR is not limited by detector architecture and

can process both single images and image stacks, there are
several scenarios of fluorescence microscopy and bioimag-
ing where MSSR offers good performance (Figure 9C).
Among other microscopy fields, sf-MSSRn is feasible in
single-particle tracking or fixed-cell imaging microscopy,
processing either a single image or each plane of a Z-stack
to obtain a 3D reconstruction. Given that sf-MSSRn has the
property to operate over a single image, it is easily com-
binable with all FF-SRM methods previously described
to increase resolution on super-resolved images. On the
other hand, t-MSSRn is suitable for temporal multi-frame
analysis on fixed cells. In addition to the above, MSSR
is compatible with other SRM techniques, such as SIM,
STED, SOFI, 3B-ODE, ESI, MUSICAL and SRRF, allow-
ing a further resolution enhancement when applied to
their super-resolved images. This algorithm is available as
a user-friendly Fiji/ImageJ plug-in.26

8 MACHINE LEARNING-BASED
FF-SRM TECHNIQUES

Deep learning encompasses a subset of machine learning
algorithms, based on neural networks, which has gained
popularity in recent years due to its great performance
in different tasks such as segmentation,80 denoising,81
and SRM.27,82–85 In supervised deep learning, a training
dataset, consisting of the input image and the expected
result (ground truth), is used to tune the weights of
a neural network. In the case of FF-SRM, the training
dataset encompasses a collection of image pairs, consist-
ing of a low-resolution (diffraction-limited) image, and its
corresponding SR image (the ground truth; Figure 10).
These approaches require a large number of images

as training examples. For instance, deep learning-
guided Bayesian inference (DLBI) is trained with 12,000
examples,27 Deep-Storm with 10,000 examples,82 and
single-frame super-resolution microscopy (SFSRM) with
1000 examples.84 Such a large amount of training data
is not always available to generate a good deep learning
model, and there is not a general rule to decide the
minimum number of images sufficient for the training.
DLBI27 is an algorithm that predicts an SRM image from

a time series of high-density fluorescent images. In the first
step, the time series images are transformed into an SRM
image using a deep learning architecture called genera-
tive adversarial network (GAN).86 The GAN is trained to
simulate diffraction-limited stacks from a high-resolution
image (12,000 images collected from Laplace-filtered natu-

ral images and sketches). Therefore, to simulate the train-
ing dataset, DLBI encompasses an algorithm that, given
a high-resolution image, simulates the corresponding flu-
orescent time-series images by means of using a Markov
model that switches between emitting, not emitting and
bleached states.
The algorithm takes into account expected photophysi-

cal properties of the emitters, such as switching probability
between bright and dark excited states, aswell as the PSF of
the imaging system, in order to generate diffraction-limited
images very similar to those from microscope acquisi-
tions. In a second step, the high-resolution image predicted
by the GAN is used to generate a set of possible flu-
orophore localisation. Bayesian inference with the time
series images is used to discard a given localisation that
is not well-represented in the input dataset following a
similar approach of 3B analysis.22
An advantage of DLBI, compared to 3B analysis, is that it

reduces the computational time up to 100-fold and gener-
ates comparable quality SRM images, scored by using the
metrics of peak SNR, structural similarity and SQUIRREL
analysis.62 Even though DLBI has advantages over 3B and
the results look promising for a wide range of datasets, its
widespread usage as FF-SRMmethod is limited since there
is not an easy-to-use distribution/program. The authors
released a GitHub repository (https://github.com/liyu95/
DLBI); however, its use requires advanced programming
skills.
Sparsity-based super-resolution correlation microscopy

(SPARCOM) is an FF-SRM method that analyses a tem-
poral sequence of diffraction-limited images to model the
behaviour of the temporal fluctuation of the fluorescence
emitter, which creates an SRM image.69 SPARCOM is
based on the theory of SMLM and aims to recover the
position of the emitters in a finer grid. Using prior infor-
mation about the PSF of the imaging system, SPARCOM
formulates a multiple measurement vector (MMV) model
to recover the position of the emitters and place its esti-
mated variance value at the position.87 In SPARCOM, the
MMV model includes the use of a covariance matrix for
the optimisation of N4 variables (unknowns). Taking into
account the prior knowledge that emitters blink over time
are uncorrelated over time and are sparse in the spatial
domain, the number of unknown variables for the model
is reduced to N2, and these can be found using an iterative
shrinkage-thresholding algorithm (ISTA).88
SPARCOM can achieve a spatial resolution of ∼ 40 nm

(similar to PALM and STORM) but through the analysis
of only 50 frames. A disadvantage is the requirement of
prior knowledge of the PSF and the need for the regu-
larisation parameter ISTA (determined heuristically). The
learned SPARCOM (LSPARCOM) approach encompasses
an iterative algorithm that uses deep learning to predict
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F IGURE 10 Deep-learning super-resolution. Most deep learning algorithms require training in the form of thousands of
diffraction-limited images and their corresponding expected results of enhanced resolution and contrast. These image pairs are commonly
simulated but can also be acquired in a real optical system and super-resolved with other SRMmethods prior to training of the deep learning
network. The demand of impractically large training datasets by deep learning approaches is compensated in the form of greatly improved
computation times and almost parameter-free operation. However, caution must be taken as reconstruction quality is highly dependent on
training fitness

super-resolution images without the need of making any
assumption about the PSF of the imaging system.83 It
does not require fine-tuning of the optimisation param-
eters, as with SPARCOM, and produces similar or better
SRM images than SPARCOM using the SNRmetric and by
subjective visual comparison.
With LSPARCOM, the PSF and the regularisation

parameter are learned from training data using a neu-
ral network approach (deep learning unfolding).89 The
training dataset is generated by setting the position of the
emitters (ground-truth SRM image) from simulated bio-
logical microtubules or tubulins and then simulating the
diffraction-limited images using microscopy parameters
such as sample thickness, random activation, laser power,
lifetime of fluorophores, noise, PSF size, amongst others,
in order to generate diffraction-limited images very sim-
ilar to those from microscope acquisitions. The training
dataset allows LSPARCOM to map simulated diffraction-
limited images to SRM images since simulated images are
similar to experimental images. Furthermore, it also allows
the mapping of experimental diffraction-limited images to
the SRM reconstruction.

LSPARCOM generates SRM reconstructions simi-
lar to SPARCOM with a five-fold computational time
improvement.83 In addition, LSPARCOM can generate
good quality SRM images with as few as 25 images. A
disadvantage of the LSPARCOM approach is the require-
ment to test low-resolution images to have a similar or not
significantly different PSF to the images in the training
dataset. If this is not the case, it can produce artefacts
such as lines reconstructed as chains or intersection areas
reconstructed as arcs. Similarly, LSPARCOM is sensitive to
the pixel size of the simulated diffraction-limited images
used during training (a pixel size of 100 nm was used dur-
ing training). If a significantly greater or lesser pixel size
is used during the acquisition of the diffraction-limited
image, it can generate inaccurate SRM images. Therefore,
in order to have good quality results on a dataset with
different PSF or different pixel size than 100 nm, LSPAR-
COM must be retrained, which as stated previously is not
an easy task. The authors provide a link to the full code
and a graphic user interface.
Recently, a novel algorithm based on deep learning,

SFSRM84 has been shown to achieve ∼20-nm spatial
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resolution (a 10-fold resolution improvement, compared
to diffraction-limited images). SFSRM uses two deep neu-
ral networks to obtain the SRM reconstruction. The first
deep learning network, the signal-enhancement network
(SEN) receives as input the diffraction-limited image
(low-SNR) and generates an image with high-SNR (noise
reduced) while maintaining the same resolution. The
second deep learning network, super-resolution network
(SRN) receives as input the high-SNR image and generates
the SRM image. The training dataset for the SEN network
(low-SNR and high-SNR) is obtained from fixed cells at
different illumination intensities and fromdifferentmicro-
scopes (epifluorescence, TIRF, HILO [Highly inclined and
laminated optical sheet] and confocal). This approach
allows the network to reduce the noise in different
microscopy techniques. The SRN network is then trained
using simulated low-resolution images (100-nm pixel size)
with their corresponding 10X high-resolution image (10-
nm pixel size) and experimental diffraction-limited wide-
field images with their high-resolution images, which are
reconstructed using STORM.15
The main feature of SFSRM is achieving ∼ 20 nm of

resolution with a single diffraction-limited image. SFSRM
was used to visualise cargo transport dynamics in a dense
microtubule network. The highest resolution reached by
SFSRM is limited by the resolution from the training SR
images (obtained with STORM); hence, the resolution can
be increased if SRM with higher resolution is used for
the training (e.g., MINFLUX microscope). The main dis-
advantage is that the SFSRM depends on the patterns
observed during the training dataset. Therefore, it can
produce erroneous SRM reconstructions for input images
with different topological structures than those used in the
training set (necessitating the retraining of the SFSRMnet-
work). Currently, there is no source code available to test
SFSRM.
In summary, deep learning-based algorithms are a

powerful approach to obtain SR images since they are
outperforming non-machine learning-based approaches
in terms of computational time in generating an SR
image, requiring fewer images to produce comparable SR
images in terms of the resolution to non-machine-learning
approaches, and even reaching resolutions of ∼ 20 nm
within a single diffraction-limited image. However, their
utilisation is limited to a community with knowledge in
machine learning due to the difficulty of optimising the
parameters of the network, programming skills, a large
number of training examples and high-computational
resources (access to GPU). There have been efforts tomake
deep learning algorithms available to novice users,90–92 for
instance using ZeroCostDL4ML that provides easy-to-use
JupyterNotebooks for the training of deep neural networks
in different tasks such as segmentation, denoising, object

detection, super-resolution and so forth. However, the only
available method for super-resolution is Deep-STORM.82
The research communitymust continue this effort tomake
the algorithms easily available and user-friendly since typ-
ically the end-user does not have experience in machine
learning to train or use deep learning networks.

9 SOFTWARE AVAILABILITY AND
HOWTO CHOOSE THEM

Most of the methods presented in this work are imple-
mented as free and open access software; however, their
execution may require the use of multiple platforms such
as Matlab, python, R, FIJI Plug-in, amongst others.21–27
Due to the constant improvement in computing, mem-
ory and storage capacity, most modern computers meet
the requirements to use the SRM software developed so
far; however, a GPU is recommended to deploy its full
potential, speeding up the data processing for certain
software.
There is a wide range of bioimaging and fluorescence

microscopy applications in which FF-SRM methods can
be used such as immunofluorescence of fixed cells, live-
cell imaging using organic dyes, fluorescent proteins or
quantum dots, single-particle tracking, colocalisation, 3D
imaging and so forth.21–27 In the context of SRM, when it
comes to choosing new approaches to analyse data, the
highest attainable resolution and the number of images
required to achieve such a goal are two closely related
parameters that often lead to the selection of an approach
over another.
Moreover, the nature of the input data themselves must

be thrown into the equation to obtain the best results based
on the available experimental conditions and resources.
Methods such as SRRF, MUSICAL and MSSR are largely
independent of fluorophore blinking dynamics and oper-
ate with relatively small dataset sizes, which makes these
methods suitable for live-cell imaging.24–26 On the other
hand, software availability and ease of installation are fac-
tors that might ultimately define the course of action.
While most SRM approaches are implemented onmany of
the most popular image analysis platforms, others might
not be so readily reachable. Figure 3B and Table 1 show
how all of the above-mentioned aspects compare among
the SRMmethods discussed in this review, according to the
experience of each author; therefore, we recommend iden-
tifying cases in which a particular FF-SRM method has
been used with similar purposes and experimental setups.
No matter which FF-SRM method is chosen, we rec-

ommend characterising the fidelity of the SRM recon-
struction with error mapping software like SQUIRREL62
or HAWKMAN.93 Computing global resolution indexes

 13652818, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13135 by T
est, W

iley O
nline L

ibrary on [08/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ALVA et al. 237

like resolution-scaled Pearson, resolution-scaled error62 or
Fourier ring correlation94 are recommended to identify
possible artefacts from loss of signal. With these metrics,
a fair and systematic comparison between the FF-SRM
methods can be achieved and misinterpretation of the
results or inappropriate implementation of the software
can be diminished.

10 CONCLUDING REMARKS AND
PERSPECTIVES

The development of FF-SRM methods has facilitated
the temporally resolved study of biology at the spatial
nanoscale. Input images for most of these methods can be
generated using microscopy platforms of general access,
common fluorophores and simple sample preparation,
making them suitable for use in most life science laborato-
ries. That being said, it is nonetheless crucial to understand
the basic concepts of these techniques and how each
parameter will affect the final SRM reconstruction before
choosing a particular FF-SRMmethod.
No FF-SRM technique is universally favoured in all

experimental scenarios. As is so often the case with
microscopy, high performance of a particular technique
by one criterion (i.e., highest resolution possible) may
come at the expense of poorer performance in others
(i.e., susceptibility for generating artefacts, slow compu-
tational performance). While we have striven to indicate
the general performance (and trade-off) characteristics of
the different approaches, there will always be scenarios
in which any single algorithm may unexpectedly outper-
form another. This may be due to any combination of
factors such as a previously untried application case and
the shifting nature of bottle-necks due to technological
advancement over time. Due to the extensive circumstan-
tial variables at play in each set of experiments, local factors
will demand a degree of commitment to an empirical
approach when choosing an FF-SRM technique for any
given analysis task.
In this regard, the diverse range of options for FF-SRM

mirrors the situation in the early (and still ongoing) years
of the development of algorithms and implementations for
SMLM image generation. A surge in interest in SMLM
led to a rapid expansion of mathematical approaches for
localising single-molecule intensity fluctuations in tempo-
ral image series. Guidance for determining the strengths
and weaknesses of the SMLM approaches advanced once
canonical test data, simulated and real, were made avail-
able to the community and controlled criteria for assessing
performance were applied in ‘challenges’. Most notably,
the single-molecule localisation challenge95 is available
at https://srm.epfl.ch/. This ‘challenge’ approach has also

been adopted in the 3D deconvolution microscopy chal-
lenge at http://bigwww.epfl.ch/deconvolution/challenge/
index.html.
An equivalent ‘challenge’ for FF-SRM is yet to be devised

and is complicated by the wide flexibility and applicabil-
ity of FF-SRM techniques to a diverse range of microscopy
modalities and experimental designs. A considerable task
for setting up this endeavour will be to assemble a canon-
ical dataset and universal performance criteria that will
fairly and rigorously test the relative performance among
the growing FF-SRM family members. The value of such
a ‘challenge’ is nevertheless unquestionable, in terms of
time saved and errors avoided, for current and future
researchers who seek to unlock the power of imaging to
examine the most fundamental questions of biology at the
highest spatial and temporal scales possible.
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