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Somatic variation in normal tissues: friend or foe of cancer early detection?
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Background: Seemingly normal tissues progressively become populated by mutant clones over time. Most of these
clones bear mutations in well-known cancer genes but only rarely do they transform into cancer. This poses
questions on what triggers cancer initiation and what implications somatic variation has for cancer early detection.
Design: We analyzed recent mutational screens of healthy and cancer-free diseased tissues to compare somatic drivers
and the causes of somatic variation across tissues. We then reviewed the mechanisms of clonal expansion and their
relationships with age and diseases other than cancer. We finally discussed the relevance of somatic variation for
cancer initiation and how it can help or hinder cancer detection and prevention.
Results: The extent of somatic variation is highly variable across tissues and depends on intrinsic features, such as tissue
architecture and turnover, as well as the exposure to endogenous and exogenous insults. Most somatic mutations
driving clonal expansion are tissue-specific and inactivate tumor suppressor genes involved in chromatin
modification and cell growth signaling. Some of these genes are more frequently mutated in normal tissues than
cancer, indicating a context-dependent cancer-promoting or -protective role. Mutant clones can persist over a long
time or disappear rapidly, suggesting that their fitness depends on the dynamic equilibrium with the environment.
The disruption of this equilibrium is likely responsible for their transformation into malignant clones and knowing
what triggers this process is key for cancer prevention and early detection. Somatic variation should be considered
in liquid biopsy, where it may contribute cancer-independent mutations, and in the identification of cancer drivers,
since not all mutated genes favoring clonal expansion also drive tumorigenesis.
Conclusion: Somatic variation and the factors governing homeostasis of normal tissues should be taken into account
when devising strategies for cancer prevention and early detection.
Key words: somatic evolution, driver gene, clone selection, healthy tissues, cancer initiation, cancer early detection
INTRODUCTION

Cancer has long been referred to as a disease of the
genome because of the pivotal role played by genetic al-
terations in driving its initiation and progression.1 Only
recently, however, cancer mutational screens have revealed
the extent of cancer genomic modifications that often
accumulate over several years.2,3 These studies have greatly
expanded our knowledge on the genetic basis of cancer. The
analysis of thousands of cancer exomes and genomes has
led to the identification of >3000 putative driver genes.4

Almost 600 of these genes have experimental
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confirmation of their cancer role, while the rest are pre-
dictions of statistical approaches that measure the evolu-
tionary forces acting on mutant genes or the effect and
properties of their alterations.5,6 With only a few notable
exceptions, the vast majority of known or predicted cancer
drivers promote cancer only in specific tissues.4 Moreover,
the majority of cancer genomes bear mutations in more
than one driver, supporting early theoretical work on the
need of multiple hits to initiate tumorigenesis.7

In addition to identifying the driver events, cancer
mutational screens have been used to infer the mutational
processes active in cancer cells and formulate models of
cancer evolution. Phylogenetic trees based on alteration
clonality8 enable reconstruction of the evolutionary paths
of individual cancer samples from the seeding cell to the
time of sequencing. These can then be used to interpret and
predict future evolutionary trajectories, including response
to therapy.9 Knowing the genome sequence of fully fledged
tumors, however, does not inform on events predating
cancer transformation. In fact, it tells very little about the
early phases of tumor formation, namely the events and
https://doi.org/10.1016/j.annonc.2022.09.156 1239
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Figure 1. Approaches to detect and analyze somatic mutations in normal tissues. DNA extracted from (A) macro- or (B) micro-dissected tissues, with or without
subsequent targeted bulk resequencing, (C) ex vivo clonal expansion of isolated cells, and (D) single-cell sorting is sequenced using next-generation sequencing
approaches that allow high-throughput detection of somatic mutations that can then be used to identify the drivers of clonal expansion, the mutational processes
causing them, and to trace tissue evolution (E).
CNVs, copy number variants; SNVs, single-nucleotide variants; SVs, structural variants.
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conditions that promote transformation of normal cells into
cancer cells.

One of the main challenges in detecting pre-cancer mu-
tations is that, before the clonal expansion associated with
cancer, they hit only a small fraction of cells. These mutations
are therefore diluted within the tissue and their frequency is
usually below the detection power of conventional
sequencing methods. Until the advent of high-throughput
sequencing technology, only a few somatic alterations
occurring in apparently normal tissues were documented.
Among these were the inactivation of cytochrome c oxidase
and TP53 in colon and skin detected through immunostain-
ing or conventional Sanger sequencing.10-13 However, the
extent of somatic variation occurring in the human genome
has started to be fully appreciated only recently.14,15 High-
throughput sequencing coupled with bioinformatic analysis
has finally enabled quantification of low-frequency alter-
ations occurring in phenotypically normal tissues.

In this review, we summarize the results of mutational
screens in non-cancer tissues, focusing on what they have
revealed about the origin of somatic mutations and their
impact on tissue homeostasis and disease. We then discuss
the relevance of somatic variation for cancer initiation and
how it can help or hinder strategies to improve cancer
detection and prevention.

THE MUTATIONAL LANDSCAPE OF HISTOLOGICALLY
NORMAL TISSUES

Recent advances in DNA sequencing technologies and
computational approaches for data analysis have enabled
1240 https://doi.org/10.1016/j.annonc.2022.09.156
detection of somatic mutations occurring in only a few cells
within adult tissues. DNA extracted from macro-dissected
tissue slides (Figure 1A), microscopically identifiable clonal
structures (Figure 1B), clones expanded ex vivo (Figure 1C),
or single-cell populations (Figure 1D) can be sequenced at
high depth to identify rare alterations. The resulting
repertoire of somatic mutations can then be used to
quantify the selective pressure driving clonal expansion,
identify the underlying mutagenic processes, and rebuild
tissue somatic evolution in time and space (Figure 1E).
Although enabling detection of rare mutations, all these
approaches have limitations (Supplementary Table S1,
available at https://doi.org/10.1016/j.annonc.2022.09.156),
which should be considered when interpreting the results.

During life, the homeostasis of most tissues is preserved
through the asymmetric divisions of adult stem cells, which
enable the maintenance of a stem cell pool while sustaining
tissue renewal through the progressive differentiation of
progenitor cells (Figure 2A). The acquisition of somatic al-
terations in the genome of stem or progenitor cells may
result in their increased fitness that fuels the clonal
expansion of their progenies, which eventually populate
part of the tissue (Figure 2B).

Somatic variation has shown recurrent features across
the tissues sequenced so far. For example, the mutational
load as well as the number and size of mutant clones in-
crease with age, in the presence of inflammatory conditions
and upon exposure to mutagens (Figure 2C). Moreover,
somatic clones only rarely acquire copy number alterations,
structural rearrangements, or chromosomal abnormalities.
Volume 33 - Issue 12 - 2022
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Figure 2. Somatic evolution of normal tissues. (A) Tissue homeostasis is maintained through asymmetric division of wild-type stem cells. (B) Somatic mutations
conferring fitness advantages result in clonal expansion of the mutant progenies. (C) Recurrent features of somatic evolution across normal tissues. (D) Schematic
representation of the structure and turnover of histologically normal human adult tissues. Turnover data were taken from Bowden,106 Pan et al.,107 Cousins et al.,108

Khandelwal et al.,109 and Milo et al.110
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Despite these commonalities, the number and size of
clones vary substantially across tissues suggesting that their
proliferative potential does not depend uniquely on the
intrinsic advantages contributed by mutations. The archi-
tecture of the tissue and the frequency of its turnover
(Figure 2D) also likely play major roles in determining the
fate of the mutant clone. Hematopoietic stem cells produce
thousands of mature blood cells every day and mutant
clones can in principle expand freely in the bloodstream.
Volume 33 - Issue 12 - 2022
Accordingly, age-dependent clonal hematopoiesis, i.e. the
expansion of mutant hematopoietic cells sharing a common
origin, is highly diffuse in the general population.16-18

Unlike the blood, solid tissues pose spatial barriers to
clone expansion. For example, the intestinal epithelium is
organized into well-defined clonal structures known as
crypts that undergo continual renewal during life. Despite
the high tissue turnover, clonal expansion beyond the single
crypt (a phenomenon known as ‘crypt fission’) rarely occurs
https://doi.org/10.1016/j.annonc.2022.09.156 1241
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in healthy gut.19-23 Normal liver also usually hosts relatively
few mutant clones,24-26 possibly due to the low turnover
and the lobular structure of the tissue. The mutational
landscape of both gut and liver changes drastically in the
presence of inflammatory disorders such as inflammatory
bowel disease or cirrhosis, which positively correlate with
the number of mutant clones.24,26

An increased number of clones is also observed in
endometriotic endometrium,27-29 confirming that chronic
inflammation remodels adult tissues through continuous
cycles of destruction and repair that favor clone outgrowth.
Unlike normal colon and liver, mutant clones almost
completely replace non-inflamed endometrium by meno-
pause.29-31 This is likely facilitated by the ‘rhizome’ structure
of the endometrial epithelium, in which vertical glands ac-
quire additional mutations during every menstrual cycle.32

The epithelia of skin and esophagus also progressively
become a patchwork of mutant clones during life.33-38 In
both tissues, the stem/progenitor cell compartments are
localized above the basement membrane of the epithelium
(Figure 2D), which poses a weaker barrier to the propaga-
tion of mutant clones than intestinal crypts or hepatic
lobes. As expected due to the higher exposure to external
mutagens, skin accumulates around 10-fold more mutations
than esophagus.36 Interestingly, recent observations sug-
gest that the mutagenic effect of some exogenous insults,
and the consequent expansion of mutant clones, may be
reversible. For example, despite the mutation burden being
generally higher in tobacco smokers or ex-smokers than in
never smokers, high variability has been observed across
and within individuals. In particular, some clones show
comparably low mutational burden in current, former, and
never smokers,39 indicating that their stem cells are less
susceptible to (or are shielded from) smoking mutagens.
Lowly mutant clones are fourfold more frequent in ex-
smokers than in current smokers and can repopulate the
bronchial epithelium once the exposure to smoking ends.
Although further studies are needed to explain reasons and
mechanisms of this decrease, these results may suggest that
the fitness advantage of somatic mutations is context-
dependent and varies with circumstances.

Extensive inter- and intra-individual variation in the
mutational spectrum has also been observed in the uro-
thelium of bladder and ureter, which, despite the relatively
low turnover, become substantially populated by mutant
clones over time.40,41
GENES AND MUTATIONAL PROCESSES DRIVING SOMATIC
CLONAL EXPANSION

Genes acquiring somatic mutations that increase cell fitness
and drive clonal expansion (somatic drivers) are identified
using approaches similar to those used for cancer drivers,
preferentially detecting frequently mutated genes.4 So far,
these approaches have identified 147 somatic drivers across
nine tissues (Supplementary Table S2, available at https://
doi.org/10.1016/j.annonc.2022.09.156). Almost 90% of
these genes are well-known (canonical) or predicted
1242 https://doi.org/10.1016/j.annonc.2022.09.156
(candidate) cancer drivers and tumor suppressors
outnumber oncogenes (Figure 3A). This is in line with the
prevalence of somatic point mutations and small indels that
are more likely to inactivate tumor suppressors. It should be
noted however that the use of driver detection methods
developed for cancer genomics may result in detection bias
and overestimation of the overlap between cancer and
somatic drivers.

Functionally, somatic drivers that are also cancer drivers
are typically signaling genes mediating cell growth or
chromatin modifiers (Figure 3B). Given their role in cell
differentiation,42 it is tempting to speculate that mutations
in chromatin modifiers promote cell dedifferentiation and
self-renewal that, in turn, favor the clonal expansion of
mutant cells. The few somatic drivers that are not cancer
drivers do not show any significant functional enrichment,
indicating no convergence toward the disruption of any
particular biological process.

Unlike cancer, where the higher the size of the analyzed
cohort the more drivers become detectable,4 the number of
somatic drivers does not increase with sample or donor size
(Figure 3C). For example, clonal expansion in blood is driven
by a similar number of genes as in intestine or diseased
endometrium, despite 20-fold more blood samples having
been sequenced. This suggests that the early phases of
somatic clonal expansion tend to be promoted by the same
genes driving cancer, but the extent of inter-individual
heterogeneity of the somatic driver repertoire may be
more limited. This also confirms that clonal expansion de-
pends on the features of the tissue as well as its exposure
to mutagens, in addition to the intrinsic advantages of the
mutant cells. Comparisons across tissues should however
take into account the experimental and analytical ap-
proaches used to detect somatic mutations, since each of
them has biases and limitations (Supplementary Table S1,
available at https://doi.org/10.1016/j.annonc.2022.09.156).
Moreover, it is likely that a sizable fraction of somatic
drivers remain still unknown.43

Even considering these technical caveats, the somatic
driver landscape shows high tissue specificity. For example,
only 13 genes drive clonal expansion in three or more tis-
sues (Figure 3D). An extreme case is again blood that shares
only TP53 with other tissues, indicating that clonal hema-
topoiesis is promoted by a small and tissue-specific set of
somatic drivers. There are clear differences even across
solid tissues. For example, multiple mutational screens of
skin and endometrium have reported alterations in the
same drivers (NOTCH1, FAT1, and PIK3CA, KRAS, respec-
tively, Figure 3D), due to parallel or convergent evolution. In
the former case, clones carry distinct, inactivating muta-
tions (NOTCH1 or FAT1), while in the latter they converge
toward the same activating mutation (KRAS or PIK3CA). This
does not occur in other tissues, where different screens
identified different drivers.

Intriguingly, a few well-known cancer drivers, notably
KRAS in endometrium, the NOTCH genes in skin and
esophagus, and the ERBB genes in colon, are more
frequently altered in normal tissues than in the
Volume 33 - Issue 12 - 2022
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Figure 3. Somatic driver repertoire. (A) Breakdown of somatic drivers that are also cancer drivers or that have not been associated with cancer. Canonical and
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corresponding cancers (Supplementary Table S2, available
at https://doi.org/10.1016/j.annonc.2022.09.156). This
suggests that some cancer drivers may have either a cancer-
promoting or a cancer-protective role depending on the
context and time of their alteration.

Notably, placenta represents an exception in terms of
clonal expansion occurring in healthy tissues. Instead of being
driven by mutations that increase the cell fitness, placenta
mosaicism results from the developmental expansion of
trophoblast progenitors carrying early embryogenic muta-
tions.44 Placenta also shows higher mutation rate and
Volume 33 - Issue 12 - 2022
frequent copy number alterations compared to other tissues
(Supplementary Table S2, available at https://doi.org/10.
1016/j.annonc.2022.09.156). This could be due to distinct
prenatal and postnatal mutational process or the lack of
genome-protecting mechanisms in placental trophoblasts.

The patterns of mutations occurring in the genome of
mutant clones, known as mutational signatures, are indic-
ative of the processes responsible for somatic mutagenesis.
Signatures related to endogenous mutational processes are
prevalent in all tissues sequenced so far (Figure 3E). Some
of these mutations are likely acquired in the first few cell
https://doi.org/10.1016/j.annonc.2022.09.156 1243
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divisions of embryonic development, when the mutation
rate per generation is very high,45,46 and continue to
accumulate throughout life. The pervasiveness of endoge-
nous signatures indicates that the main source of muta-
tional variation in somatic tissues is related to aging.
Signatures induced by reactive oxygen species, and tobacco
smoking are also relatively frequent. Other external muta-
gens, such as UV light, aristolochic acid, or colibactin, are
instead specific to skin, urothelium, and intestine, respec-
tively. This is consistent with their cancer-promoting role in
these organs confirming that, at least in these cases, normal
clonal expansion and cancer initiation have the same
mutagenic origins.

Together with the mutational signatures found in cancer,
normal tissues show several novel signatures that have
never been described before (Supplementary Table S2,
available at https://doi.org/10.1016/j.annonc.2022.09.156).
These may be hidden by the prevalence of stronger muta-
tional processes that take over during cancer evolution or
may indicate a different origin of somatic mutations that do
not eventually evolve into cancer. None of these novel
mutational signatures have a known etiology, which pre-
vents from discriminating between these two scenarios.
1244 https://doi.org/10.1016/j.annonc.2022.09.156
ORIGINS AND CONSEQUENCES OF SOMATIC MUTATIONS
IN AGING AND DISEASE

Somatic mutations are acquired from early development
throughout adult life, with clones growing in number and
size over time (Figure 4A).

Interestingly, mutation rate is higher during fetal devel-
opment than in postnatal cells,47-50 especially in the first
three embryonic divisions.45,48,51 This is likely due to the
absence of transcription-associated DNA repair52,53 and a
higher tolerance toward DNA damage due to the lack of
apoptosis53-55 during very early development. Fixation of
embryonic mutations often occurs by neutral drift rather
than selection and mutant cells can eventually populate
large portions of one or more tissues, as in the case of the
same mutations found in brain and spleen.49

Somatic mutations that promote clonal expansion during
embryonic development or adult life hit dividing cells that most
likely are stem or progenitor cells. However, mutations may
occur also in post-mitotic tissues and affect slowly or non-
dividing cells, such as visceral smooth muscle and neu-
rons.56,57 For example, the post-mitotic expansion of CAG re-
peats in neurons is known to cause Huntington’s disease.58

Recent technical innovations, including single-cell59 and
Volume 33 - Issue 12 - 2022
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single-molecule57 DNA sequencing, have shown that post-
mitotic neurons accumulate mutations at a similar rate than
mitotically active cells. This surprising result indicates that,
together with errors generated during cell divisions, mutations
can continuously arise from non-mitotic insults. Although the
signatures of post-mitotic mutations do not point toward any
specific etiology, their linear accumulation over time suggests
that they are the result of a dynamic equilibrium between DNA
damage and repair throughout life.57

Do somatic mutations result always in disease condi-
tions? While a clear link exists between mutation accumu-
lation and cancer, as extensively discussed below, still
relatively little is known about their role in other diseases.
Embryonic mutations that disrupt Mendelian genes may
result in similar but less severe syndromes than germline
mutations. Examples include overgrowth syndromes where
somatic mutations confer growth advantages to mutant
cells located in specific areas of the body60,61 and almost
10% of mutations causing autism spectrum disorder.62

Moreover, tissue phylogeny and lineage tracing have
shown that mutations arising during fetal development can
modify known cancer drivers leading to the expansion of
cancer-precursor clones that eventually initiate childhood
tumors, including Wilms’ tumors,63 pediatric liver cancers,64

and malignant rhabdoid tumors.65

Clonal hematopoiesis is a known risk factor in cardio-
vascular disease due to a combination of increased
inflammation and mutation-specific effects,66 while somatic
mutations in immune cells may favor the onset of immune
disorders.67 Despite these examples, however, the wide-
spread diffusion of somatic mutations in the normal pop-
ulation and the phenotypically normal appearance of
mutated tissues suggest that most mutations, even when
favoring clonal expansion, are not pathogenic.

In addition to disease, the accumulation of mutations has
long been associated with aging. Mutations are thought to
favor the progressive decline of cell functions,68-70 although
the molecular basis of this remains largely elusive. It has
been proposed that somatic mutations could reduce the
efficiency of gene regulatory networks and increase cell-to-
cell transcriptional heterogeneity.70,71 However, the high
somatic mutation burden observed in carriers of germline
POLE/POLD1,23 MUTYH,72 or mismatch repair gene73,74

defects does not lead to any appreciable sign of acceler-
ated aging, suggesting that a more complex relationship
likely exists between mutation and aging. It is likely that
multiple, and mostly independent, forms of molecular and
tissue damage synergistically contribute to aging-related
functional decline. In this multifactorial context, somatic
mutations may favor cell type imbalances in tissue
composition due to the prevalence of cell proliferation over
differentiation.75 Intriguingly, a putative beneficial role of
somatic variation in sustaining the renewal capacity of
exhausted stem cells over time has also been proposed.76

This multitude of interpretations indicate that the func-
tional role of somatic variation is still mostly unknown and
warrants further studies.
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SOMATIC MUTATIONS AND CANCER TRANSFORMATION

The pervasiveness of mutant clones in phenotypically
normal tissues poses the questions of how these clones
form, grow, and survive and under what circumstances they
transform into cancer.

In the early phases of clone formation, competition be-
tween mutant cells with different fitness is a key factor for
their survival.77,78 Lineage tracing of mutagen-driven clone
formation in the mouse esophagus has shown that
NOTCH1-mutant clones have higher fitness and outcompete
NOTCH1 wild-type clones, causing their extrusion from the
basal epithelium.77 NOTCH1-mutant clones become pro-
gressively selected for in the normal esophagus and this
could explain why NOTCH1 mutations are more frequent
than in esophageal cancer.33,34 As alluded to earlier, an
intriguing speculation is that mutations in cancer drivers
may have different roles and consequences depending on
the context and time of alteration. In the case of NOTCH1,
early mutations may create a decoy fitness peak that re-
duces the chances of malignant transformation.79,80 This
variable role is further supported by the effect of condi-
tional heterozygous deletion of somatic drivers in liver,
including the two tumor suppressors ARID1A and KMT2D.
Their deletion promotes liver regeneration and reduces
damage susceptibility in the presence of injury.25 Therefore,
as likely suggested by the reduction in the number of
mutant clones in the lung of ex-smokers,39 the selective
advantage of NOTCH1, ARID1A, and KMT2D may be tran-
sient and context-dependent.

It is likely that additional mechanisms also contribute to
clone selection (Figure 4B). Mutant cells can be extruded
from the epithelium through the activation of cytoskeletal
proteins in neighboring cells, leading to apoptosis81 or dif-
ferentiation.82 Moreover, cell-extrinsic factors, whose
contribution has been investigated only marginally, are also
likely to support or hinder clonal expansion. Active re-
sponses of the stromal niche surrounding the mutant cells,
including a mesenchymal activation or a change in the
composition of the extracellular matrix, may influence the
expansion of certain clones and favor the clearance of
others. For instance, increased mechanical stiffening of the
extracellular matrix is thought to attenuate the extrusion of
mutant cells from the epithelium.83

Finally, the role of the immune system during clonal
expansion remains largely unknown. The immune system
acts as an additional bottleneck during cancer evolution by
exerting a selective pressure on cancer cells and shaping
their immunogenicity.84 Since it is now clear that mutant
clones in normal tissues only rarely evolve into tumors, it is
tempting to speculate that immunosurveillance starts well
before cancer transformation. It may be that only non-
immunogenic clones survive, while the others are elimi-
nated by a concerted innate and adaptive immune response.
Once established, somatic clones may reach a dynamic
equilibrium with the immune system that keeps their size at
bay or may evolve immune evasion mechanisms to survive
and continue to grow. It should be noted, however, that
https://doi.org/10.1016/j.annonc.2022.09.156 1245
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mutations in immune evasion genes are not under selection
in normal skin.85 Moreover, measuring negative selection in
somatic genomes is challenging because it requires extensive
datasets and careful correction for confounding factors that
may lead to over- or underestimations.86 As a consequence,
it is currently unclear whether these forces can87 or cannot40

shape the normal genome.
When and how do mutant cells transform into cancer

cells? The most striking differences between somatic and
cancer clones are the number of mutated drivers and the
extent of chromosomal instability. Usually, somatic clones
have at most two drivers (although a higher number has
been reported in a small proportion of endometrial
glands31) and usually lack copy number alterations. In
contrast, multiple drivers are needed for tumorigenesis.7

Moreover, while chromosomal instability is a hallmark of
pre-cancer to cancer transition,88 somatic drivers show no
functional enrichment in pathways related to genome sta-
bility (Figure 2B). Therefore, a prerequisite for trans-
formation may be the acquisition of multiple hits that may
favor the onset of chromosomal instability.

The order by which driver alterations are acquired is likely
to be another required factor to promote transformation.
Individuals with clonal hematopoiesis have a higher risk of
developing acute myeloid leukemia if they bear TP53 mu-
tations compared to mutations in other genes.89 Similarly,
progressive mutations in APC, KRAS, and TP53 are paradig-
matic of the adenoma to carcinoma transition in colon but
are not observed in the normal colonic epithelium. It should
be noted, however, that APC mutations are very rare in
normal colonic crypts. Finally, the overall genotype of the
mutant cell as well as the phenotype of the surrounding
niche, including the interplay with the immune system, may
decide the fate of the clone toward transformation.
IMPLICATIONS OF SOMATIC VARIATION FOR CANCER
PREVENTION AND EARLY DETECTION

The accumulation of cancer driver mutations long before
the appearance of cancer represents both opportunities
and challenges for cancer prevention and early detection.

A better understanding of the endogenous and exogenous
factors that trigger transformation of mutated but still
normal cells into cancer cells has the potential to open av-
enues to improve or develop prevention strategies. For
example, it could improve the sensitivity and specificity of
cancer risk prediction algorithms, thus allowing clinicians to
restrict cancer surveillance only to individuals at highest
risk.90 A deeper knowledge on the determinants of trans-
formation could also point toward preventive therapies
aimed at actively interrupting or at least delaying the carci-
nogenic process. Long-term use of aspirin has been associ-
ated with reduced risk of gastrointestinal cancers.91 Although
the molecular mechanism is not fully understood, the anti-
inflammatory action of aspirin is probably a major compo-
nent of its cancer-prevention effect. Similarly, the inhibition
of the proinflammatory cytokine interleukin 1 has been
proposed as a potential cancer-preventive strategy.92
1246 https://doi.org/10.1016/j.annonc.2022.09.156
The pervasiveness of somatic clones also poses some
challenges for cancer detection and monitoring. A prime
example is liquid biopsy, a non-invasive approach increas-
ingly used for tumor early detection and for monitoring
response to therapy.93 Liquid biopsy is based on the iden-
tification of circulating DNA fragments bearing driver mu-
tations, which are usually thought to derive from dead
cancer cells or extracellular vesicles. Circulating DNA from
mutated but normal cells can act as a confounding factor
particularly in older patients who are likely to bear a high
number of mutant clones and experience age-induced cell
death. For example, TP53 mutations were detected in the
circulating DNA of 49% lung cancer patients but also in 11%
non-cancer controls.94 Circulating fragments of mutated
DNA in healthy individuals can derive from clones originally
resident in solid tissues or, more often, from mutant blood
cells. Clonal hematopoiesis is a known source of noise in
liquid biopsy,95,96 but it can be efficiently accounted for
through the parallel sequencing of matched leukocyte
DNA.97 Circulating DNA of mutant cells from solid tissues is
more difficult to distinguish. In this case, focusing on cancer
methylation patterns in addition to mutations, as in the
case of the GRAIL test,98 could improve the test specificity,
although the occurrence of methylation changes during
somatic evolution cannot be excluded. Overall, however,
the performance of liquid biopsy in detecting early stage
cancer is poorer than for advanced disease.96

Another challenge concerns the identification of cancer
driver genes and how they can be reliably distinguished from
somatic drivers that increase cell fitness in normal cells but
may not necessarily contribute to tumorigenesis. This may be
the case of the frequent NOTCH1 mutation occurring in
normal esophagus as well as esophageal cancer. Despite
positive selection being reported for NOTCH1 mutations in
esophageal cancer,99 its early mutations in normal esoph-
agus could impair tumor growth.100 Therefore, identifying
cancer drivers based uniquely on their recurrence across
cancer samples may lead to false positives. High mutation
frequency may in fact result from the recurrent mutation of
somatic drivers in healthy individuals, some of whom will
develop cancer independently from (or even despite) that
driver. There are both experimental and analytical strategies
that could mitigate this noise. For example, deep sequencing
of normal tissues surrounding the tumor will help assess if
the same somatic drivers are altered in the tumor-precursor
cells. Analytically, cohort-level approaches based on recur-
rence or positive selection should be complemented with
driver detection methods that predict drivers in individual
samples, for example, identifying their network de-
regulations101-103 or applying machine learning to identify
mutant genes that resemble cancer drivers.104,105
FUTURE PERSPECTIVES

The ability to precisely quantify the extent of genomic
variation occurring in seemingly normal tissues is radically
changing our understanding of somatic evolution. The idea
of a stable genome inherited from germline cells and
Volume 33 - Issue 12 - 2022
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maintained strictly unaltered throughout adult life does not
hold true. Rather, the genome of somatic cells undergoes
continuous modifications, some of which confer fitness
advantages that can initiate clonal expansion. This results in
dynamic tissue remodeling that starts during embryo
development, where it is mostly driven by neutral drift, and
continues as we age, where the fittest clones undergo
positive selection.

The long-term fate of somatic clones depends on the
interplay between the intrinsic features of the host tissue
and the extrinsic features of the surrounding ecosystem,
which are likely to change over time. Ending the exposure
to damage and stress may reduce the fitness of previously
selected clones, causing their shrinkage and clearance.
Alternatively, clones may persist for a long time in equilib-
rium with the surrounding ecosystem. The disruption of this
equilibrium may result in gaining transforming capacity.

Currently, very little is known on what regulates the
homeostatic equilibrium within tissues, and this limits our
understanding of the initial phases of cancer initiation and
the efficacy of early clinical intervention. Further studies are
needed to define the functional activity of driver genes in
different contexts, including the role of epigenetic alter-
ations and mutations in non-coding regions during somatic
evolution. Moreover, a detailed knowledge of the functional
composition of the niche surrounding mutant clones will
reveal key extrinsic factors supporting their survival. Finally,
new model systems are needed to follow the fate of mutant
clones exposed to changing conditions. Addressing these
fundamental questions will advance novel cancer detection
and prevention programs.
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