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In Brief
inSPIRE (in silico Spectral
Predictor Informed REscoring) is
a flexible and performant open-
source rescoring pipeline built on
Prosit or MS2PIP MS spectral
prediction. inSPIRE is
compatible with several search
engines, allows large-scale
rescoring with data from multiple
MS search files, enables Prosit
prediction without specialized
GPU hardware, increases
sensitivity to minor differences in
amino acid residue position, and
can be applied to various MS
sample types, including tryptic
proteome digestions, but is
specifically optimized for
immunopeptidomes.
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TECHNOLOGICAL INNOVATION AND RESOURCES
inSPIRE: An Open-Source Tool for Increased
Mass Spectrometry Identification Rates Using
Prosit Spectral Prediction
John A. Cormican1 , Yehor Horokhovskyi1 , Wai Tuck Soh1 , Michele Mishto2,3,*,‡ ,
and Juliane Liepe1,*,‡
Rescoring of mass spectrometry (MS) search results using
spectral predictors can strongly increase peptide spec-
trum match (PSM) identification rates. This approach is
particularly effective when aiming to search MS data
against large databases, for example, when dealing with
nonspecific cleavage in immunopeptidomics or inflation of
the reference database for noncanonical peptide identifi-
cation. Here, we present inSPIRE (in silico Spectral Pre-
dictor Informed REscoring), a flexible and performant
open-source rescoring pipeline built on Prosit MS spec-
tral prediction, which is compatible with common data-
base search engines. inSPIRE allows large-scale
rescoring with data from multiple MS search files, in-
creases sensitivity to minor differences in amino acid
residue position, and can be applied to various MS sample
types, including tryptic proteome digestions and immu-
nopeptidomes. inSPIRE boosts PSM identification rates in
immunopeptidomics, leading to better performance than
the original Prosit rescoring pipeline, as confirmed by
benchmarking of inSPIRE performance on ground truth
datasets. The integration of various features in the
inSPIRE backbone further boosts the PSM identification in
immunopeptidomics, with a potential benefit for the
identification of noncanonical peptides.

Tandem mass spectrometry (MS) has been a successful tool
for large-scale identification in proteomics and peptidomics (1–
3). In tandem MS, peptides in a sample are first ionized and
separated by their m/z, resulting in MS1 spectra. Selected ions
are then fragmented, often by collision-induced dissociation or
high collision–induced dissociation (HCD), resulting in MS2
spectra. Commonly, peptide identifications are performed via
database search engines comparing the experimentally
observed MS2 spectra to the theoretical fragments produced
by all possible peptides in a reference proteome (i.e., the search
space) (4). The highest scoring match between theoretical and
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experimental spectra is then assigned to produce a peptide
spectrum match (PSM). In order to quantify the probability that
a PSM is correct, it is of importance to compute the false
discovery rate (FDR). This is commonly estimated by searching
a decoy database of reversed or randomized sequences, with a
similar composition to the reference (or target) database (5).
The decoy database should contain no true peptide sequences
present in the analyzed sample, and so the number of false
discoveries above a given scoring threshold can be estimated
by the number of PSMs from the decoy database with scores
above that threshold.
This approach is adopted by many traditional search

engines, such as Mascot, MaxQuant, or PEAKS DB, and it has
been successful, particularly when dealing with a small well-
informed reference proteome (6). For example, in proteomics
experiments, the digestion of a protein-containing sample with
a specific protease such as trypsin results in a reduced search
space compared with the digestion of the same sample with
an unspecific protease. However, it is not always possible to
achieve this reduced search space. One such case is the field
of immunopeptidomics, where MS-mediated identifications of
peptides presented by human leukocyte antigen class I and II
(HLA-I and HLA-II) complexes can provide valuable insights
into specific immune responses and potentially aid the
development of targeted immunotherapies (7). These immu-
nopeptides are generated within the cell via various process-
ing steps, including proteasomal processing (8). Proteasomes
are proteases that, in contrast to trypsin, can cleave after any
amino acid, following complex dynamics (9, 10), thereby
impacting on the database search space. The size of the
search space can be expanded even further with increasing
interest in noncanonical peptides outside the commonly used
reference proteomes (11–14). These enlarged search spaces
can create a number of issues to traditional target-decoy
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inSPIRE
search approaches, with a significant negative impact on both
peptide yield and FDR estimation (15, 16).
Postprocessing or rescoring approaches, which perform

additional validation on the target and decoy PSMs outputted
from the original database search, have been developed to
achieve high peptide yield at low FDR estimates, even when
confronted with enlarged search spaces. These algorithms
have been used for many years as a method of validating
peptide identifications and increasing identification rates in
MS search results (17–19). Percolator is one such algorithm
that uses a semisupervised machine learning approach, which
considers features beyond the original search engine score
using Support Vector Machine models, and it has become the
dominant approach for MS2 postprocessing (20). Percolator
makes use of a subset of high-confidence target PSMs as
positive samples and all decoy PSMs as negative samples for
training its model. The trained model then provides a better
separation between target and decoy peptides, allowing a
larger number of peptides to be identified at a similar FDR.
Throughout this process, Percolator employs a cross-
validation mechanism to avoid overfitting (21).
Percolator is highly flexible and allows its user to consider

any set of features to describe a dataset of PSMs. Multiple
researchers have taken advantage of this by integrating fea-
tures from newly developed predictors to increase the number
of high-confidence peptides identified. Such applications
include the use of retention time predictors (22) and the use of
predictors of HLA-peptide binding affinities in immunopepti-
domics (23). One particularly fruitful approach has been the
use of spectral predictors, as proposed by Silva et al. (24).
Accurate prediction of the MS2 spectrum of a peptide has

been an active area of research for a number of years (25).
While classic database search engines considered only the
presence or the absence of possible MS2 fragment ions, that
is, y- or b-ions for HCD, in an experimental MS2 spectrum,
modern spectral predictors can accurately predict the relative
intensities of the fragment ions (26–29). One of the most sig-
nificant accomplishments in this field is the Prosit spectral
predictor (28, 29). Prosit is a deep learning tool that was
trained on more than 20 million high-quality experimental MS2
spectra, and that has demonstrated state-of-the-art perfor-
mance on both tryptic and immunopeptidomics datasets.
Wilhelm et al. (29) combined metrics describing the match

between the Prosit-predicted spectrum and the experimen-
tally observed spectrum as Percolator input features to
increase discovery rates on immunopeptidome search
spaces. Significant increases in performance have also been
demonstrated for the MS2Rescore software (Compomics),
which uses predictions from the MS2PIP spectral predictor
rather than from Prosit (30). Both tools have also been
compared when applied to a tryptic digest with an enlarged
search space, showing a similar performance (31).
Despite the clear potential of using Prosit-predicted spectra

in rescoring pipelines, its use is limited by the fact that no fully
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open-source pipeline is available. The Prosit rescoring pipeline
presented by Wilhelm et al. (29) and recently updated (32) is
only available via a web server, which only allows search
results from a single MS RAW file and only processes search
results from the MaxQuant search engine. Reproducibility is
also limited with this system as no versioning information is
available. The alternative INFERYS pipeline removes some of
these technical limitations but is only available as part of the
commercial Thermo Fisher Proteome Discoverer software (33).
To address these gaps, we developed inSPIRE, which

stands for in silico Spectral Predictor Informed REscoring.
inSPIRE is a flexible and performant open-source rescoring
pipeline, primarily built on Prosit retention time and MS
spectral prediction. In contrast to the Prosit rescoring pipeline,
inSPIRE is compatible with multiple major database search
engines and allows large-scale rescoring with data from
multiple search files. Furthermore, the inSPIRE pipeline can
perform spectral prediction with Prosit on standard central
processing unit (CPU) hardware, whereas the original Prosit
release required a specialized graphics processing unit (GPU).
For added flexibility, inSPIRE can also use MS2PIP as the
spectral predictor instead of Prosit and Pyteomics for reten-
tion time prediction (34, 35), though this was not our primary
focus given that the MS2Rescore pipeline already provides
fully open-source rescoring using MS2PIP predictions.
inSPIRE can be applied to various sample types including
tryptic proteome digestions and immunopeptidomes. It is
specifically optimized for enlarged immunopeptidome search
spaces with increased sensitivity to minor differences in amino
acid residue position (Fig. 1).
In addition, we developed an inSPIRE variant, specifically

for HLA-I immunopeptidomics—that is, inSPIRE-affinity—that
allows the integration of NetMHCpan (DTU Health Tech) pre-
dictions to the inSPIRE backbone. NetMHCpan also uses a
deep learning framework, in this case, to predict the binding
affinity of a given peptide to given HLA molecules (36–38). All
details and information related to inSPIRE performance and
the study outcomes are reported in supplemental Files S1-
S11, supplemental Figs. S1–S14 and Tables S1–S4.
EXPERIMENTAL PROCEDURES

Cell Lines

K562-B*07:02 and K562-A*02:01 cell line clones express either the
single HLA-B*07:02 or HLA-A*02:01 alleles. They derive from the
leukemia K562 cell line (American Type Culture Collection CCL-243),
which does not express endogenous HLA-I and HLA-II molecules,
and its generation and growing conditions are described elsewhere
(13).

HLA-I Immunopeptidome Elution and Tryptic Proteome Digestion

HLA-I-bound peptides were isolated from 109 cells of K562-B*07:02
and K562-A*02:01 cell line clones, through HLA-I-peptide elution us-
ing W6/32 antibody, as described elsewhere (13). The MS files were
already published (13).



FIG. 1. Schematic of the inSPIRE pipeline. Shown is an overview of the flow of execution for the inSPIRE pipeline. inSPIRE takes inputs from
Mascot, PEAKS DB, or MaxQuant and interacts with Prosit, MS2PIP, and NetMHCpan, providing formatted inputs and using their respective
predictions for rescoring. inSPIRE calls Percolator internally to execute the PSM rescoring. The user provides a configuration file for inSPIRE and
must work with Prosit (and optionally NetMHCpan) to provide the predictions to inSPIRE. inSPIRE, in silico Spectral Predictor Informed
REscoring; PSM, peptide spectrum match.

inSPIRE
The HLA-I immunopeptidomes used as training datasets were
previously published by Paes et al. (39) and Bassani-Sternberg et al.
(40).

Tryptic digestions of cell proteome obtained from the K562 cell line
were carried out as follows: cell pellet was lysed in cell lysis buffer
(50 mM Hepes, pH 7.5, 150 mM NaCl, 4% SDS, 2 mM DTT, and 0.5%
NP-40) and heated at 95 ◦C for 10 min. The cell lysate was then diluted
to a final concentration of 1% SDS with 50 mM Hepes, pH 7.5. Pierce
Universal Nuclease (Thermo Fisher Scientific) was added according to
the manufacturer’s recommendations and incubated at 37 ◦C for
30 min under shaking condition (300 rpm). Protein concentration was
determined using Pierce BCA protein assay kit (Thermo Fisher Sci-
entific), and 50 μg of protein was used for proteome digestion. Pro-
teins were reduced with 5 mM DTT for 30 min at 37 ◦C and alkylated
by the addition of 20 mM iodoacetamide and incubation for 30 min at
room temperature in the dark. The reaction was quenched by incu-
bation with 20 mM DTT for 15 min at room temperature before puri-
fication with SP3 beads (41) and elution for proteome digestion with
trypsin (Promega) at protease to proteome weight ratio of 1:25 at
37 ◦C for 16 h.

Synthetic Peptide Library

The synthetic peptide library contained 9, 10, or 15 amino acid long
peptides (n = 6876 unique peptide sequences and 13,868 PSMs)
related to CD4+ and CD8+ T-cell response to dengue virus and
varicella-zoster virus (VZV), as described elsewhere (42). The dengue
virus and VZV synthetic peptides utilized in this study were selected
for analysis because they were already available in-house and syn-
thesized for separate epitope identification studies. The selection and
characterization of these peptides has been described previously (43–
50). Each of the peptides in synthetic peptide libraries was derived
from respective dengue and VZV proteomes. Peptides were originally
selected for other studies based on bioinformatic analyses of pre-
dicted capacity to bind various common HLA-I and HLA-II alleles in
the general worldwide population. The set of dengue protein se-
quences of provenance represents all four dengue serotypes and
several different variant isolates. The VZV peptides were primarily
derived from the attenuated varicella vaccine strain vOka and a few
variant isolates. Peptides were grouped in eight library batches, with
each peptide measured at the concentration of 0.0625 pmol/μl. For
each pool, 8 μl was injected in the instrument, thereby measuring
500 fmol of each peptide. The synthetic peptide libraries are reported
in supplemental File S5.

MS

MS data of HLA-I immunopeptidomes were collected using Orbi-
trap Fusion Lumos mass spectrometer coupled to an Ultimate 3000
RSLC nano pump (both from Thermo Fisher Scientific), as described
elsewhere (13). The same method and instrument were used for the
synthetic peptide library measurement. MS data of tryptic digestions
of cell proteome were measured through Thermo Scientific Orbitrap
Exploris 480 mass spectrometer. Digested proteome samples were
injected using an Ultimate 3000 RSLC nano pump (both from Thermo
Fisher Scientific). Briefly, 0.5 μg of each sample was loaded and
separated by a nanoflow HPLC (RSLC Ultimate 3000) on an Easy-
spray C18 nano column (30 cm length, 75 μm internal diameter).
Peptides were eluted with a linear gradient of 5 to 45% buffer B (80%
acetonitrile and 0.1% formic acid) at a flow rate of 300 nl/min over
58 min at 50 ◦C. The instrument was programmed within Xcalibur
3.1.66.10 (Thermo Fisher Scientific) to acquire MS data in a data-
dependent acquisition mode using top 30 precursor ions. We ac-
quired one full-scan MS spectrum at a resolution of 60,000 with a
normalized automatic gain control target value of 300% and a scan
range of 350 to 1600 m/z. The MS/MS fragmentation was conducted
using HCD collision energy (28%) with an orbitrap resolution of
15,000. The normalized automatic gain control target value was set up
at 100%with a maximum injection time of 40 ms. A dynamic exclusion
of 22 s and 2 to 6 included charged states were defined within this
method. The MS files used in each figure are reported in supplemental
Table S4.

MS Software Settings

For all sections where MaxQuant was used, RAW MS files were
searched using MaxQuant GUI, version 1.6.17. First search peptide
tolerance was set to 20 ppm, and the main search peptide tolerance
was set to 4.5 ppm. Minimum peptide length was set to 7, and
maximum peptide mass was set to 4600 Da. The mass tolerance for
the fragment ions was set to 20 ppm. For identification, both PSM
FDR and protein FDR were set to 1.0, allowing the maximum possible
number of PSMs to be exported.

For the tryptic searches, we performed a specific search against the
reference proteome with enzyme set to trypsin, allowing cleavage after
Mol Cell Proteomics (2022) 21(12) 100432 3



inSPIRE
proline. Up to two missed cleavages were allowed. Oxidation of
methionine was set as the only variable post-translational modification
(PTM), and carbamidomethylation of cysteine was set as a fixed
modification. For the immunopeptidome searches, we performed an
unspecific search against the reference proteome. Oxidation of
methionine was set as the only variable PTM, and no fixed PTMs were
set, with the exception of the datasets from Sarkizova et al. (51) where
carbamidomethylation of cysteine was also set. Before rescoring with
inSPIRE or Prosit-rescoring, all hits containing unmodified cysteine
were removed as Prosit assumes carbamidomethylation of cysteine.
For the ground truth dataset, a nonspecific search was used. In this
case, no modifications were selected, and again, the hits containing
unmodified cysteine residues were removed before rescoring with
inSPIRE or Prosit-rescoring.

For the identification of the synthetic peptides used in the synthetic
peptide library, we searched RAW files using PEAKS, version 10.6 with
precursor mass tolerance of 5 ppm and fragment ion mass tolerance
of 0.02 Da. No PTMs were allowed, and the results were exported at
an FDR of 1%.

For the comparison between rescoring on different search en-
gines, we searched RAW files using PEAKS, version 10.6 with pre-
cursor mass tolerance of 5 ppm and fragment ion mass tolerance of
0.02 Da. As with the MaxQuant searches, the tryptic searches were
performed with two missed cleavages allowed, and cleavage was
allowed after proline. The same PTM settings were used, and again,
all hits containing cysteine were filtered out before rescoring. Re-
sults were exported for all PSMs with PEAKS −10lgP score greater
than 0.

In the case of Mascot, we used Mascot Distiller, version 2.8.0.1 to
process the MS RAW files. To allow the detection of chimeric spectra
with Mascot, we set the maximum number of precursor m/z values to
2 and set Allow multiple precursors per scan to true. Precursor mass
tolerance was set to 5 ppm, and fragment ion mass tolerance was set
to 0.02 Da for both tryptic and immunopeptidome searches. The
tryptic searches were performed with two missed cleavages allowed,
and cleavage was allowed after proline. The same PTMs were allowed
as with PEAKS and MaxQuant, and hits containing unmodified
cysteine residues were filtered out before rescoring. We used Mas-
cot’s automatic decoy search and exported both target and decoy
results with a homology significance threshold set to 0.999999 (i.e.,
exporting essentially all hits).

In order to provide the experimental spectra to the inSPIRE pipeline,
RAW files were converted to mgf format using the msConvertGUI. The
ThermoRawFileParser, version 1.4.0 was used to generate data for
mgf input in Prosit-delta training pipeline (52).

Percolator, version 3.0.5 was for all rescoring jobs. All Prosit-rescoring
jobswere submitted to theweb server betweenMarch 10 andAugust 16,
2022. Rescoring with MS2Rescore was performed with version 2.1.2.

The search result files used for each figure are reported in
supplemental Table S5. The final identifications for all pipelines for all
datasets are provided in supplemental Files S6–S9.

Application of MS2Rescore

For both tryptic and immunopeptidome datasets, the general set-
tings for MS2Rescore were set with “pipeline” to “infer,” “feature_sets”
to a list of “searchengine,” “ms2pip,” and “rt,” “run_percolator” to
false, “id_decoy_patter” to null, “num_cpu” to −1, “config_file” to null,
“tmp_path” to null, “mgf_path” to null, “output_filename” to null,
“log_level” to info, and “plotting” to false. The “ms2pip” settings were
set with “model” as “Immuno-HCD” for the immunopeptidome data-
sets and “HCD2021” for the tryptic datasets. The “frag_error” was set
to 0.02. Variable modification of oxidation of methionine was set in
either case with the “modification_mapping” set with “Oxidation (M)”
mapping to “Oxidation” for both datasets. In the case of the tryptic
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proteome digestion, “fixed_modifications” was also set with “C”
mapping to “Carbamidomethyl.”

Application of Percolator

We reran Percolator for all pipelines because of the use of –subset-
max-train command line argument in the Prosit rescoring pipeline.
This command line argument can lead to a breakdown of the Perco-
lator crossvalidation algorithm and should not be applied on small
datasets according to The et al. (20), as confirmed by the Percolator
team via GitHub (personal communication). We have communicated
this issue to the Prosit team via GitHub. In reapplying Percolator with
the same command line arguments to all pipelines, we ensured that
the only variation in the PSMs identified by a rescoring pipeline was
not because of different applications of Percolator.

MS2Rescore allows the user to select the command line arguments
passed to Percolator, but for convenience, we simply reran Percolator
on the .pin file produced by MS2Rescore via terminal with the same
command line arguments used for inSPIRE and Prosit rescoring.

RNA Sequencing and Reference Databases

The K562 RNA was extracted from K562 cell line pellets, processed
for polyA enrichment, and sequenced by using NEBNext Ultra RNA
Library Preparation Kit with random priming. Sequencing was per-
formed using HiSeq 2x150 PE HO with a depth of 20 to 25 million
reads per sample. Details about reads trimming, quantification, and
data processing are described elsewhere (13).

The RNA sequencing dataset generated by Paes et al. (39) was
generated as described in the original article and is available upon
request to the authors.

RNA-informed reference databases were generated by imposing an
expression cutoff of 10 estimated counts per transcript in Gencode
transcriptome main annotation, release 33 (GRCh38.p13) (53). Protein-
coding transcript translation sequences from these transcripts were
kept in an RNA-informed reference database.

The Gencode transcriptome main annotation, release 33
(GRCh38.p13) (53) was searched alongside the RNA-informed refer-
ence database so that performance across different database size
could be compared.

The UniProt Homo Sapiens proteome reference database used for
PEAKS DB searches to generate PSMs for the Prosit-delta training
data was downloaded on July 14, 2022.

HLA-I-Peptide Binding Affinity Prediction

HLA-I-peptide binding affinity was predicted by applying
NetMHCpan 4.1. Specifically, we used a custom Docker image. The
NetMHCpan input file is provided as part of the inSPIRE “prepare”
pipeline, provided that “useBindingAffinity” setting in the configuration
file is specified as “asValidation” or “asFeature.” When using binding
affinity predictions as a validation (i.e., comparing number of predicted
HLA-I-peptide binders for inSPIRE compared with Prosit-rescoring),
we only considered NetMHCpan predictions for peptides with length
between 8 and 14 residues because of software limitations. For
inSPIRE-affinity, we generated predictions for all peptides as null
values were not allowed in the Percolator input file.

For our validation and reporting pipelines, we defined a peptide
predicted by NetMHCpan to bind a given HLA-I complex, by evalu-
ating against the %Rank value, according to Reynisson et al. (37). The
%Rank is a transformation on the original prediction, allowing com-
parison across HLA-I-peptide binding specificities. This system
defined a “strong HLA-I binder” as a peptide with a %Rank <0.5% for
a given HLA-I allele and a “HLA-I binder” as a peptide with a %Rank
<2% for a given HLA-I allele.
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We also used the values for the positive predictive value (PPV)
reported by Reynisson et al. (37) as a metric to understand the vari-
ation between NetMHCpan performance on different alleles. Reynis-
son et al. (37) defined PPV as the number of positive binding peptides
correctly predicted divided by 0.95 times the number of ligands pre-
dicted. By considering this metric for the different alleles analyzed, we
could study how the strength of the NetMHCpan predictor for an HLA-
I allele impacted the use of predicted HLA-I-peptide binding affinity
both as an evaluation metric and as a feature for rescoring.

Experimental Design and Statistical Rationale

This study aimed to benchmark inSPIRE performance against other
state-of-the-art tools, in particular the Prosit rescoring pipeline, to
demonstrate its value on datasets that the original Prosit rescoring
pipeline could not allow rescoring, and to demonstrate the value of our
novel Prosit-delta predictor.

In benchmarking, we focused our analysis on HLA-I immuno-
peptidome datasets of the K562-A*02:01 and K562-B*07:02 cell lines,
for which we had an RNA-informed dataset and for which the
NetMHCpan predictor performs strongly (37).

Since the Prosit web server only allowed the analysis of a single
RAW file, and given that all the immunopeptidomics dataset came
from previously published studies, we generally did not favor running
multiple replicates of the same allele. This allowed us to explore a
wider variety of HLA alleles with differing motifs rather than focusing
on many replicates of a limited variety.

In Figure 2, the MaxQuant search results of the K562-A*02:01-
derived immunopeptidome datasets searched with the RNA-
informed and Gencode reference databases contained 14,689 and
15,065 PSMs, respectively. The equivalent datasets for the K562-
B*07:02-derived immunopeptidome contained 14,738 and 14,741
PSMs, respectively, and for the tryptic proteome digestion, they
contained 55,396 and 56,560 PSMs, respectively.

In Figure 3, in all cases, the total number of PSMs used to generate
the figures was 12,924 PSMs.

In Figure 4, the immunopeptidome rescoring for RNA-informed and
Gencode reference database searches was based, respectively, on
41,188 and 40,929 PSMs for MaxQuant, 29,802 and 30,833 PSMs for
Mascot, and 22,958 and 22,504 PSMs for PEAKS DB. The tryptic
proteome digestion rescoring using the same reference databases
was based, respectively, on 339,609 and 339,470 PSMs for Max-
Quant, 244,697 and 244,698 PSMs for Mascot, and 316,095 and
310,219 PSMs for PEAKS DB. The p values relevant to supplemental
Fig. S10 were calculated using Student’s t test.

The R2 values in Figure 5, E and F were based on 128,087 and
253,478 Prosit-delta values, respectively.

All analyses have been implemented in Python, if not stated
otherwise. All statistics for performance measurement are described in
the benchmarking framework.

Metrics Validating Rescoring Performance

Our simplest analysis of the performance of an identification
method was to compare the number of PSMs identified at 1% FDR as
estimated via Percolator, which was used as the final identification
method for all rescoring pipelines presented.

In an attempt to ensure that all pipelines were applying FDR esti-
mation fairly, we used two independent validations for our K562,
K562-A*02:01, K562-B*07:02 cell line datasets. First, for HLA-I
immunopeptidome data, if NetMHCpan was not used in rescoring,
we investigated the percentage of HLA-I binders and strong binders
predicted by NetMHCpan among the peptides identified. Second,
when rescoring search results obtained using the Gencode reference
database, we investigated the percentage of peptides identified,
which were also found by the search engine at any confidence level
when searching the RNA-informed reference database.

We acknowledge that neither of these validation techniques was
perfect; it is possible that a correct peptide sequence was not pre-
dicted to be an HLA-I binder by NetMHCpan or that the RNA
sequencing evidence was not sufficient for its substrate protein to be
included in our RNA-informed database. Equally, it is possible that an
incorrectly identified peptide was predicted as a strong HLA-I binder
and was also found in the RNA-informed database.

However, we estimated that reasonable consistency between these
metrics across identifications from different pipelines, combined with
Percolator’s well-established FDR estimation method (21), was a
sufficient validation that an increased number of PSMs identified at a
given threshold did represent better identification performance,
indeed.

Benchmarking With the Synthetic Peptide Library as Ground Truth
Dataset

As a validation of the increased number of PSMs for the inSPIRE
pipeline, we benchmarked all rescoring methods using “ground truth”
datasets, in line with the benchmarking tool iBench (QSB lab) (54). In
the approach applied in this study, we measured synthetic peptides
via MS and selected MS2 scans that were identified with 1% FDR
using PEAKS search engine. These peptides and their PSMs formed
our “ground truth” dataset, although we note that our “ground truth”
datasets represented an approximation to an absolute ground truth.
Indeed, this strategy still had a minor degree of imperfection since it
was based on MS measurement with 1% FDR rather than 0% FDR.
Furthermore, although this strategy could contain a certain level of
bias toward the PEAKS search engine, we estimated that this did not
introduce any advantage for the rescoring methods used, and the use
of synthetic peptide libraries greatly reduced the risk of identification
errors.

We then embedded two-thirds of those synthetic peptide
sequences into the Gencode reference database, thereby generating
a constructed reference database, similarly as in the study of Mishto
and collaborators (13). In this constructed reference database, these
peptide sequences were labeled as the “discoverable.” We ensured
that the remaining one-third of the synthetic peptide sequences were
not in the constructed reference database, and, hence, were “undis-
coverable.” We also added fragments of these peptide sequences to
the constructed reference database so that the composition of the
database was not biased against these peptides after their removal.
We then searched the RAW files with MaxQuant using the constructed
database and extracted all PSMs (FDR = 1.0%). Any identification
found in the MaxQuant search results for an MS2 scan, which was not
identified by PEAKS in the original search of the synthetic peptides,
was filtered out before any rescoring was applied. This removed the
possible confounding influence of contamination peptides of unknown
origin.

In our study, we were initially limited by the fact that there were
approximately 1000 peptides identified per RAW file, and the Prosit
rescoring pipeline only allowed a single RAW file to be scored against.
Hence, to overcome these potential limitations, we ran Prosit
rescoring for each of the eight RAW files of the synthetic peptide
libraries (i.e., SPL1-2 to SPL8-2) separately. We then concatenated the
prosit.tab files from each run, which contained all the inputs for the
final Percolator rescoring, and reran Percolator with the concatenated
files. We used the –override flag to ensure that Percolator used the full
feature set for all executions.

In order to quantify the impact of the small dataset size on
each pipeline, we performed rescoring on search results from
Mol Cell Proteomics (2022) 21(12) 100432 5
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two, four, and eight RAW files and calculated precision–recall
(PR) curves for each method. To remove the effects of differ-
ences between RAW files, we ran all rescoring pipelines on four
combinations of two RAW files and two combinations of four
RAW files, so that in each case, the final performance was
measured on the same data.

The PR curves were generated by varying the cutoff between the
minimum and maximum Percolator score for each rescoring method.
This involved combining Percolator scores across different runs. To
note, Percolator normalized scores based on q value and combined
scores internally from the different cross-validated models. Hence,
combining scores across models did not create any clear bias be-
tween the methods being benchmarked.

The precision at each cutoff was calculated as the number of
correctly identified PSMs divided by the total number of PSMs above
the threshold, whereas the recall was calculated as the number of
correctly identified PSMs divided by the number of discoverable
peptides in the modified database. In each case, the maximum
possible recall was limited by the number of correct PSMs found in the
original search engine results.

Development of inSPIRE Prosit-delta Predictor

The motivation for the Prosit-delta is explained in detail in the
Results section. Briefly, we aimed to use a lightweight predictor to
estimate the sensitivity of Prosit to adjacent residue permutation at
each fragmentation site of the peptide. Although inSPIRE does allow
for “brute force” computation of all Prosit-predicted MS2 spectra and
resulting Prosit-delta values, this would result in doubling the run time
and vastly increasing the memory consumption. As an alternative, we
found that an xgboost Gradient Tree Boosting Regressor provided an
appropriate and performant solution (55), without incurring the same
computational burden.

We developed the delta predictor for Prosit only and notMS2PIP for a
number of reasons. For instance, inSPIRE was primarily developed to
increase the availability of Prosit predictions. Also, one of the main
reasons why an inSPIRE user would choose the inSPIRE-MS2PIP
pipeline could be to predict MS2 spectra for peptides containing PTMs
not available with Prosit. Including a broad range of PTMs—particularly
those linked to the termini of a peptide—would significantly complicate
the current version of the delta predictor. In addition, spectral angle was
not the primarymetric on whichMS2PIP was trained, although it was an
important feature in the inSPIRE-MS2PIP pipeline. Hence, the devel-
opment of delta scoring within MS2PIP might need a specific investi-
gation of the best metric to be considered.

In order to generate training data for the Prosit-delta predictor, we
searched the HLA-I immunopeptidomes of Paes et al. (39) and
Bassani-Sternberg et al. (40) using PEAKS 10.6, using an RNA-
informed database and the UniProt Homo Sapiens database,
respectively, and exported all hits with PEAKS -10lgP greater than 0.
These data were combined with synthetic immunopeptides used by
Wilhelm et al. (29) for which we used the MaxQuant identifications
provided in their PRIDE repository. A full description of the RAW files
used and the number of PSMs are provided in supplemental Table S2.
The PEAKS DB searches were run with oxidation of methionine and
carbamidomethylation of cysteine set as variable modifications. All
hits containing unmodified cysteines were discarded before training.
The PSMs were then divided between train (80% of the data) and test
(20% of the data) ensuring that there was no overlap in the peptides
used between train and test.

While we collected data for peptides with lengths 7 to 30 and
precursor charge 1 to 6, the vast majority of our training comes from
peptides of length less than 13 and precursor charge 1 to 3
(supplemental Fig. S11, A and B). This feature was in agreement with
one of the main objectives of the Prosit-delta predictor, which was its
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application to immunopeptidome datasets. We also show sequence
logo plots for the peptides of length 8 to 11 residues in the combined
dataset in supplemental Fig. S11, C–F, thereby illustrating that the
dataset was not biased toward any specific motif.

For each PSM, we selected five positions at random in the peptide
sequence and generated Prosit predictions of MS2 spectra for the
peptide created by flipping the adjacent amino acids at those posi-
tions. The target variable was the difference between the spectral
angle of the modified sequence and the spectral angle of the original
sequence. Hence, each PSM in the training dataset generated five
training data points. The features used as input for the Prosit-delta
predictor are detailed in supplemental Table S3.

We performed hyperparameter tuning on the parameters minimum
child weight, maximum tree depth, learning rate, gamma, and columns
sampled by tree. We then used randomized search with five-fold
cross-validation on the training set and compared performance for
different sets of hyperparameters based both on predictive perfor-
mance (r2 score) and speed of execution. The results of this first round
of hyperparameter tuning are shown in supplemental File S10. We
then selected five sets of hyperparameters, which performed well in
crossfold validation and which were then trained on the full training
data and evaluated on the test set (supplemental File S11). From this
second round of evaluation, it was clear that the model with maximum
tree depth 16, minimum child weight 2, learning rate 0.15, gamma 0.1,
and columns sampled by tree 0.9 was the most performant model.
This model showed the best performance on the test data (r2 score =
0.74) despite showing slightly lower performance on the train data.

The trained model was packaged within inSPIRE, and the minimum,
maximum, median, first quartile, third quartile, fraction of predicted
Prosit-deltas above −0.1 and fraction of predicted Prosit-deltas above
0.0 were passed as features for Percolator.

As with the inSPIRE source code, all the training the code for the
Prosit-delta predictor is fully open source. Hence, a user of inSPIRE
could retrain this predictor on their own data and use their Prosit-delta
model in the inSPIRE pipeline.

inSPIRE Implementation and Application

All inSPIRE jobs presented in this study may be recreated by
providing the required inSPIRE configuration file. Full details on the
creation of the inSPIRE config file may be found in the README
available on GitHub. For each experiment, “rescoreMethod” was set
to “percolator,” and “mzAccuracy” was set to 0.02. The search engine
and location of search results as well as the location of scan data
converted to either mgf or mzML was provided via the config file. For
inSPIRE-affinity, “useBindingAffinity” was set to “asFeature.” The
calibrated collision energy was also set, which agreed between
inSPIRE and the Prosit web server in all cases.

To generate Prosit predictions without specialized GPU hardware,
we downloaded the Prosit model details and changed the definition of
the CuDNNGRU layers in the model.yml file to GRU layers with the
following settings, activation equal to tanh, recurrent_activation equal
to sigmoid, unroll equal to false, use_bias equal to true, and reset_-
after equal to true. We also had to avoid using the Tensorflow graph as
in the original Prosit code. We were then able to reload the model
definition and weights using Tensorflow (Google Brain team), version
2.5 and execute predictions by modifying the open-source code
available from the Prosit team (see https://github.com/kusterlab/
prosit).

For timing comparisons of Prosit prediction on CPU against GPU,
spectral prediction on CPU was run on Intel Sky Lake processors,
whereas the GPU predictions were run on an NVIDIA Tesla K40m
Graphics Card.

All Prosit spectral predictions were generated using the 2020 HCD
model and indexed retention time (iRT) predictions using the 2019

https://github.com/kusterlab/prosit
https://github.com/kusterlab/prosit
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model. For users who have very large datasets and easy access to
GPU servers, we also provide the modified version of the original
Prosit code, including a converted Singularity image so that Prosit can
be run on a high-performance computing cluster, a change to the
MSP export code so that Prosit predicted iRT values were included,
and an option so that m/z values of all fragment ions were not
calculated by Prosit. We found it was much more efficient to calculate
the m/z values of the fragment ions in the inSPIRE pipeline and greatly
reduce the required prediction time, particularly if a large number of
predicted spectra were required.
RESULTS

inSPIRE

We developed inSPIRE to be a flexible rescoring pipeline,
which provides the power of Prosit prediction for users
without specialized computational hardware and can be
applied to a vast number of tandem MS proteomics datasets
generated with HCD or collision-induced dissociation frag-
mentation. Although it is optimized for HLA-I immunopepti-
domics, inSPIRE can also be applied to standard proteomics
experiments. inSPIRE provides flexibility through compatibility
with commonly used search engines, that is, MaxQuant,
PEAKS, or Mascot, as well as compatibility with open data
formats, that is, mgf and mzML formats. For HLA-I immuno-
peptidomics, the inSPIRE-affinity variant can be employed,
which allows integration of NetMHCpan predictions of HLA-I-
peptide binding affinity and potentially others in future
releases.
When using Prosit, inSPIRE is subject to the limitations of

the Prosit predictor and will filter out PSMs where the peptides
are of length less than 7 or greater than 30. If the sample
contains unmodified cysteines (noncarbamidomethylated) or
variable modifications other than the oxidation of methionine,
these PSMs will be filtered out by inSPIRE. Unmodified cys-
teines and a wider range of variable modifications are sup-
ported if the user selects MS2PIP as their spectral predictor
(inSPIRE-MS2PIP supports a maximum of nine unique modi-
fications). However, we did not prioritize the development of
the MS2PIP pipeline given that there already exists a fully
open-source rescoring pipeline, which utilizes MS2PIP pre-
diction in MS2Rescore.
inSPIRE provides multiple pipelines to fulfill different user

requirements. The core functionality is provided via the “core”
pipeline (though individual steps may be run independently),
which enables MS2 spectral rescoring (Fig. 1). The first sub-
section of the “core” functionality, “prepare,” formats the
search engine output for Prosit or MS2PIP (and NetMHCpan if
required). The required Prosit predictions or MS2PIP pre-
dictions are then generated via the “predictSpectra” pipeline.
For Prosit, this entailed the conversion of the GPU-only models
available from the Prosit team to a version that could be run on
an ordinary CPU (see for Tool Implementation and statistical
analysis details). We found that execution of the “pre-
dictSpectra” pipeline on the CPU was effective, and timing
even compared favorably with execution of the original Prosit
code when we removed the calculation of m/z values for all
possible fragment ions (supplemental Fig. S1). We also vali-
dated that the predictions from the inSPIRE CPU imple-
mentation did not differ from the online Prosit model by running
the spectral prediction pipelines for both tools on 13,054
unique peptide-charge combinations (the peptides identified
by MaxQuant in the HLA-A*02:01 immunopeptidome). We
found that the predicted iRT values and MS2 spectra agreed to
near machine single precision with a mean spectral angle be-
tween predicted spectra of 0.9999997 of a mean difference in
iRT of the order of 10−5 (supplemental File S2).
NetMHCpan prediction is not currently integrated within

inSPIRE because of license restrictions, but if the user wishes
to employ the inSPIRE-affinity variant, they could generate the
predictions independently (see instructions in the README on
GitHub and supplemental File S1). The final part of the
inSPIRE core pipeline, “rescore” utilizes all available data for
improved rescoring. This process generates all required fea-
tures from search results, spectral predictions, and
NetMHCpan-predicted binding affinities. Once all features are
generated, inSPIRE calls Percolator to rescore the PSMs.
These results are then benchmarked against Percolator
rescoring without spectral features, and an HTML report is
provided to the user (see the examples provided in
supplemental File S3). This report provides details of varying
feature importance, feature distributions, and performance of
the inSPIRE pipeline against Percolator with classical features
(Fig. 1). If inSPIRE-affinity was used, or binding affinity was
selected as a validation technique, this report also shows the
percentage of NetMHCpan-predicted binders that are
identified.
In addition to the core functionality, inSPIRE also provides a

calibration pipeline, which allows calibration of the collision
energy setting passed to Prosit. The inSPIRE calibration
pipeline is a simple pipeline as described by Wilhelm et al. (29),
where the highest scoring unmodified PSMs are considered
based on search engine score, and spectral angles against
Prosit predictions for each collision energy between 20 and 40
(inclusive) are generated. The collision energy that provides
the highest mean spectral angle is selected as the recom-
mended collision energy setting for further analysis.
In inSPIRE, we have introduced a number of changes to the

feature set and feature selection approaches compared with
other spectral rescoring pipelines such as Prosit rescoring and
MS2Rescore. For example, rather than providing features
matching y- and b-ions, we distinguished between the
dominant ion series (the series with greater predicted
coverage) and the lesser ion series. While this is unlikely to
impact tryptic proteome digestion datasets, where the y-se-
ries is generally dominant, we found it a more useful distinc-
tion for HLA-I immunopeptidome rescoring, where there is
more variation in which ion series is dominant. We also found
that considering m/z error on the MS2 fragment ions was a
Mol Cell Proteomics (2022) 21(12) 100432 7
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useful feature. We provide a full description of all features
used by inSPIRE in supplemental Table S1.
Compared with other pipelines, another major change was

the use of features from a Prosit-delta predictor (see the
Experimental Procedures section). In our ground truth data-
sets, we found that swapping the position of certain pairs of
adjacent amino acids in the true peptide sequence led to a
very small change in the PSM spectral angle. We termed this
change the “Prosit-delta.” In early development of inSPIRE,
peptides that had a small Prosit-delta were often misassigned
in the ground truth datasets, resulting in incorrect (although
similar) peptide sequences. While generating Prosit-predicted
spectra and spectral angles for swaps of every pair of adjacent
amino acid residues would massively increase the computa-
tional load of the pipeline, we aimed to use a less intensive
predictor to estimate the sensitivity of Prosit at each frag-
mentation site of the peptide. Therefore, the aim of including
these Prosit-delta predictor features was to identify the
sensitivity of the Prosit MS2 spectral prediction to minor
changes in amino acid residue positions. These delta pre-
dictions are not available for the inSPIRE-MS2PIP pipeline (see
the Experimental Procedures section for full details on the
technical aspects of the Prosit-delta predictor).
In addition to its aforedescribed flexibility, inSPIRE provides

several options to allow for manual feature inclusion or
exclusion by the user. For example, if the user had a very small
dataset where some features in the standard inSPIRE feature
set could lead to the introduction of bias, they can simply add
a list of “excludeFeatures” to the inSPIRE config file.
Furthermore, if the user was particularly interested in certain
sequence identifications and wished to examine their MS2
spectra more closely, inSPIRE provides a plotting tool, which
generates pair plots in pdf format and compare the experi-
mental MS2 spectrum to the Prosit-predicted MS2 spectrum.
An example of these plots for PSMs of varying quality is
provided in supplemental File S4. All that is required is to
select the rows of interest from the inSPIRE final assignments
or provide a csv file with the peptides of interest along with
their source file and scan number. This functionality may be of
particular interest to users who wish to use inSPIRE, for
example, for epitope target discovery in immunopeptidomics.

inSPIRE Boosts PSM Identifications in HLA-I
Immunopeptidomes and Tryptic Proteome Digestions

We focused our initial benchmarking of inSPIRE against the
Prosit rescoring pipeline and the MS2Rescore pipeline with
MaxQuant search results as well as comparing it with a
baseline rescoring without the use of spectral prediction. For
comparison between the pipelines, we attempted to provide
as fair a comparison between tools as possible; thereby, we
reran the final Percolator rescoring with the same command
line arguments used for all pipelines (see the Experimental
Procedures section for details). However, one area of differ-
ence, which we could not correct for, was the fact that the
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current release of MS2Rescore dropped PSMs with duplicate
scan numbers, meaning that chimeric spectra could not be
discovered. This feature might be changed in the next release
of MS2Rescore (personal communication), when we would
expect an increase in PSMs identified.
We applied all pipelines—that is, Prosit rescoring, inSPIRE,

inSPIRE-affinity, MS2Rescore, inSPIRE-MS2PIP, and inSPIRE-
MS2PIP-affinity—to HLA-I immunopeptidomes derived from
K562-A*02:01 (Fig. 2, A–E and supplemental Fig. S2, A and B)
and K562-B*07:02 (Fig. 2, F–J and supplemental Fig. S2, C
and D) cell lines and tryptic proteome digestions derived from
K562 cell lines (Fig. 2, K–M). Since the Prosit rescoring web
server allowed only a single MS file per search, we analyzed a
single MS file for both HLA-I immunopeptidomes (Fig. 2, A–J)
and tryptic proteome digestions (Fig. 2, K–M).
In our initial MaxQuant analysis, we used a reference

database informed by RNA sequencing of K562 cell lines,
which consisted of 43,578 entries. Then, we repeated the
analysis using the full Gencode reference database, which
consisted of 100,551 entries. This strategy allowed evaluation
of the impact of the reference database size on the PSM yield
of inSPIRE compared with the other pipelines in the range of
estimated FDRs 1 to 5% (Fig. 2, A–M). We focused our
analysis of the peptides identified on PSMs identified at 1%
FDR as this is the most commonly employed FDR threshold in
recent proteomics and immunopeptidomics studies (Fig. 2
and supplemental Figs. S2–S5).
It has already been demonstrated that the Prosit rescoring

pipeline and MS2Rescore significantly increase PSM yield
over baseline rescoring without spectral prediction (29, 30).
Similarly, we observed a significant impact of inSPIRE, with
more than a 150% increase in PSMs discovered at 1% FDR
for all immunopeptidome datasets as compared with the
baseline rescoring (supplemental Fig. S2).
For rescoring pipelines using spectral prediction applied to

HLA-I immunopeptidomes, inSPIRE identified a slightly higher
number of PSMs (4–6% increase) compared with the Prosit
Rescoring pipeline, and inSPIRE-affinity showed the highest
PSM yield (8–9% increase on the Prosit Rescoring pipeline).
The increase in PSMs identified between Prosit Rescoring and
inSPIRE using MS2PIP (3–6% increase) was similar to the in-
crease of inSPIRE over Prosit Rescoring. In each case,
MS2Rescore identified the fewest PSMs at 1% FDR (Fig. 2, A,
C, F and H). In the case of the immunopeptidome dataset, this
difference was unlikely to be explained entirely by the drop-
ping of chimeric MS2 spectra; it may be more related to the
fact that MS2Rescore uses 100 features in its rescoring as
opposed to the 40 features used by Prosit Rescoring and the
41 to 42 features used by inSPIRE and inSPIRE-affinity. This
larger feature set may be less suitable when rescoring small
immunopeptidome datasets as there is a greater risk of
overfitting with a large number of features and a smaller
dataset, leading to a reduced number of PSMs identified when
cross-validation is applied within Percolator. In contrast to the
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performances on HLA-I immunopeptidomes, the performance
of inSPIRE, Prosit Rescoring, and inSPIRE-MS2PIP was very
similar on the tryptic proteome digestion dataset using both
RNA-informed and full Gencode reference databases, with a
marginal improvement in PSM yield by inSPIRE over Prosit
Rescoring and a marginal increase by Prosit Rescoring over
inSPIRE-MS2PIP (Fig. 2, K and L). Again, fewer PSMs were
identified by MS2Rescore, although, in this case, the differ-
ence could almost entirely be explained by the removal of
chimeric MS2 spectra in the MS2Rescore pipeline. The num-
ber of unique scans identified at 1% FDR was very similar for
all pipelines, with all identifying approximately 30,000 unique
scans.
To validate the assignments of each pipeline, we initially

computed the percentage of peptides, identified at 1% FDR
for each pipeline, which were predicted to bind the cognate
HLA-I allele by NetMHCpan among the peptides identified in
the HLA-I immunopeptidomes. This percentage was high and
similar across all pipelines (Fig. 2, B, D, G and I). As a second
validation step, we computed the percentage of peptides,
identified using the Gencode reference database by each
pipeline, which were also identified using RNA-informed
reference database. The analysis of these metrics also
pointed toward a reliable peptide identification in both HLA-I
immunopeptidomes and tryptic proteome digestions (Fig. 2,
E, J and M).
By examining the incremental PSMs discovered by

competing pipelines, that is, the PSMs exclusively discovered
by one pipeline but not the other, we observed greater vari-
ation in these two validation metrics. We performed such
“head-to-head” analysis for inSPIRE against baseline rescor-
ing (supplemental Fig. S2), inSPIRE against Prosit Rescoring
(supplemental Fig. S3), inSPIRE-affinity against inSPIRE
(supplemental Fig. S4), and inSPIRE-MS2PIP against
MS2Rescore (supplemental Fig. S5). The best performance on
each metric was invariably observed in the pool of PSMs
shared between pipelines. However, the incremental PSMs
from the pipeline that identified the greater number of PSMs at
1% FDR generally showed higher values for the two validation
metrics over the competing pipeline that identified fewer
PSMs. Overall, we found that peptides exclusively identified
by inSPIRE variants showed a higher percentage of peptides
predicted to be HLA-I binders compared with those peptides
that were exclusively identified by the baseline, Prosit
rescoring, and MS2Rescore. Furthermore, in the latter com-
parisons, peptides exclusively identified by inSPIRE variants
using the Gencode reference database were more frequently
identified using RNA-informed reference database
(supplemental Figs. S2, S3 and S5). Only two exceptions
broke this homogenous pattern: (i) the percentage of peptides
predicted to be HLA-I binders in the K562-B*07:02 HLA-I
immunopeptidomes using RNA-informed reference database
comparing inSPIRE against Prosit rescoring pipeline
(supplemental Fig. S3C); (ii) the percentage of peptides
identified using the Genecode reference database that were
also identified using the RNA-informed reference database in
the K562-B*07:02 HLA-I immunopeptidomes comparing
inSPIRE-MS2PIP against MS2Rescore (supplemental
Fig. S5B). These exceptions may indicate a level of noise in
our validation metrics (see the caveats described in the
Experimental Procedures section). However, overall, the evi-
dence across all incremental PSM comparisons (supplemental
Figs. S2–S5) and pipelines (Fig. 2) indicated a consistent
quality in the PSMs identified by Percolator at 1% FDR for
each pipeline.
In addition to these independent metrics, we also examined

MS2 coverage and spectral angle distribution for the incre-
mental PSMs discovered by competing pipelines
(supplemental Figs. S2–S5), which could provide some insight
into the features prioritized by each pipeline. Not surprisingly,
we found that the PSMs identified by inSPIRE only had sig-
nificant higher spectral angle distribution compared with the
baseline rescoring pipeline, which does not use features from
Prosit (supplemental Fig. S2). Furthermore, PSMs exclusively
identified by inSPIRE but not Prosit Rescoring typically had a
greater MS2 coverage but a lower spectral angle than those
exclusively identified by Prosit Rescoring but not by inSPIRE
(supplemental Fig. S3). In our comparison of inSPIRE-affinity
to the standard inSPIRE pipeline, we noted that the incre-
mental PSMs identified by inSPIRE-affinity showed higher
mean spectral angle and MS2 coverage over inSPIRE stan-
dard, despite the added importance of binding affinity
(supplemental Fig. S4). Therefore, inSPIRE-affinity did not only
identify peptides with higher HLA-I-peptide binding affinities
but also with overall better spectral features. This suggested
that the MS2 spectral and HLA-I-peptide binding affinity pre-
diction features worked effectively in concert rather than one
aspect being solely prioritized over the other. The MS2Rescore
pipeline did not compute spectral angle between the experi-
mental and MS2PIP predicted MS2 spectra. Therefore, it
should not come as a surprise that the mean spectral angle
was greater for the PSMs identified exclusively by inSPIRE-
MS2PIP than for PSMs identified exclusively by MS2Rescore
(supplemental Fig. S5).
To study the impact of inSPIRE on PSM yield as compared

with Prosit rescoring on a wide variety of HLA-I alleles, we
performed rescoring on 12 monoallelic HLA-I cell lines from
the large HLA-I immunopeptidome dataset published by
Sarkizova et al. (51). For this analysis, we focused on acquiring
data using diverse HLA-I alleles and included datasets where
peptide sequence motifs were less well understood (e.g., the
HLA-G alleles). This strategy allowed testing of the effect of
inSPIRE-affinity in such challenging settings. Overall, we
found that the resulting peptide sequence motifs from Prosit
rescoring compared with inSPIRE rescoring were extremely
similar (supplemental Fig. S6). However, with regard to pep-
tide identification, we observed a 0.1 to 7.6% increase
(mean = 3.1%) in PSMs identified at 1% FDR with the inSPIRE
Mol Cell Proteomics (2022) 21(12) 100432 9
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pipeline over the Prosit rescoring pipeline and 0.6 to 10.6%
increase (mean = 4.2%) over Prosit rescoring when using the
inSPIRE-affinity pipeline (supplemental Fig. S7).
We then compared the percentage of peptides predicted

by NetMHCpan to be either binders or strong binders of the
cognate HLA-I complex and identified at 1% FDR across
different HLA-I alleles with a broad range of NetMHCpan
performance (supplemental Fig. S8). In this analysis, the
variation in the percentage of peptides predicted to be HLA-I
binders was larger between HLA-I alleles than between
pipelines. In addition, in those HLA-I alleles for which
NetMHCpan prediction reported a low NetMHCpan’s PPV,
that is, where the HLA-I-peptide binding affinity was not
efficiently predicted by NetMHCpan, inSPIRE-affinity showed
a similar percentage of peptides predicted to be HLA-I
binders than the other pipelines. This further indicates that
inSPIRE-affinity did not blindly assign peptides based on
predicted HLA-I-peptide binding affinity alone, particularly
when the HLA-I-peptide binding affinity prediction was less
reliable.

inSPIRE Shows High Specificity and Stable Performance
on Ground Truth Datasets of Varying Size

Although the validation analyses performed so far sug-
gested a high performance of inSPIRE and inSPIRE-affinity,
we wished to further verify that the increased PSM yield
observed by applying inSPIRE pipelines was due to an
improved sensitivity of inSPIRE compared with the other
pipelines, rather than the result of spurious identifications. To
this end, we applied inSPIRE, Prosit Rescoring, and the
baseline rescoring to ground truth datasets of synthetic pep-
tide libraries of pathogen-derived 9, 10, and 15 amino acid
long peptides (supplemental File S5). The ground truth dataset
construction followed the approach described by Cormican
et al. (54) and is explained in the Experimental Procedures
section. The pipelines’ benchmarking on a ground truth
dataset containing PSMs with characteristics similar to HLA-I
immunopeptidomes could let us estimate the precision—that
is, number of correctly identified peptides over the number of
identified peptides—and recall—that is number of correctly
identified peptides over the number of correct peptides—of a
given method. The computation of PR is a standard strategy
for performance evaluation of binary predictors and has also
been applied to proteomics in other contexts (56, 57). Optimal
performance in terms of PR would show a tool achieving close
to the maximum possible recall while maintaining high preci-
sion until very low scoring thresholds lead to a steep drop. The
maximum possible recall for each rescoring pipeline was the
fraction of the true PSMs correctly identified by the initial
search engine at any identification cutoff. Hence, a lower limit
on the recall indicates that there were more incorrect as-
signments in the original database search.
Within the immunopeptidomics field, we observed that

implementing Percolator with a standard feature set on small
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datasets could lead to a lower precision (13). Therefore, we
tested inSPIRE performance in ground truth datasets with
increasing size, from a mean of just under 3000 total PSMs
using two RAW files to over 12,000 PSMs from eight RAW files
(Fig. 3). To remove the effects of different performance on
different RAW files, we performed rescoring on four sets of
two RAW files (Fig. 3A), two sets of four RAW files (Fig. 3B),
and a single set of eight RAW files (Fig. 3C) and calculated PR
across all sets (see Experimental Procedures section for more
details). In the case of inSPIRE, we observed stable perfor-
mance on all ground truth datasets, even when rescoring was
performed on a small number of PSMs (Fig. 3A).
For the baseline rescoring, we observed very similar per-

formance no matter the size of the dataset, achieving 19 to
20% recall at 99% precision for any dataset size. The pipe-
lines using spectral prediction saw a steady increase in per-
formance with dataset size. The Prosit rescoring pipeline
increased from 32% recall at 99% precision when rescoring
on two RAW files (Fig. 3A), to 36% recall at 99% precision
when rescoring on four RAW files (Fig. 3B), to 38% recall at
99% precision when rescoring on all eight RAW files (Fig. 3C).
Similarly, with inSPIRE, at 99% precision, we observed the
recall of 36% when rescoring on two RAW files (Fig. 3A), 40%
when rescoring on four RAW files (Fig. 3B), and 41% when
rescoring on eight RAW files (Fig. 3C). Therefore, under all
conditions, we observed a performance improvement of
inSPIRE over Prosit rescoring (Fig. 3, A–C), which was in line
with the increase in PSMs observed on the HLA-I immuno-
peptidome datasets (Fig. 2). Hence, the results on the ground
truth datasets provided further validation of the results on the
HLA-I immunopeptidome datasets. To note, both Prosit-
rescoring and inSPIRE obtained on average 98% precision
at their respective estimated 1% FDRs across all datasets,
indicating a slight underestimation of the FDR for both tools in
these experimental conditions (Fig. 3, A–C).

inSPIRE Is Performant on Larger Scale Datasets and
Across Search Engines

In contrast to Prosit rescoring pipeline, inSPIRE supports
multiple MS files in a single run and can be combined with
various database search engines (Fig. 1). To estimate how
inSPIRE would perform on results from larger datasets—for
example, derived from multiple MS files—and different search
engines, we tested inSPIRE on larger datasets of HLA-I
immunopeptidomes and tryptic proteome digestions than
those investigated in Figure 2. Indeed, we applied inSPIRE to
search results from three MS files of K562-B*07:02-derived
HLA-I immunopeptidomes (Fig. 4, A and B). As reference
database, we use both RNA-informed and Gencode reference
databases, thereby evaluating the impact of the
reference database size on inSPIRE’s PSM yield. Rescoring
with inSPIRE increased the PSM yield at 1% FDR for all search
engines by 31 to 33% for PEAKS DB, 225 to 281% for
Mascot, and 120 to 127% for MaxQuant compared with the



FIG. 2. PSM identification by inSPIRE compared with the Prosit rescoring pipeline on tryptic proteome digestions and HLA-I
immunopeptidomes. A–M, analysis of the PSMs identified in HLA-I immunopeptidomes of K562-A*02:01 (A–E) and K562-B*07:02 (F–J) cell
lines as well as the tryptic proteome digestion of the K562 cell line (K–M) by different pipelines. In (A, B, F, G, and K), the RNA-informed and in
(C, D, H, I, and L) the full Gencode reference databases have been used. A, C, F, H, K, and L, number of PSMs identified by applying the
pipelines on MaxQuant search results. B, D, G, and I, comparison of the percentage of identified peptides also predicted to bind the HLA-
A*02:01 (B and D) and HLA-B*07:02 (G and I) complexes. Only peptides with lengths between 8 and 14 residues were included to allow the
NetMHCpan HLA-I-peptide binding prediction. E, J, and M, the percentage of peptides identified by each pipeline on search results using the
Gencode reference database, which were also found at any confidence level in the MaxQuant search of the RNA-informed database of the
cognate cell line. HLA, human leukocyte antigen; inSPIRE, in silico Spectral Predictor Informed REscoring; PSM, peptide spectrum match.

inSPIRE
baseline Percolator rescoring. Interestingly, the larger increase
in PSMs using inSPIRE with PEAKS DB and MaxQuant was
observed when using the RNA-informed rather than Gencode
reference database. The best performance came from the
rescoring of PEAKS DB search results with a 15 to 18% in-
crease over MaxQuant results (Fig. 4, A and B).
As with the performance using a single technical replicate

(Fig. 2, E, J and M), we observed a high and comparable
percentage of peptides identified at 1% FDR when searching
the Gencode reference database, which were also found in the
search results of the RNA-informed reference database, with a
minimum of 98.2% for Mascot search results after rescoring
with inSPIRE and a maximum of 99.0% for the PEAKS DB
baseline (Fig. 4C).
We performed the same analysis on six MS files from
K562 cell tryptic proteome digestions using MaxQuant,
Mascot, and PEAKS DB. inSPIRE rescoring improved the
PSM yield of all search engines compared with the baseline
Percolator rescoring, which was even more pronounced than
the HLA-I immunopeptidome datasets. As with the HLA-I
immunopeptidome datasets, the best identification rate was
achieved with inSPIRE rescoring of PEAKS DB search results
(Fig. 4, D and E).
While the percentage of peptides identified using the Gen-

code reference database identified also using the RNA-
informed reference database was high and consistent for
results with Mascot and PEAKS with and without rescoring, a
slight decrease of this percentage was observed by applying
Mol Cell Proteomics (2022) 21(12) 100432 11
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the inSPIRE rescoring to MaxQuant results (from 98.9% to
97.2% of identified peptides; Fig. 4F).
The most remarkable variation in search engine perfor-

mance from HLA-I immunopeptidome to tryptic proteome
digestion searches came from Mascot. Indeed, this search
engine identified the fewest PSMs on the HLA-I immuno-
peptidome datasets although showed performance similar to
PEAKS DB on the tryptic proteome digestion search results
(Fig. 4, A, B, D and E). This is in line with results obtained with
other approaches (13).
More generally, inSPIRE rescoring was particularly impact-

ful relative to the original search engine choice in the enlarged
HLA-I immunopeptidome search space. Indeed, rescoring of
MaxQuant search results in the tryptic proteome digestion
search space still provided fewer identifications than PEAKS
DB and Mascot baseline results. In opposite, in the HLA-I
immunopeptidome results, even Mascot, the lowest per-
forming search engine in this case, identified more PSMs after
rescoring than PEAKS DB without rescoring at 1% FDR
(Fig. 4, A and B).
To understand the impact of the searchengineson thepool of

identified peptides, we analyzed the overlap among peptides
identified using the three search engines with and without
inSPIRE (supplemental Fig. S9). In theHLA-I immunopeptidome
dataset, we observed that inSPIRE rescoring led to a particu-
larly large increase in the number of shared identified peptides
among the search engines (supplemental Fig. S9, A and B). In
the tryptic proteome digestion dataset, the impact was less
striking since even without inSPIRE rescoring, the majority of
the identified peptides were discovered by all three search en-
gines (supplemental Fig. S9, C and D).
Furthermore, we investigated the impact of MS1 intensity

on the ability of the search engines and inSPIRE rescoring to
identify PSMs in HLA-I immunopeptidomes (supplemental
Fig. S10, A–C) and in tryptic proteome digestions
(supplemental Fig. S10, D–F). In HLA-I immunopeptidomes,
PSMs identified by inSPIRE only showed significantly lower
MS1 intensity distributions compared with PSMs identified by
both inSPIRE and the search engines and inSPIRE. This
suggested that the use of inSPIRE allowed the detection of
lower intensity PSMs in HLA-I immunopeptidomics
(supplemental Fig. S10, A–C). Such differences were, how-
ever, absent when analyzing tryptic proteome digestion
samples (supplemental Fig. S10, D–F).

Insight into inSPIRE Optimization of Spectral Prediction
Features by Modeling Amino Acid Pair Switch (Prosit-delta)

Beyond some improvements to the feature set and the inte-
gration of NetMHCpan predictions, the inSPIRE pipeline em-
ploys anovel approach toPSM rescoring, namely theprediction
of the sensitivity of the Prosit MS2 spectrum prediction in case
of switch of adjacent amino acid residue pairs. This switch (or
permutation) had previously been noted byCollaert et al. (15) as
a difference that traditional search engines struggled to detect.
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This sensitivity, or lack thereof, is represented in the examples
of Prosit MS2 spectrum prediction of the peptides
MATYGWNLVK and AIKVLRGFKK identified in the synthetic
peptide library samples (Fig. 5,A andB). For these peptides, we
challenged Prosit MS2 spectrum prediction by switching the
position of two adjacent amino acids and computed the dif-
ference in the spectral angle between the true and the modified
peptides, which we named “Prosit-delta” value. In the case of
the peptide MATYGWNLVK, the position switch between
alanine (A) and threonine (T) in the true peptideMATYGWNLVK,
which resulted in the modified peptide MTAYGWNLVK, led to a
large Prosit-delta value, with the spectral angle dropping from
0.92 for the original sequence to 0.61 for themodified sequence
(Fig. 5C). In contrast, for the peptideAIKVLRGFKK, the switch in
position between the phenylalanine (F) and lysine (K), which
resulted in the theoretical peptide AIKVLRGKFK, led to a small
Prosit-delta value (spectral angle drops from 0.88 to 0.86) aswe
saw only minor differences in predicted MS2 spectra between
the original and the modified peptides (Fig. 5D).
In early development of inSPIRE, we noticed that misas-

signed peptide sequences in the synthetic peptides’ ground
truth datasets often occurred when a similar peptide sequence
was found in the constructed reference database (data not
shown); in particular, this often happened when a peptide
sequence differed from the true peptide sequence without
impacting on the spectral angle, that is, with a small Prosit-
delta (see representative example in Fig. 5, B and D). Hence,
we hypothesized that the distribution of these Prosit-delta
values for each position in the sequence could be a useful
feature in rescoring, and that sequences where the Prosit
spectral angle was less sensitive to minor changes in amino
acid position should be assigned with less confidence than
those where the spectral angle was more sensitive. To avoid
the heavy computational burden of generating Prosit-
predicted spectra for all modified sequences, we developed
a model to predict the Prosit-delta values as described in the
Experimental Procedures section. To make the model as
independent as possible of the datasets benchmarked with
inSPIRE, we used large publicly available HLA-I immuno-
peptidome data from Paes et al. (39) and Bassani-Sternberg
et al. (40), as well as the synthetic immunopeptide dataset
used to train the Prosit model (29) as training and test data
(supplemental Table S2). Peptide length and charge state
distribution of the training data reflected those distributions
typically observed in HLA-I immunopeptidome datasets
(supplemental Fig. S11, A and B). The peptide sequence
motifs in the training dataset were evenly distributed, thereby
confirming that we were not training the Prosit-delta predictor
on peptides that were biased toward some specific sequence
motifs (supplemental Fig. S11, C–F).
The resulting Prosit-delta predictor was an ensemble

learning–based model, which primarily focused on the local
features of the permutation site, although further features such
as precursor charge state were also considered (supplemental



FIG. 3. Performance of inSPIRE compared with the Prosit rescoring pipeline on synthetic peptides’ ground truth dataset. A–C, shown
is the precision (number of correctly identified peptides over number of identified peptides) against the recall (number of correctly identified
peptides over number of correct peptides) of different rescoring pipelines. A, performance of different rescoring pipelines on ground truth data
from two MS files (mean of 2108 target PSMs and 824 decoy PSMs). B, performance of different rescoring pipelines on ground truth data from
four MS files (mean 4216 target PSMs and 1647 decoy PSMs). C, performance of different rescoring pipelines on ground truth data from eight
MS files (8631 target PSMs and 3293 decoy PSMs). Dash line represents a precision of 0.99, which approximately corresponds to 1% FDR.
FDR, false discovery rate; inSPIRE, in silico Spectral Predictor Informed REscoring; MS, mass spectrometry; PSM, peptide spectrum match.

inSPIRE
Fig. S12). Interestingly, collision energy was one of the most
important features, which highlights the need for careful cali-
bration of Prosit before usage. The full feature set used by the
Prosit-delta predictor is described in detail in supplemental
Table S3. Application of the trained Prosit-delta predictor to
K562-A*02:01 and K562-B*07:02 HLA-I immunopeptidomes
and tryptic proteome digestion dataset resulted in good per-
formance (Fig. 5, E and F).
FIG. 4. inSPIRE increases the PSM yield preferentially benefiting M
HLA-I immunopeptidomes of K562-B*07:02 cell line (one biological and t
K562 cell line (three biological and two technical replicates; D–F) by differ
Gencode reference databases have been used. A, B, D, and E, number o
rescoring. C and F, the percentage of peptides identified by each pipeline
also found at any confidence level in the MaxQuant search of the RNA-in
inSPIRE, in silico Spectral Predictor Informed REscoring; PSM, peptide
To understand the impact of these Prosit-delta predictions on
inSPIRE performance, we rescored the search results of the
HLA-I immunopeptidome and tryptic proteome digestion (Fig. 2
and supplemental Figs. S2–S4) with the Prosit-delta features
excluded. We found that the Prosit-delta features had little to no
impact when applied to the tryptic proteome digestion datasets,
where the enzyme specificity reduced the search space and
made the search engine more sensitive to changes in sequence
axQuant searches. A–F, analysis of the PSMs identified in either the
hree technical replicates; A–C) or the tryptic proteome digestion of the
ent pipelines. A and D, the RNA-informed and in (B, C, E, and F) the full
f PSMs identified by the three search engines with or without inSPIRE
on search results using the Gencode reference database, which were
formed database for the two datasets. HLA, human leukocyte antigen;
spectrum match.
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FIG. 5. Prosit-delta feature and its impact on inSPIRE’s PSM yield in HLA-I immunopeptidomics. A–D, Prosit-predicted MS2 spectra
compared with experimentally measured MS2 spectra in representative cases wherein a switch of an amino acid residue pair results in either a
large (A and C) or small (B and D) Prosit-delta. In each case, the pair plot is shown for the identified peptide (A and B) and for the peptide
produced by the permutation of two adjacent amino acids in the original sequence (C and D). The peptide in (A) was identified in the synthetic
peptide library sample SPL4-2 (scan number 11061). The peptide in (B) was identified in the synthetic peptide library sample SPL3-2 (scan
number 15058). E, scatter plot of observed Prosit-delta values of PSMs in the search results of the K562-A*02:01 and K562-B*07:02 HLA-I
immunopeptidomes against our model’s predictions. The data are downsampled to 10% of the original data to make the figure clearer.
F, scatter plot of observed Prosit-delta values of PSMs in the search results of the K562 tryptic proteome digestion against our model’s pre-
dictions. The data are downsampled to 10% of the original data to make the figure clearer. G and H, relative increase in the number of identified
PSMs by inSPIRE using different features as compared with Prosit rescoring pipeline. The analysis refers to the K562 tryptic proteome digestion

inSPIRE
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(Fig. 5G). On the HLA-I immunopeptidomes, the Prosit-delta
implementation had an impact when the RNA-informed refer-
ence database was used, although the most impact was
observed when the Gencode reference database was used
(Fig. 5H and supplemental Fig. S13). For the search of the K562-
B*07:02 HLA-I immunopeptidome using the Gencode reference
database, the increase in PSM yield over Prosit rescoring was
almost entirely because of the Prosit-delta features (Fig. 5H). As
with the tryptic proteome digestions, the Prosit-delta features
had little impact when applied to inSPIRE-affinity (Fig. 5H). This
could be explained by the fact that peptide sequence motifs
driving theHLA-I-peptide–bindingmotifs—and, hence, theHLA-
I-peptide binding affinity prediction—are already very sensitive
to minor changes in peptide sequence. Therefore, in inSPIRE-
affinity, the impact of Prosit-delta features might be attenuated
by the impact of HLA-I-peptide–binding affinity prediction.
To validate these latter results, we again analyzed the per-

centage of peptides predicted by NetMHCpan to be HLA-I
binders as well as the percentage of peptides identified us-
ing the Gencode reference database that were also identified
using the RNA-informed reference database. As observed in
the previous analyses, the various inSPIRE pipelines resulted
in a high and comparable peptide percentage (supplemental
Fig. S14), which hinted toward a reliable peptide identification.
DISCUSSION

The integration of MS2 spectral prediction with rescoring
strategies is a fruitful area to boost MS identification perfor-
mance and could find in the inSPIRE pipeline a versatile,
high-performing, user-friendly, and open-source tool. The
ability of inSPIRE to generate Prosit predictions on a stan-
dard CPU architecture significantly lowers the entry barrier
for researchers, thereby “bringing Prosit to the people.” The
standard implementation of inSPIRE has demonstrated
similar performance to the Prosit Rescoring pipeline for
search results of tryptic proteome digestions and improved
performance for HLA-I immunopeptidomes. The integration
of NetMHCpan prediction of HLA-I-peptide–binding affinity in
inSPIRE-affinity pipeline raises the performance even further
by optimizing inSPIRE for the analysis of HLA-I immuno-
peptidomes. In this study, the increased PSM identification
rate of inSPIRE over the Prosit rescoring and MS2Rescore
pipelines has further been validated by investigation of the
peptides identified. We have observed consistency in the
percentage of identified peptides predicted to bind to the
cognate HLA-I complex and the percentage of peptides
identified from the Gencode reference database that were
validated by RNA sequencing evidence. Furthermore, we
(G) and the K562-B*07:02 and K562-A*02:01 HLA-I immunopeptidomes
Gencode reference databases and 1% FDR. FDR, false discovery rate;
Informed REscoring; PSM, peptide spectrum match.
have demonstrated the improved recall of inSPIRE over
Prosit rescoring at 99% precision on ground truth datasets.
In comparison to Prosit rescoring, the inSPIRE pipeline also
brings significant benefits in terms of data volume and flexi-
bility across multiple search engines. We have demonstrated
that inSPIRE can provide increased PSM identification rates
in each of these scenarios. The ability to apply inSPIRE to
PEAKS DB, in particular, allows for significant improvement
over rescoring of MaxQuant search results. Finally, we pro-
vide a detailed documentation and a step-by-step user guide
to achieve easy access to inSPIRE for both the coding-
experienced and coding-inexperienced user.
The addition of the Prosit-delta predictor boosts identification

rates and can open potential avenues for other features based
on meta-analysis, that is, features considering not only the
match between experimental and predicted MS2 spectrum of a
given peptide but also the uniqueness and sensitivity of the
prediction. These features showed a greater impact on analysis
confronted with larger search spaces such as the full Gencode
database. This suggests the Prosit-delta features may assist
with the challenges raised by the expansion of database size
through the increased interest in noncanonical peptide identifi-
cation in proteomics and immunopeptidomics. For example, the
impact of the database size on method performance has been
demonstrated for post-translational spliced peptides (13), and
spectral prediction features as a solution for the search space
size problem in proteogenomics have been proposed (31).
As suggested by Verbruggen et al. (31), we found the

spectral prediction features far more impactful when dealing
with the larger immunopeptidome search space compared
with tryptic proteome digestion search spaces. Interestingly,
this was not always the case when comparing results from the
full Gencode reference database to the results from the RNA-
informed reference databases. In fact, the increase in PSMs
identified by applying inSPIRE and Prosit rescoring compared
with the baseline, which was observed on the K562-B*07:02
HLA-I immunopeptidomes, showed to be larger when the
RNA-informed reference database rather than the full Gen-
code reference database was used. This could point toward a
limitation on the potential improvement in peptide yield on
rescoring, when the true peptide is not selected by the original
search engine at any confidence threshold, and, hence,
cannot be found through rescoring. This limitation may also
contribute to the lack of variation between inSPIRE and Prosit
Rescoring pipelines for the search results of the tryptic pro-
teome digestions. In this case, the number of MS2 scans left
unidentified in the rescored search results was similar to the
number of decoy hits in the search results. Hence, any great
increase in identification rate on the tryptic proteome digestion
(H) searched by MaxQuant using either the RNA-informed or the full
HLA, human leukocyte antigen; inSPIRE, in silico Spectral Predictor
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datasets would have to be treated with a certain degree of
suspicion.
In conclusion, we speculate that the application of rescoring

pipelines using MS2 spectral features will become the stan-
dard approach to tackle large search space problems in pro-
teogenomics. We, here, provide a fully open-source tool,
inSPIRE, which can aid flexible MS analysis pipeline devel-
opment in a user-friendly manner in the future.
DATA AND SOFTWARE AVAILABILITY

Our MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (58) partner
repository with the dataset identifiers PXD031709 (13),
PXD031812 (54), and PXD034056.
The MS proteomics data published by Paes et al. (39) are

available at the PRIDE repository with the dataset identifier
PXD015489.
The RNA sequencing data used for the analysis of our MS

proteomics data have been deposited in the National Center
for Biotechnology Information Sequence Read Archive data-
base with the accession code PRJNA721129 (13).
The inSPIRE software has been implemented with Python

and is available at GitHub (https://github.com/QuantSysBio/
inSPIRE).
The Prosit-delta training software has been implemented

with Python and is available at GitHub (https://github.com/
QuantSysBio/prosit-delta).
The modified version of the Prosit spectral prediction code

is also available at GitHub (https://github.com/QuantSysBio/
qsb-modified-prosit).
The models downloaded by the inSPIRE pipeline at run time

have been deposited on figshare (https://figshare.com/
articles/software/inSPIRE_Models/20368035).
The RNA sequencing data generated by Peas et al. (39) are

available upon request to the authors.
Analyses were carried out in Python 3.8.
Figures have been generated in Python using the Plotly li-

brary and Logomaker for the sequence logo plots (59). Post-
processing was done with Adobe Illustrator, version 26.2.
MS analysis was carried out withMaxQuant, version 1.16.17,

Mascot, version 2.7.01, and PEAKS X Pro 10.6. Rescoring was
carried out with Percolator, version 3.0.5. Preprocessing of MS
RAW files for Mascot was performed with Mascot-Distiller,
version 2.8.0.1, and RAW files were converted to mgf/mzML
format for inSPIRE input using ms-convert GUI (ProteoWizard,
version 3.0.9134) and ThermoRawFileParser, version 1.4.0, for
input in Prosit-delta training pipeline (52).
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