Supporting information for:

Reactivity of an Unsaturated Iridium(III) Phosphoramidate Complex, [Cp*Ir{κ²-N,O}][BAr^F₄]

Marcus W. Drover,^{a,b} Heather C. Johnson,^b Laurel L. Schafer,^a Jennifer A. Love,^a and Andrew S. Weller^{*,b}

^aDepartment of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1

^bDepartment of Chemistry, The University of Oxford, Chemistry Research Laboratories, Mansfield Road, Oxford, U.K. OX1 3TA

*e-mail: <u>andrew.weller@chem.ox.ac.uk</u>

Figure S1. [1], ¹ H NMR, CD ₂ Cl ₂ , 400 MHz, 298 K	S3
Figure S2. [1], ³¹ P{ ¹ H} NMR, CD ₂ Cl ₂ , 121 MHz, 298 K	S3
Figure S3. [1], ¹³ C{ ¹ H} NMR, CDCl ₃ , 100 MHz, 298 K	S4
Figure S4. [2][BAr ^F ₄], ¹ H NMR, CD ₂ Cl ₂ , 400 MHz, 298 K	S4
Figure S5. [2][BAr ^F ₄], ³¹ P{ ¹ H} NMR, CD ₂ Cl ₂ , 121 MHz, 298 K	S 5
Figure S6. [2][BAr ^F ₄], ¹³ C{ ¹ H} NMR, CD ₂ Cl ₂ , 100 MHz, 298 K	S 5
Figure S7. [2][BAr ^F ₄], ESI(+)-MS	S6
Figure S8. [3][BAr ^F ₄], ¹ H NMR, CD ₂ Cl ₂ , 400 MHz, 298 K	S6
Figure S9. [3][BAr ^F ₄], ³¹ P{ ¹ H} NMR, CD ₂ Cl ₂ , 121 MHz, 298 K	S7
Figure S10. [3][BAr ^F ₄], ¹³ C{ ¹ H} NMR, CD ₂ Cl ₂ , 100 MHz, 298 K	S7
Figure S11. [3][BAr ^F ₄], ESI(+)-MS	S8
Figure S12. [4][BAr ^F ₄], ¹ H NMR, CD ₂ Cl ₂ , 400 MHz, 298 K	S8
Figure S13. [4][BAr ^F ₄], ³¹ P{ ¹ H} NMR, CD ₂ Cl ₂ , 121 MHz, 298 K	S9
Figure S14. [4][BAr ^F ₄], ¹³ C{ ¹ H} NMR, CD ₂ Cl ₂ , 100 MHz, 298 K	S9
Figure S15. [4]BAr ^F ₄ , ESI(+)-MS	S10
Figure S16. [7] [BAr ^F ₄], ¹ H NMR, CD ₂ Cl ₂ , 500 MHz, 298 K, showing signal broadening upon	S10
addition of excess MeCN	
Figure S17. [7][BAr ^F ₄], VT- ³¹ P{ ¹ H} NMR, CD ₂ Cl ₂ , 202.5 MHz, 298 K showing consumption of	S11
complex $[2][BAr_{4}^{F}]$ and formation of proposed complex $[7][BAr_{4}^{F}]$ at low temperature.	
Figure S18. [8][BAr ^F ₄], ¹ H NMR, CD ₂ Cl ₂ , 400 MHz, 298 K	S11
Figure S19. [8][BAr ^F ₄], ³¹ P{ ¹ H} NMR, CD ₂ Cl ₂ , 121 MHz, 298 K	S12
Figure S20. [8][BAr ^F ₄], ¹³ C{ ¹ H} NMR, CD ₂ Cl ₂ , 150 MHz, 298 K	S12
Figure S21. [8][BAr ^F ₄], ESI(+)-MS	S13

Figure S22. [9][BA r ^F ₄], ¹ H NMR, CD ₂ Cl ₂ , 400 MHz, 298 K		
Figure S23. [9][BAr ^F ₄], ¹ H NMR, CDCl ₃ , 400 MHz, 298 K (expanded baseline)		
Figure S24. [9][BAr ^F ₄], ³¹ P{ ¹ H} NMR, CD ₂ Cl ₂ , 121 MHz, 298 K	S14	
Figure S25. [9][BAr ^F ₄], ¹³ C{ ¹ H} NMR, CD ₂ Cl ₂ , 150 MHz, 298 K	S15	
Figure S26. [9][BAr ^F ₄], ¹ H- ²⁹ Si{ ¹ H} NMR, CDCl ₃ , 400 MHz (¹ H), 298 K (CNST = $J_{Si,H}$ = 10 Hz)	S15	
Figure S27. [9][BAr^F ₄], ESI(+)-MS	S16	
Figure S28. [10][BAr ^F ₄], ¹ H NMR, CD ₂ Cl ₂ , 400 MHz, 298 K	S16	
Figure S29. [9][BAr ^F ₄], ³¹ P{ ¹ H} NMR, CD ₂ Cl ₂ , 121 MHz, 298 K	S17	
Figure S30. [10] [BAr ^F ₄], ¹¹ B{ ¹ H} NMR, CD ₂ Cl ₂ , 128.4 MHz, 298 K	S17	
Figure S31. $[Cp*Ir(\kappa^3-N,H,H-Xyl(\underline{N})P(OB\underline{H}_2Dur)(OEt)_2)][BAr^F_4]$ (Dur = 2,3,5,6-tetramethylphenyl), ¹¹ B{ ¹ H} NMR, CD ₂ Cl ₂ , 128.4 MHz, 298 K	S18	
Figure S27. [10] [BAr ^F ₄], ¹³ C{ ¹ H} NMR, CD ₂ Cl ₂ , 100 MHz, 298 K	S18	
Table S1. [10] [BAr ^F ₄], ESI(+)-MS	S19	
Figure S26. [11][BAr ^F ₄], ¹ H NMR, CDCl ₃ , 400 MHz, 298 K	S19	
Figure S27. ORTEP depiction of the solid-state molecular structure of $[Cp*_2Ir_2(\mu-H)_3][BAr^F_4]$ [11][BAr ^F ₄] (displacement ellipsoids are shown at the 50% probability, hydrogens omitted for clarity)	S20	
Table S1. Crystallographic data for $[2][BAr^{Cl2}_4]$ and $[3][BAr^{F_4}]$	S21	
Table S2. Crystallographic data for $[9][BAr_4^F]$ and $[11][BAr_4^F]$	S22	
Crystallographic details	S22	

Figure S1. [1], ¹H NMR, CD₂Cl₂, 400 MHz, 298 K

Figure S2. [1], ³¹P{¹H} NMR, CD₂Cl₂, 121 MHz, 298 K

Figure S4. [2][BAr^F₄], ¹H NMR, CD₂Cl₂, 400 MHz, 298 K

Figure S5. [2][BAr^F₄], ³¹P{¹H} NMR, CD₂Cl₂, 121 MHz, 298 K

Figure S6. [2][BAr^F₄], ¹³C{¹H} NMR, CD₂Cl₂, 100 MHz, 298 K

Figure S7. [2][BAr^F₄], ESI(+)-MS

Figure S8. [3][BAr^F₄], ¹H NMR, CDCl₃, 400 MHz, 298 K

Figure S10. [3][BAr^F₄], ${}^{13}C{}^{1}H$ NMR, CD₂Cl₂, 100 MHz, 298 K

Figure S11. [3][BAr^F₄], ESI(+)-MS

Figure S12. [4][BAr^F₄], ¹H NMR, CD₂Cl₂, 400 MHz, 298 K

Figure S14. [4][BAr^F₄], ¹³C{¹H} NMR, CD₂Cl₂, 100 MHz, 298 K

Figure S15. [4][BAr^F₄], ESI(+)-MS

Figure S16. [7][**BAr**^F₄], ¹H NMR, CD₂Cl₂, 500 MHz, 298 K, showing signal broadening upon addition of excess MeCN

Figure S17. [7][**B**Ar^F₄], VT-³¹P{¹H} NMR, CD₂Cl₂, 202.5 MHz, 298 K showing consumption of complex **[2]**[**B**Ar^F₄] and formation of proposed complex **[7]**[**B**Ar^F₄] at low temperature.

Figure S18. [8][BAr^F₄], ¹H NMR, CD₂Cl₂, 400 MHz, 298 K

Figure S20. [8][BAr^F₄], ${}^{13}C{}^{1}H$ NMR, CD₂Cl₂, 150 MHz, 298 K

Figure S21. [8][BAr^F₄], ESI(+)-MS

Figure S22. [9][BAr^F₄], ¹H NMR, CDCl₃, 400 MHz, 298 K

Figure S24. [9][BAr^F₄], ³¹P{¹H} NMR, CDCl₃, 121 MHz, 298 K

Figure S25. [9][BAr^F₄], ¹³C{¹H} NMR, CDCl₃, 100 MHz, 298 K

Figure S26. [9][BAr^F₄], ¹H-²⁹Si{¹H} NMR, CDCl₃, 400 MHz (¹H), 298 K (CNST = *J*_{Si,H} = 10 Hz)

Figure S28. [10][BAr^F₄], ¹H NMR, CD₂Cl₂, 400 MHz, 298 K

Figure S29. [10][BAr^F₄], ³¹P{¹H} NMR, CD₂Cl₂, 121 MHz, 298 K

Figure S30. [10][BAr^F₄], ${}^{11}B{}^{1}H{}$ NMR, CD₂Cl₂, 128.4 MHz, 298 K

Figure S31. $[Cp^*Ir(\kappa^3-N,H,H-Xyl(\underline{N})P(OB\underline{H}_2Dur)(OEt)_2)][BAr_4^F]$ (Dur = 2,3,5,6-tetramethylphenyl), ¹¹B{¹H} NMR, CD_2Cl_2, 128.4 MHz, 298 K

Figure S32. [10][BAr^F₄], ¹³C{¹H} NMR, CD₂Cl₂, 100 MHz, 298 K

Figure S34. [11][BAr^F₄], ¹H NMR, CDCl₃, 400 MHz, 298 K

Figure S35. ORTEP depiction of the solid-state molecular structure of $[Cp_{2}r_{2}(\mu-H)_{3}][BAr_{4}^{F}]$ [**11**][BAr₄^F] (displacement ellipsoids are shown at the 50% probability, hydrogens omitted for clarity).

Compound	[2] [BAr ^{Cl2} ₄]	[3] [BAr ^F ₄]
Empirical formula	C ₄₆ H ₄₆ BCl ₈ IrNO ₃ P	$C_{65.04}H_{66.09}BCl_2F_{24}IrN_3O_{3.02}P$
Formula weight	1178.50	1698.91
Temperature/K	150	90
Crystal system	Monoclinic	Orthorhombic
Space group	P 2 ₁ /n	Pbca
a/Å	13.3463(1)	17.9224(10)
b/Å	20.8617(2)	24.6821(12)
c/Å	17.8625(2)	31.8660(16)
α/°	90	90
β/°	94.8267(4)	90
γ/°	90	90
$V/Å^3$	4955.76(8)	14096.3(13)
Ζ	4	8
$\rho/g/cm^{-3}$	1.579	1.601
$\mu/\text{ mm}^{-1}$	3.198	2.103
F(000)	2344.0	6788.0
Crystal size/ mm ³	$0.16\times0.14\times0.04$	$0.41 \times 0.21 \times 0.14$
Radiation	Mo Kα (λ = 0.71073)	MoK α ($\lambda = 0.71073$)
2θ range for datacollection/°	10.242 to 54.988	3.086 to 52.9
	$-17 \leq h \leq 17, -27 \leq k \leq 23, -23 \leq$	$-22 \leq h \leq 22, -30 \leq k \leq 30, -39 \leq$
Index ranges	l ≤ 23	l ≤ 39
	$11286 [R_{int} = 0.040, R_{sigma} =$	14475 [$R_{int} = 0.1366, R_{sigma} =$
Independent reflections	N/A]	0.0817]
Data/restraints/parameters	11286/0/550	14475/970/976
Goodness-of-fit on F^2	0.915	1.028
$R [I \ge 2\theta (I)] (R1, wR2)$	(0.0355, 0.0689)	(0.0499, 0.0939)
R (all data) (R1, wR2)	(0.0642, 0.0762)	(0.0991, 0.1113)
Largest diff. peak/hole / (e Å ⁻³)	(2.74, -1.64)	(1.45/-1.33)

Table S1. Crystallographic data for [2][BAr ^{C12} 4] and [3][BA	r_4]

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o|; wR2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$

Compound	[9] [BAr ^F ₄]	[11] [BAr ^F ₄]
Empirical formula	C ₆₆ H ₅₆ BF ₂₄ IrNO ₃ PSi	$C_{52}H_{42}BF_{24}Ir_2$
Formula weight	1629.18	1518.11
Temperature/K	90.0	150
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
a/Å	12.3952(19)	10.8290(2)
b/Å	15.021(2)	12.6902(2)
c/Å	18.869(3)	19.9820(4)
α/°	71.324(3)	91.0343(7)
β/°	80.182(3)	97.3543(7)
γ/°	84.966(3)	98.1876(8)
$V/Å^3$	3277.3(9)	2693.78(9)
Ζ	2	2
$\rho/g/cm^{-3}$	1.651	1.872
μ/ mm ⁻¹	2.195	5.054
F(000)	1620.0	1458.0
Crystal size/ mm ³	$0.42 \times 0.23 \times 0.14$	$0.10\times0.08\times0.08$
Radiation	MoK α ($\lambda = 0.71073$)	Mo K α ($\lambda = 0.71073$)
2θ range for datacollection/°	2.864 to 61.246	10.296 to 55.04
	$-17 \le h \le 17, -21 \le k \le 19, -26 \le$	$-14 \le h \le 14, -16 \le k \le 16, -25$
Index ranges	l ≤ 26	≤ l ≤ 25
	20042 [$R_{int} = 0.0272, R_{sigma} =$	$12286 [R_{int} = 0.046, R_{sigma} =$
Independent reflections	0.0263]	N/A]
Data/restraints/parameters	20042/927/904	22708/0/547
Goodness-of-fit on F^2	1.103	0.923
$R [I \ge 2\theta (I)] (R1, wR2)$	(0.0380, 0.0927)	(0.0433, 0.0840)
R (all data) (R1, wR2)	(0.0438, 0.0966)	(0.0778, 0.0944)
Largest diff. peak/hole / (e Å ⁻³)	(4.00/-1.34)	(4.01, -4.30)

Table S2 Crystallographic data for [9][BAr^F₄] and [11][BAr^F₄]

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o|; wR2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$

Crystallographic details

Data for $[2][BAr^{F_4}]$, $[3][BAr^{F_4}]$, $[9][BAr^{F_4}]$, and $[11][BAr^{F_4}]$ were collected using graphitemonochromated Mo K_a radiation (l=0.71073 Å). CCDC 1061938 ([2][BAr^{Cl2}_4]), 1403652 ([3][BAr^{F_4}]), 1403651 ([9][BAr^{F_4}]), and 1061937 ([11][BAr^{F_4}]) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif. For [3][BAr^{F_4}], [9][BAr^{F_4}], and [11][BAr^{F_4}] rotational disorder of the anion CF₃ groups treated by modelling the fluorine atoms over two sites and restraining their geometry. For [3][BAr^{F_4}], one of the P(OCH₂CH₃) ligand arms was disordered and modelled over three positions. For [11][BAr^{F_4}] the hydrogen atoms were found on the Fourier map and refined before adding RIDE restraints. Hydrides bridging the two Ir centres, while implicated by other spectroscopic techniques, could not be reliably located/refined.