Supporting Information

Construction of Tetracyclic 3-Spirooxindole through Cross Dehydrogenation of Pyridinium: Applications in Facile Synthesis of (\pm)-Corynoxine and (\pm)-Corynoxine B

Jun Xu, ${ }^{\dagger, \S, \ddagger}$ Li-Dong Shao, ${ }^{\dagger \dagger \ddagger}$ Dashan Li,,${ }^{\dagger, \S}$ Xu Deng, ${ }^{\dagger}$ Yu-Chen Liu, ${ }^{\dagger, \S}$ Qin-Shi Zhao, ${ }^{*,{ }^{\dagger}}$ and Chengfeng Xia**
${ }^{\dagger}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
${ }^{8}$ University of Chinese Academy of Sciences, Beijing 100049, China

List of Supporting Information

\qquad

1. General MethodsS2
2. General procedures for the synthesis of substrates S2
3. General procedures for the synthesis of tetracyclic 3-spirooxindole derivatives S5
4. Procedures for the synthesis of (\pm)-corynoxine and (\pm)-corynoxine B S10
5. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S15

1. General Methods.

Anhydrous THF, $\mathrm{Et}_{2} \mathrm{O}$, toluene and benzene were distilled over sodium and benzophenone ketyl under $\mathrm{N}_{2} ; \mathrm{Et}_{3} \mathrm{~N}$, DCM and $\mathrm{CH}_{3} \mathrm{CN}$ were refluxed with CaH_{2} and freshly distilled prior to use; anhydrous MeOH and EtOH were distilled over magnesium under Ar_{2}; all other solvents and reagents were used from commercial sources without further purifications. All reactions sensitive to air or moisture were carried out under argon or nitrogen atmosphere in dry and freshly distilled solvents under anhydrous conditions, unless otherwise noted.

The silica gel (200-300 meshes) was used for column chromatography. Thin layer chromatographies (TLC) were carried out on GF254 plates (0.25 mm layer thickness). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR experiments were performed on Bruker AM-400 and DRX-600 NMR spectrometer at ambient temperature. The residual solvent protons (${ }^{1} \mathrm{H}$) or the solvent carbons (${ }^{13} \mathrm{C}$) were used as internal standards. ${ }^{1} \mathrm{H}$ NMR data were presented as follows: chemical shift in ppm downfield from tetramethylsilane (multiplicity, coupling constant, integration). Chemical shifts (δ) were given in ppm with reference to solvent signals [${ }^{1} \mathrm{H}$ NMR: CDCl_{3} (7.26), $\mathrm{CD}_{3} \mathrm{OD}$ (3.31), DMSO- d_{6} (2.50); ${ }^{13} \mathrm{C}$ NMR: CDCl_{3} (77.16), $\mathrm{CD}_{3} \mathrm{OD}$ (49.00), DMSO- d_{6} (39.52)]. The following abbreviations are used in reporting NMR data: s, singlet; brs, broad singlet; d , doublet; t , triplet; q , quartet; qt , quartet of triplets; dd, doublet of doublets; dt, doublet of triplets; AB, AB quartet; m, multiplet. HRMS (ESI) was taken on Agilent 6540 Q-TOF spectrometer. Melting points were measured on a WRX-5A melting point apparatus and were uncorrected.

2. General procedure for the synthesis of substrates

To a solution of 3-hydroxyethyl oxindole s1 (3.20 g, 20 mmol) in DMSO (10 mL) was added dropwise conc. $\mathrm{HCl}(14 \mathrm{~mL})$ at room temperature. The resulting dark
solution was stirred for 3 minutes at room temperature and then poured into ice-water $(100 \mathrm{~mL})$. Aqueous sodium hydroxide (30%) was added slowly to bring the pH of the solution to ~ 7 and the resulting solution was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude oxindole s2, which was used without further purification. To an ice-water bath cooled solution of crude product $\mathbf{s} \mathbf{2}$ and $\mathrm{PPh}_{3}(8.90$ $\mathrm{g}, 20 \mathrm{mmol})$ in DCM (20 mL) was added NBS ($3.56 \mathrm{~g}, 20 \mathrm{mmol}$) in small portions. The mixture was warmed up to room temperature and allowed to stir for 20 minutes (monitored by TLC), the reaction was quenched with water and extracted with 100 mL of DCM. The combined organic extracts were washed with brine ($3 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by chromatography (petroleum ether/ethyl acetate $=4: 1$) to afford desired product $\mathbf{1}$ as a slightly yellow solid ($3.32 \mathrm{~g}, 69.6 \%$ over 2 steps). M.p.: $117-121{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64 (ddd, $J=19.3,11.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{dt}, J=10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51-2.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 179.85, 141.60, 128.51, 128.49, 124.30, 122.70, 110.16, 44.59, 34.04, 30.00; HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrNO}$ [M $+\mathrm{H}]^{+} 240.0019$, found 240.0020 .

To a solution of 3-hydroxyethyl oxindole s1 ($3.20 \mathrm{~g}, 20.0 \mathrm{mmol}$) in 40 mL of THF at $0{ }^{\circ} \mathrm{C}$ was slowly added imidazole ($1.65 \mathrm{~g}, 24.2 \mathrm{mmol}$) and TBSCl (3.64 g, 24.2 mmol). The resulting mixture was warmed up to room temperature and allowed to stir for 30 minutes (Monitored by TLC). The reaction was poured into water, extracted with 100 mL of ethyl acetate, washed with brine $(3 \times 50 \mathrm{~mL})$, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give crude product $\mathbf{s 3}$ which was not purified for further use.

To a solution of $\mathbf{s 3}$ in 40 mL of THF at $0^{\circ} \mathrm{C}$ was slowly added $\mathrm{NaH}(24.2 \mathrm{mmol})$ and stirred for 10 minutes. Then $\mathrm{BnBr}(24.2 \mathrm{mmol})$ was slowly added to the suspension and the resulting mixture was warmed up to room temperature and allowed to stir for 2 h at room temperature. After completion (Monitored by TLC), the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.), extracted with 100 mL of ethyl acetate, washed with brine ($3 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give crude product $\mathbf{s} 4$ which was not purified for further use.

To a solution of above s4 in DMSO (10 mL) was added dropwise conc. HCl (14 mL) at room temperature. The resulting dark solution was stirred for 30 minutes, and then poured into ice-water $(60 \mathrm{~mL})$. Aqueous NaHCO_{3} was added slowly to bring the PH of the solution to ~ 7, and extracted with 100 mL of ethyl acetate, washed with brine $(3 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give crude products $\mathbf{s} 5$ which passed a short pad of silica with petroleum ether/ethyl acetate $=4: 1$ as eluent for further use.

To an ice bath cooled solution of crude product $\mathbf{s} 5$ and $\mathrm{PPh}_{3}(8.90 \mathrm{~g}, 20 \mathrm{mmol})$ in DCM (20 mL) was added NBS ($3.56 \mathrm{~g}, 20 \mathrm{mmol}$) in small portions. The resulting mixture was warmed up to room temperature and allowed to stir for 20 minutes. After completion (monitored by TLC), the reaction was quenched with water and extracted with 100 mL of DCM. The combined organic extracts were washed with brine (3×50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by chromatography (petroleum ether/ethyl acetate $=10: 1$) to afford desired product $\mathbf{1 b}$ $(3.06 \mathrm{~g}, 46.8 \%$ over 4 steps $)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.35-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.91$ (s, 2H), 3.74 (dd, $J=11.4,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{dd}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dtd, $J=21.3,14.2,7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 177.20, 143.51, $135.92,128.95,128.38,127.91,127.82,127.45,124.09,122.73,109.37,44.08,43.89$, 34.31, 30.06; MS (ESI): $330[\mathrm{M}+\mathrm{H}]^{+}$.

1c

The preparation of $\mathbf{1 c}$ following the same procedures for $\mathbf{1 b}$. Slightly yellow oil (42.4\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.82(\mathrm{tdd}, J=15.3,10.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.07(\mathrm{~m}, 2 \mathrm{H})$, $4.33(\mathrm{dd}, J=4.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{dt}, J=10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.43 (ddt, $J=28.6,14.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.78,143.56$, $131.46,128.35,127.86,124.06,122.64,117.76,109.23,44.03,42.41,34.21,30.02$; MS (ESI): $302[\mathrm{M}+\mathrm{Na}]^{+}$.
 $177.02,144.34,128.40,127.84,123.92,122.61,108.29,44.01,34.05,30.09,26.29 ;$ MS (ESI): $254[\mathrm{M}+\mathrm{H}]^{+}$.

3. General procedures for the synthesis of tetracyclic 3-spirooxindole derivatives.

A suspension of 3-(2-bromo-ethyl)-indole 1a ($1.4 \mathrm{~g}, 5.9 \mathrm{mmol}$) and methyl nicotinate ($3.23 \mathrm{~g}, 23.6 \mathrm{mmol}$) was stirred at $70^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature. Evaporated the most of solvent at reduced pressure and ethyl ether (30 mL) was added. The mixture was stirred vigorously for 10 min until the pasty material solidified then decanted the organic layer, 10 mL methanol was added to dissolve the residue followed by adding 30 mL ethyl ether under vigorously stirring. This procedure was repeated for three times. The residue yellow wax was dried at $40^{\circ} \mathrm{C}$ under vacuum to yield pyridinium salt $\mathbf{2 b}(1.58 \mathrm{~g}, 4.2 \mathrm{mmol})$ as a yellow foam
which was used directly without further purification.
To a solution of $\mathbf{2 b}(1.58 \mathrm{~g}, 4.2 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(222 \mathrm{mg}, 2.1 \mathrm{mmol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ was stirred at room temperature under an atmosphere of oxygen (1 $\mathrm{atm})$ for 12 h . The mixture was concentrated in vacuum to leave the residue, which was subjected to flash chromatographic separation (dichloromethane/methanol $=20: 1$) to afford product $3(1.34 \mathrm{~g}, 85 \%)$ as a yellow foam. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ $9.46(\mathrm{~s}, 1 \mathrm{H}), 9.23(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=13.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=13.4,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.07 (s, 3H), 3.71 (dd, $J=7.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.55(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ 177.02, 163.20, 161.42, 147.94, 145.43, 143.92, 132.03, 131.44, 129.62, 125.96, 124.93, 124.87, 112.06, 61.46, 59.63, 54.18, 49.64, 49.43, 49.21, 49.00, 48.79, 48.57, 48.36, 35.17; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}]^{+}$295.1083, found 295.1077.

Yellow foam (79% yield), ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $11.16(\mathrm{~s}, 1 \mathrm{H}), 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.75(\mathrm{~d}, J=$ $8.3,1 \mathrm{H}), 7.41$ (dd, $J=13.5,7.3,2 \mathrm{H}), 7.09(\mathrm{dd}, J=11.5,7.7$, $2 \mathrm{H}), 5.24$ (dd, $J=14.6,7.8,2 \mathrm{H}), 4.46$ (q, $J=6.9,2 \mathrm{H}), 3.14-$ $3.00(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 175.43,162.02,159.89,146.90,144.77,142.95,130.90,129.50,129.44$, 125.29, 123.96, 123.43, 111.11, 63.13, 59.91, 58.59, 34.10, 14.48; HRMS (ESI) $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+} 309.1239$, found 309.1238.

5

Yellow foam (81% yield), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 9.73$ (s, 1H), $8.90(\mathrm{dd}, J=8.3,1.0,1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.39(\mathrm{dt}$, $J=7.9,5.0,2 \mathrm{H}), 7.19-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.21(\mathrm{~m}, 2 \mathrm{H}), 3.07$ (dd, $J=8.5,6.3,2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 192.75,175.68,159.57,145.40,143.38,142.55,135.39,130.62,128.30$, $124.59,123.49,123.47,110.66,60.04,58.17,48.26,48.05,47.84,47.63,47.41,47.20$,
46.99, 33.79, 25.85; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}$279.1134, found 279.1134.

6

Yellow foam (89% yield), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $9.88(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.52$ - 7.33 (m, 2H), $7.16(\mathrm{t}, J=7.6,1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.8,1 \mathrm{H})$, $5.90(\mathrm{t}, J=10.8,1 \mathrm{H}), 5.43-5.16(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.54$ $-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.64,161.62,160.36,146.33,144.59,143.79,131.03,129.85$, 126.91, 126.54, 125.03, 123.41, 109.10, 59.62, 59.08, 53.85, 34.63, 27.11; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+} 309.1239$, found 309.1237.

Yellow foam (89% yield), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.67$ ($\mathrm{s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=8.2,1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.46(\mathrm{t}, J=$ $7.8,1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6,1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $7.9,1 \mathrm{H}), 6.06(\mathrm{t}, J=10.6,1 \mathrm{H}), 5.53-5.22(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 192.93,173.52,159.78,145.11,144.78,143.85,134.98$, 131.10, 127.08, 125.78, 124.91, 123.21, 109.28, 100.06, 59.45, 58.61, 34.58, 28.18, 27.15; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}$293.1290, found 293.1288.

8

Yellow foam (76% yield), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89$ (s, 1H), 8.79 (d, $J=8.2,1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2,1 \mathrm{H}), 7.33$ (dd, $J=$ $25.4,19.3,2 \mathrm{H}), 7.11(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.9,1 \mathrm{H}), 6.00$ $-5.65(\mathrm{~m}, 2 \mathrm{H}), 5.45-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=12.4,2 \mathrm{H}), 4.30$ (d, $J=4.4,2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.70$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 173.40, 161.61, 160.18, 146.39, 144.67, $142.92,130.86,130.26,129.81,126.86,126.47,124.89,123.24,118.59,109.88$, 59.51, 59.01, 53.80, 42.95, 34.67; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+} 335.1396$, found 335.1394.

9

Yellow foam (86% yield), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.55$ (s, 1H), 8.75 (d, $J=8.2,1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.37(\mathrm{t}, J=$ $7.7,1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.13(\mathrm{t}, J=7.6,1 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $7.9,1 \mathrm{H}), 6.11-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.30$ (m, 1H), $5.22(\mathrm{t}, J=14.0,2 \mathrm{H}), 4.30(\mathrm{~d}, J=5.2,2 \mathrm{H}), 3.37-3.16$ $(\mathrm{m}, 1 \mathrm{H}), 3.02-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.72(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $192.75,173.36,159.98,145.09,143.10,135.07,131.11,130.33,127.02,126.01$, $125.04,122.99,118.89,110.13,100.38,59.51,58.86,58.66,43.12,34.80,28.25$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+} 319.1447$, found 319.1444.

Yellow foam (86% yield), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79$ ($\mathrm{s}, 1 \mathrm{H}$), $8.79(\mathrm{~d}, J=8.2,1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.7,1 \mathrm{H}), 7.35$ (d, $J=8.3,1 \mathrm{H}), 7.20(\mathrm{t}, J=7.6,1 \mathrm{H}), 6.96(\mathrm{~d}, J$ $=7.9,1 \mathrm{H}), 5.94(\mathrm{t}, J=10.6,1 \mathrm{H}), 5.83(\mathrm{ddd}, J=15.8,10.5,5.2$, $1 \mathrm{H}), 5.30(\mathrm{~m}, 3 \mathrm{H}), 4.54-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=5.2,2 \mathrm{H}), 3.65(\mathrm{dd}, J=22.6,9.9$, $1 \mathrm{H}), 2.92(\mathrm{dd}, J=12.7,6.9,1 \mathrm{H}), 1.43(\mathrm{t}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.60,161.03,160.47,146.36,144.47,143.02,131.00,130.33,126.98,126.86$, 125.20, 123.19, 118.78, 109.86, 63.56, 59.74, 59.17, 43.05, 34.83, 14.26; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[M]^{+} 349.1552$, found 349.1550.

Yellow foam (91% yield), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 9.82 (s, 1H), 8.75 (d, $J=8.2,1 \mathrm{H}), 7.93$ (d, $J=7.4,1 \mathrm{H}), 7.25$ (dt, $J=16.5,6.5,7 \mathrm{H}), 7.10(\mathrm{t}, J=7.6,1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9$, $1 \mathrm{H}), 6.00-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.74(\mathrm{~m}$, $2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 173.99,161.60,160.49,146.43,144.70,142.96,134.83,130.98,130.01$, 129.24, 128.37, 127.37, 126.94, 126.91, 125.20, 123.19, 109.99, 59.74, 59.22, 53.93, 44.54, 34.81; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+} 385.1552$, found 385.1548 .

Yellow foam (87% yield), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.53$ ($\mathrm{s}, 1 \mathrm{H}$), $8.72(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.2,3 \mathrm{H}), 7.26(\mathrm{ddd}, J=$ 19.2, 16.1, 7.7, 9H), 7.10 (t, $J=7.3,1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.9,1 \mathrm{H})$, $6.07-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{q}, J=15.5,3 \mathrm{H})$, $3.36-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $192.67,173.72,159.82,145.10,144.82,142.97,135.18,134.69,131.00,129.19$, $128.35,127.31,126.94,125.75,124.99,122.77,110.13,59.52,58.54,44.50,34.64$, 27.78; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} 369.1603$, found 369.1599 .

4. Procedures for the synthesis of (\pm)-conynoxine and (\pm)-conynoxine B

To a solution of coupling product $5(1.20 \mathrm{~g}, 3.35 \mathrm{mmol})$ in a mixture of dioxane and water (20:1, 20 mL) at room temperature was added $\mathrm{NaBH}_{4}(0.51 \mathrm{~g}, 13.40 \mathrm{mmol})$. After refluxing for 2 h , the reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, the resulting solution was extracted with dichloromethane $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine ($3 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, after removal of the solvent, the residue was purified by flash column chromatography on silica gel (dichloromethane/methanol = 50:1) to give $13(0.72 \mathrm{~g}$, 78%) as yellow foam. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (d, $J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dt}, J=19.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}$, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dt}, J=10.6,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.19(\mathrm{~m}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.03,140.36,127.97,125.38,122.70,119.82$, $118.25,109.69,70.48,69.79,68.02,67.95,56.54,54.48,53.03,51.91,35.46,35.37$, 26.59, 22.29, 21.66; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 285.1598$, found 285.1602.

The alcohol $13(20 \mathrm{mg}, 0.070 \mathrm{mmol})$ was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Dess-Martin periodinane ($36 \mathrm{mg}, 0.084 \mathrm{mmol}$) was then added and the reaction was allowed to stir at room temperature for 2.5 h . The reaction was quenched with $\mathrm{NaHCO} \mathrm{O}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (5:1) and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The reaction mixture was allowed to stir for an additional 10 minutes. The layers were then separated and the aqueous layer
was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The aldehyde was dried further by passing through a small column of silica gel (dichloromethane/methanol $=60: 1$) to give 14 ($16 \mathrm{mg}, 79 \%$) as soft yellow foam. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86$ (s, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.22(\mathrm{td}, J=7.7,0.9,1 \mathrm{H}), 7.04(\mathrm{t}, J=7.2,1 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $7.7,1 \mathrm{H}), 6.76$ (s, 1H), 3.98 (d, $J=16.4,1 \mathrm{H}), 3.57-3.47$ (m, 1H), 2.94 (dd, $J=16.4$, $3.2,1 \mathrm{H}), 2.77$ (dd, $J=9.7,4.6,1 \mathrm{H}), 2.69(\mathrm{dd}, J=17.4,9.2,1 \mathrm{H}), 2.49(\mathrm{ddd}, J=13.0$, 9.7, 3.2, 1H), $2.35-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.11$ (ddd, $J=16.0,12.9,4.6,1 \mathrm{H}), 2.00-1.85(\mathrm{~m}$, 2 H) ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.50,181.03,140.16,138.19,138.11,133.10$, 128.18, 125.28, 122.91, 109.67, 66.45, 56.50, 54.01, 51.27, 35.08, 27.67, 25.44; HRMS (ESI) calcd. For $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$283.1441, found 283.1448.

A solution of $\mathbf{1 3}(1.00 \mathrm{~g}, 3.52 \mathrm{mmol})$, trimethyl orthoacetate $(2.25 \mathrm{~mL}, 17.60$ mmol) propanoic acid ($80 \mu \mathrm{~L}, 1.06 \mathrm{mmol}$) in 1,4-dioxane (20 mL) was charged with argon and then was sealed and stirred at $120{ }^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature and removal of solvent in vacuo, the residue was purified by flash column chromatography on silica gel (dichloromethane/methanol $=50: 1$) to give 15 ($0.82 \mathrm{~g}, 68 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.12$ (dd, $J=36.3,13.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=9.9,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-4.97(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=73.0,12.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67 - 3.49 (m, 3H), 3.32 (t, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (dt, $J=21.8,10.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.63 $2.32(\mathrm{~m}, 6 \mathrm{H}), 2.32-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{dd}, J=16.3,7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 1.27(\mathrm{dt}, J=10.9,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.74(\mathrm{dd}, J=23.3$, $11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.40,182.28,173.24,172.92,140.52$, 136.40, 135.31, 133.69, 133.53, 127.72, 127.67, 125.31, 125.16, 122.46, 120.60, $115.78,109.75,67.12,56.65,54.13,53.98,53.27,51.68,51.45,49.51,38.79,38.25$, 37.52, 37.09, 35.80, 35.42, 33.21, 31.02, 13.26, 13.08; HRMS (ESI) calcd. for
$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$341.1860, found 341.1869.

To a solution of $15(1.00 \mathrm{~g}, 2.94 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added lithium diisopropylamine ($4.4 \mathrm{~mL}, 8.80 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF) at $-78^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was stirred at the same temperature for 1 h and then methyl formate ($3.24 \mathrm{~mL}, 29.40 \mathrm{mmol}$) was added. The mixture was warmed up to $0^{\circ} \mathrm{C}$ and subsequently allowed to stir at room temperature for additional 12 h . The reaction solution was the poured into 30 mL of water and the pH was adjusted to 12 by the addition of solid KOH . The aqueous solution which resulted was extracted with 30 mL of ethyl ether. The organic layer was washed with brine $(3 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated solvent in vacuo leading to the recovery of 0.50 g of the starting material 15. The aqueous solution remained which was acidified with 2 N citric acid aqueous solution to adjust PH to 3 and extracted with DCM. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated solvent in vacuo to give $0.39 \mathrm{~g} \mathrm{(36} \mathrm{\%}$, 82% based on recovered starting material) formyl intermediate as a mixture of formyl and enol tautomers.

To a stirred solution of the above mixture ($0.39 \mathrm{~g}, 1.06 \mathrm{mmol}$) in 20 mL of the mixture solvent $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}=1: 1\right)$ at room temperature was added (trimethylsilyl)diazomethane ($2.65 \mathrm{~mL}, 5.30 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in hexane). After stirring at room temperature for 5 h , the mixure was concentrated in vacuo, the residue was submitted to chromatography on silica gel (dichloromethane/methanol $=$ $50: 1)$ to give $16(242 \mathrm{mg}, 62 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.76(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.3,1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.6,1 \mathrm{H}), 6.98(\mathrm{t}, J=7.5$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.7,1 \mathrm{H}), 5.00(\mathrm{~d}, J=5.9,1 \mathrm{H}), 4.11(\mathrm{~d}, J=12.4,1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 3.58 (s, 3H), 3.34 (dd, $J=15.7,9.1,2 H$), 2.65 (d, $J=10.4,1 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 2 \mathrm{H})$, $2.41(\mathrm{dd}, J=11.0,9.4,1 \mathrm{H}), 2.09(\mathrm{dt}, J=12.8,8.5,1 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}$, $J=6.5,3 \mathrm{H}), 1.06(\mathrm{~d}, J=11.4,1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 182.53, 168.64,
$160.23,140.38,133.91,132.99,127.55,125.41,122.30,116.39,110.52,109.58$, $72.40,61.49,56.99,54.59,53.57,51.23,35.78,30.23,13.23$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 383.1965$, found 383.1972.

A mixture of $16(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{PtO}_{2}(83 \%, 10 \mathrm{mg})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature under an atmosphere of hydrogen (1 atm) for 6 h . The mixture was filtered through a pad of Celite, and the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (dichloromethane/acetone $=10: 1$) to give (\pm)-corynoxine ($86 \mathrm{mg}, 86 \%$) as an amorphous solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.3,1 \mathrm{H})$, $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.7,1 \mathrm{H}), 3.62(\mathrm{~s}$, $3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=13.3,1 \mathrm{H}), 2.53-2.35(\mathrm{~m}, 3 \mathrm{H})$, $2.23-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.52(\mathrm{~d}, J=11.0,1 \mathrm{H}), 1.19-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=13.0,1 \mathrm{H}), 0.90(\mathrm{t}, J=7.4$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.10,169.23,160.31,140.18,134.76,127.33$, $125.00,122.37,111.83,109.45,73.16,61.19,57.46,54.70,54.01,51.27,40.33,38.98$, 34.96, 25.45, 19.39, 13.04; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 385.2128$, found 385.2121 .

A solution of (\pm)-corynoxine ($16 \mathrm{mg}, 0.04 \mathrm{mmol}$) in 2,2,2-trifluoroenthanol (2 mL) was stirred at room temperature for 6 h . After removal of solvent in vacuo, the residue was purified by flash column chromatography on silica gel (dichloromethane : methanol $=50: 1$) to give (\pm)-corynoxine $\mathrm{B}(9.4 \mathrm{mg}, 59 \%, 90 \% \mathrm{brsm})$ as an
amorphous solid, and recovery 5.0 mg of (\pm)-corynoxine. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=14.8,7.4,2 \mathrm{H}), 7.01(\mathrm{t}, J=7.4,1 \mathrm{H})$, $6.86(\mathrm{~d}, J=7.6,1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{dd}, J=22.9,9.6,2 \mathrm{H}), 2.64(\mathrm{~d}, J$ $=13.0,1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{dt}, J=24.5,10.1,2 \mathrm{H}), 2.20(\mathrm{~d}, J=10.8,1 \mathrm{H})$, $2.09-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~d}, J=10.1,1 \mathrm{H}), 1.18(\mathrm{dd}, J=12.9$, $7.0,1 \mathrm{H}), 1.04(\mathrm{~d}, J=12.2,1 \mathrm{H}), 0.87(\mathrm{t}, J=7.3,4 \mathrm{H}), 0.87(\mathrm{t}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 181.84,169.23,160.53,141.23,133.83,127.85,123.23,122.48$, $111.55,109.33,76.82,61.64,56.51,55.12,55.06,51.37,40.48,40.20,34.20,25.08$, 19.29, 13.48; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$385.2122, found 385.2121 .
5. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

a ludle
l.h madudar

