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Experimental details 

Catalysis synthesis 

The SAPO-34 and SAPO-5 synthesis were prepared according to references 1-3. Key ingredients and synthetic 
conditions are listed below in Table S1.  

In both cases the as-prepared samples were calcined in a tube furnace under a flow of air at 575 oC for 16 hours 
yielding a white solid.  

 SAPO-5 SAPO-34 

Aluminium source Aluminium hydroxide hydrate (Al-

drich) 

Aluminium isopropoxide  (Aldrich) 

Silicon source Silica sol (40 wt% in H2O, Aldrich) Fumed silica (Aldrich) 

Structure directing agent Triethylamine (Fisher) Tetraethylammonium hydroxide (35 

wt% in H2O, Aldrich) 

Crystallization temperature/ °C 180 200 

Crystallization time/ h 24 60 

Table S1: Summary of synthetic conditions. 

Characterisation 

ICP-OES measurements were performed by Medac. 

Phase purity and crystallinity of materials was confirmed by powder X-ray diffraction. Powder X-ray diffraction 
(PXD) was carried out using a Bruker D2 Phaser diffractometer using Cu Kα1/Kα2 radiation λ = 1.5418 Å, PXD pat-
terns were run over a 2θ rage of 5-45° with a scan speed of 3° min-1 and increment of 0.01°. 

Scanning electron microscopy was carried out using a Jeol JSM-5910. 

 

Catalysis 

Catalysis was performed using a custom build flow reactor provided by Cambridge Reactor Design. The reactor 
comprised of a syringe pump, laptop computer, two mass flow controllers, reactor with heater and control box. 
A 224 mm quartz reactor tube (4 mm id, 6 mm od) with a 4 mm high frit 80 mm from the base of the tube and a 
gas inlet 25.8 mm from the top was placed inside the heater jacket. Liquid and gas flows were controlled using a 
Harvard Apparatus Model 33 MA1-55-3333 syringe pump and Brooks IOM585OS mass flow controller respec-
tively and flow rates were input via computer interface. 

 

  



S3 

 

Silicon substitution mechanisms 

 

Figure S1: Possible silicon substitution methods into an AlPO framework.  

 

Textural characterization results 

Powder X-ray diffraction 

 

Figure S2: Powder X-ray diffraction pattern for phase-pure SAPO-5(1.38). 

SAPO-5(1.38) 
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Figure S3: Powder X-ray diffraction pattern for phase-pure SAPO-34(2.66). 

 

Catalyst Alpha/ Å Gamma/ Å Volume/ Å3 

SAPO-5(1.38) 13.8431 8.4295 1398.93 

SAPO-34(2.66) 13.7097 14.9052 2426.20 

Table S2: Unit cell data for SAPO-5 and SAPO-34 as determined using Celref.[4] 

SAPO-34(2.66) 
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Figure S4: Powder XRD patterns for SAPO-34(1.82) and SAPO-5(1.80) showing main phase. 

 

BET surface area measurements 

 SAPO-5(1.38) SAPO-34(2.66) 

BET surface area/ m2g-1 250.98 479.37 

Table S3: Surface area measurements determined using BET. 

 

Crystallite size calculations 

 SAPO-34(2.66) SAPO-34(1.82) SAPO-5(1.80) SAPO-5(1.38) 

Crystallite size/nm 58 43 59 50 

Table S4: Crystallite sizes derived from powder-XRD with Scherrer’s equation. 
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Scanning Electron Microscopy  

 

Figure S5: SEM image of SAPO-5(1.38). 

 

 

Figure S6: SEM of SAPO-34(2.66). 
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Probe-based FTIR spectroscopy 
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Figure S7: FTIR spectra in the OH stretching region of CO adsorbed at 80 K on calcined SAPO-34(2.66) (A) and 
SAPO-5(1.38) (B). Decreasing CO coverages from 30 (red curves) to 0.01 (blue curves) mbar. The spectra in vac-
uo before CO adsorption are also reported (grey curves). 

  

SAPO-34(2.66) SAPO-5(1.38) 
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NMR spectra 

 

Figure S8: CP-RAMP 29Si MAS NMR spectra of SAPO-34(2.66) at 9.4 T, 8 kHz spin rate. The spectrum is the result 
of 15000 scans. 

 

Figure S9: CP-RAMP 29Si MAS NMR spectra of SAPO-5(1.38) at 9.4 T, 8 kHz spin rate. The spectrum is the result 
of 25000 scans. 
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Computational Analysis 

Binding studies were also performed with NH3 and ethanol on the specific sites witnessed by 29Si NMR, to gain 
an insight into the acidic nature of the specific active sites and the mechanistic implications; the following equa-
tion was used to quantify the degree of interaction with the probe molecules: 

(4) ΔBinding = E[Probe + SAPO] – E[Probe] – E[SAPO] 

 

 

Figure S10: Optimised geometry of the 5-silicon island in SAPO-5. 
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Figure S11: Optimised geometry of the binding of NH3 to the 5-silicon SAPO-5 species. 

 

Figure S12: Optimised geometry of the isolated silicon site in SAPO-34. 
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Figure S13: The optimised geometry of the isolated silicon site in SAPO-34 binding to NH3. 

 

Figure S14: The optimised geometry of the isolated silicon site in SAPO-34 binding to ethanol. 
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Additional catalytic data 

Catalyst Conversion/mol% Selectivity/mol% 

300 °C 275 °C 250 °C 300 °C 275 °C 250 °C 

SAPO-5(1.38) 96 89 87 94 54 31 

SAPO-34(2.66) 100 98 93 100 95 76 

Blank (No catalyst) 0.3 0.3 0.3 20.8 25.3 0.0 

Table S5: Catalytic data for dehydration of ethanol to ethylene. WHSV = 4.38 h-1, He carrier gas 50 mL min-1, 
0.3 g catalyst. Blank reaction performed using comparable flow rates.  
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