SUPPORTING INFORMATION

The Role of Isolated Acid Sites and Influence of Pore Diameter in the Low-Temperature Dehydration of Ethanol

Matthew E. Potter, ** Mary E. Cholerton, *Julija Kezina, *Richard Bounds, *Marina Carravetta, *Maela Manzoli, *Enrica Gianotti, *Michael Lefenfeld, *and Robert Raja **

Corresponding authors Email: M.E.Potter@soton.ac.uk, R.Raja@soton.ac.uk

Contents

Experimental details	Page S2
Catalysis synthesis	Page S2
Characterisation	Page S2
Catalysis	Page S2
Silicon substitution mechanisms	Page S3
Textural characterisation results	Page S3
Powder X-ray diffraction	Page S3
BET surface area measurements	Page S5
Particle size calculations	Page S5
Scanning Electron Microscopy images	Page S6
Probe-based FTIR spectroscopy	Page S7
NMR spectra	Page S8
Computational analysis	Page S9
Additional catalytic data	Page S12
Mechanistic pathways	Page S12
References	Page S12

[†]School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom

[‡]Department of Chemistry & NIS-Interdepartmental Centre, University of Turin, Via P. Guiria, 10125, Torino, Italy

⁽Dipartimento di Scienze e Innovazione Tecnologica, Centro Interdisciplinare Nano-SiSTeMI, Università del Piemonte Orientale, Via T. Michel 11, 15100, Alessandria, Italy

[©]SiGNa Chemistry Inc, 845 Third Avenue, Suite 623, New York City, New York 10022, United States

Experimental details

Catalysis synthesis

The SAPO-34 and SAPO-5 synthesis were prepared according to references 1-3. Key ingredients and synthetic conditions are listed below in Table S1.

In both cases the as-prepared samples were calcined in a tube furnace under a flow of air at 575 °C for 16 hours yielding a white solid.

	SAPO-5	SAPO-34	
Aluminium source	Aluminium hydroxide hydrate (Aldrich)	Aluminium isopropoxide (Aldrich)	
Silicon source	Silica sol (40 wt% in H ₂ O, Aldrich)	Fumed silica (Aldrich)	
Structure directing agent	Triethylamine (Fisher)	Tetraethylammonium hydroxide (35 wt% in H ₂ O, Aldrich)	
Crystallization temperature/ °C	180	200	
Crystallization time/ h	24	60	

Table S1: Summary of synthetic conditions.

Characterisation

ICP-OES measurements were performed by Medac.

Phase purity and crystallinity of materials was confirmed by powder X-ray diffraction. Powder X-ray diffraction (PXD) was carried out using a Bruker D2 Phaser diffractometer using Cu $K_{\alpha 1}/K_{\alpha 2}$ radiation $\lambda = 1.5418$ Å, PXD patterns were run over a 20 rage of 5-45° with a scan speed of 3° min⁻¹ and increment of 0.01°.

Scanning electron microscopy was carried out using a Jeol JSM-5910.

Catalysis

Catalysis was performed using a custom build flow reactor provided by Cambridge Reactor Design. The reactor comprised of a syringe pump, laptop computer, two mass flow controllers, reactor with heater and control box. A 224 mm quartz reactor tube (4 mm id, 6 mm od) with a 4 mm high frit 80 mm from the base of the tube and a gas inlet 25.8 mm from the top was placed inside the heater jacket. Liquid and gas flows were controlled using a Harvard Apparatus Model 33 MA1-55-3333 syringe pump and Brooks IOM585OS mass flow controller respectively and flow rates were input via computer interface.

Silicon substitution mechanisms

Figure S1: Possible silicon substitution methods into an AIPO framework.

Textural characterization results

Powder X-ray diffraction

Figure S2: Powder X-ray diffraction pattern for phase-pure SAPO-5(1.38).

Figure S3: Powder X-ray diffraction pattern for phase-pure SAPO-34(2.66).

Catalyst	Alpha/ Å	Gamma/ Å	Volume/ Å ³
SAPO-5(1.38)	13.8431	8.4295	1398.93
SAPO-34(2.66)	13.7097	14.9052	2426.20

Table S2: Unit cell data for SAPO-5 and SAPO-34 as determined using Celref. [4]

Figure S4: Powder XRD patterns for SAPO-34(1.82) and SAPO-5(1.80) showing main phase.

BET surface area measurements

	SAPO-5(1.38)	SAPO-34(2.66)
BET surface area/ m ² g ⁻¹	250.98	479.37

Table S3: Surface area measurements determined using BET.

Crystallite size calculations

	SAPO-34(2.66)	SAPO-34(1.82)	SAPO-5(1.80)	SAPO-5(1.38)
Crystallite size/nm	58	43	59	50

Table S4: Crystallite sizes derived from powder-XRD with Scherrer's equation.

Scanning Electron Microscopy

Figure S5: SEM image of SAPO-5(1.38).

Figure S6: SEM of SAPO-34(2.66).

Probe-based FTIR spectroscopy

Figure S7: FTIR spectra in the OH stretching region of CO adsorbed at 80 K on calcined SAPO-34(2.66) (A) and SAPO-5(1.38) (B). Decreasing CO coverages from 30 (red curves) to 0.01 (blue curves) mbar. The spectra in vacuo before CO adsorption are also reported (grey curves).

NMR spectra

²⁹Si MAS NMR of SAPO-34(2.66)

Figure S8: CP-RAMP 29 Si MAS NMR spectra of SAPO-34(2.66) at 9.4 T, 8 kHz spin rate. The spectrum is the result of 15000 scans.

²⁹Si MAS NMR of SAPO-5(1.38)

Figure S9: CP-RAMP 29 Si MAS NMR spectra of SAPO-5(1.38) at 9.4 T, 8 kHz spin rate. The spectrum is the result of 25000 scans.

Computational Analysis

Binding studies were also performed with NH_3 and ethanol on the specific sites witnessed by ^{29}Si NMR, to gain an insight into the acidic nature of the specific active sites and the mechanistic implications; the following equation was used to quantify the degree of interaction with the probe molecules:

(4)
$$\Delta_{\text{Binding}} = E[\text{Probe} + \text{SAPO}] - E[\text{Probe}] - E[\text{SAPO}]$$

Figure S10: Optimised geometry of the 5-silicon island in SAPO-5.

Figure S11: Optimised geometry of the binding of NH₃ to the 5-silicon SAPO-5 species.

Figure \$12: Optimised geometry of the isolated silicon site in SAPO-34.

Figure S13: The optimised geometry of the isolated silicon site in SAPO-34 binding to NH₃.

Figure S14: The optimised geometry of the isolated silicon site in SAPO-34 binding to ethanol.

Additional catalytic data

Catalyst	Conversion/mol%		Selectivity/mol%			
	300 °C	275 °C	250 °C	300 °C	275 °C	250 °C
SAPO-5(1.38)	96	89	87	94	54	31
SAPO-34(2.66)	100	98	93	100	95	76
Blank (No catalyst)	0.3	0.3	0.3	20.8	25.3	0.0

Table S5: Catalytic data for dehydration of ethanol to ethylene. WHSV = 4.38 h⁻¹, He carrier gas 50 mL min⁻¹, 0.3 g catalyst. Blank reaction performed using comparable flow rates.

References

- [1] Lefenfeld, M.; Raja, R.; Paterson, A. J.; Potter, M. E. WO Patent, 2010, WO/2010085708.
- [2] Lefenfeld, M.; Raja, R.; Paterson, A. J.; Potter, M. E. US Patent, 2014, US 8,759,599 B2.
- [3] Lefenfeld, M.; Raja, R.; Paterson, A. J.; Potter, M. E. EU Patent, 2010, EP2389245-A2.
- [4] Celref, version 3; LMGP (Laboratoire des Materiaux et du Génie Physique de l'Ecole Supérieure de Physique de Grenoble) Suite for Windows: Grenoble, 2000.