Synthesis of Syn-1,3-aminoalcohols via a Ru-Catalyzed N-Demethylative Rearrangement of Isoxazolidines and Its application in ThreeStep Total Synthesis of HPA-12

Chuan-Zhi Yao, Zu-Feng Xiao, Xiao-Shan Ning, Jie Liu, Xiao-Wei Zhang, and Yan-Biao Kang* Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
E-mail: ybkang@ustc.edu.cn

Contents

1. General information and experiments
S1-S16
2. References... S17
3. NMR spectra... S18-S 99

1. General information and experiments

Solvents were pre-dried over activated $4 \AA$ molecular sieves and heated to reflux over sodium (toluene, THF) or calcium hydride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ under a nitrogen atmosphere and collected by distillation. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 MHz spectrometer; Chemical shifts are reported in δ units relative to $\left[\mathrm{CDCl}_{3},{ }^{1} \mathrm{H} \delta=7.26,{ }^{13} \mathrm{C} \delta=77.36\right]$. What should be noted is that all petroleum ether and ethyl acetate using for flash chromatography purchased from commercial sources were redistilled twice before using, even though the trace amount of residue of impurities such as H -grease and silicone grease could still be seen on NMR spectra of some products (${ }^{1} \mathrm{H}$ NMR: $\delta 1.25 / 0.84-0.87$ and $0.07 ;{ }^{13} \mathrm{C}$ NMR $\delta 29.7$ and 1.19). HRMS were recorded by the mass spectrometry service at University of Science and Technology of China. All alkenes were purchased from commercial sources and nitrones were perpared according to literatural procedures. ${ }^{1}$

(1) General procedure for preparation of starting materials

Styrene (4 equiv.) was added into the solution of a nitrone (2.0 mmol) in toluene (0.25 M) and the resulting reaction solution was stirred at $110^{\circ} \mathrm{C}$ under argon for corresponding time (typically 24 hours). After cooling to room temperature, the reaction solution was concentrated by a rotary evaporator, followed by isolation using flash column chromatography on silica gel to give the cis-isoxazolidines $\mathbf{1}$.

cis-5-(((tert-butyldiphenylsilyl)oxy)methyl)-2-methyl-3-((E)-styryl)isoxazolidine (1a) ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 10 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=16.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=10.2,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}$, 9H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.7,135.9,135.8,133.9,133.8,133.3,129.8,128.7,128.1$, 128.0, 127.9, 127.8, 126.6, 77.0, 71.9, 66.6, 43.3, 40.0, 27.1, 19.5. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 458.2515$, found 458.2514 .

cis-2-methyl-3-((E)-styryl)-5-(p-tolyl)isoxazolidine (1b)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.88-$ $2.81(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8$, 137.3, 136.7, 133.3, 129.4, 128.8, 128.0 (2 peaks), 126.7, 126.2, 78.1, 72.8, 46.3, 44.1, 21.4. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 280.1701$, found 280.1703.

cis-5-(4-methoxyphenyl)-2-methyl-3-((E)-styryl)isoxazolidine (1c)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.87$ $(\mathrm{m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, 3 H), 3.45 (brs, 1 H), 2.92-2.85 (m, 1H), $2.77(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.4,136.8,134.7,133.4,128.9,128.2,128.1,127.8,126.8,114.2,78.1,73.0,55.6,46.4$, 44.2. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 296.1651$, found 296.1654 .

cis-(2-methyl-3-((E)-styryl)isoxazolidin-5-yl)methyl acetate (1d)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=16.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.17(\mathrm{~m}$, $1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 170.8, 136.3, 133.6, 128.6, 127.9, 127.1, 126.4, 74.1, 71.5, 66.2, 43.0, 39.4, 20.9. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 262.1443$, found 262.1441 .

cis-3-butyl-5-hexyl-2-methylisoxazolidine (1e)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dd}, J=7.2$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 76.4,69.2,45.0,42.0,35.8,34.2$, 32.1, 29.6 (2 peaks), 26.7, 23.1, 22.9, 14.4 (2 peaks); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$228.2327, found 228.2336.

cis-3-butyl-5-(4-(tert-butyl)phenyl)-2-methylisoxazolidine (1f)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.26(\mathrm{~m}, 4 \mathrm{H}), 5.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 5 \mathrm{H}), 2.03-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.8,139.0,126.3,125.7,69.9,45.3,45.0,34.8,34.0,31.7,30.0,29.6,23.1,14.3$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 276.2327$, found 276.2325.

cis-5-hexyl-2-methyl-3-undecylisoxazolidine (1g)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.14-4.07(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H})$, $1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 26 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 76.4,69.2,53.7,45.0,42.0,35.9,34.5,32.3$, 32.1, 30.1, 30.0 (2 peaks), 29.9, 29.7, 29.6, 27.4, 26.7, 23.0, 22.9, 14.4 (2 peaks); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 326.3423$, found 326.3422 .

cis-2-methyl-5-((E)-styryl)-3-undecylisoxazolidine (1h)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=15.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.63(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.9,132.0,129.8,128.8,128.0,126.9,77.3,69.5,45.0,42.7,34.2$, 32.2, 30.0 (2 peaks), 29.9 (3 peaks), 29.7, 27.3, 23.0, 14.4. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 344.2953, found 344.2946.

cis-2-methyl-5-phenyl-3-propylisoxazolidine (1i)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}$, $3 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,128.7,127.7,126.4,77.8,69.6,45.2$, 36.4, 30.0, 20.5, 14.4; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$206.1545, found 206.1541.

cis-3-heptyl-2-methyl-5-phenylisoxazolidine (1j)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.38(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4,128.7,127.7$, 126.4, 77.8, 69.9, 45.2 (2 peaks), 34.2, 32.1, 30.0, 29.5, 27.4, 22.9, 14.4.; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$262.2171, found 262.2166.

cis-2-methyl-5-phenyl-3-undecylisoxazolidine (1k)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.26(\mathrm{~m}$, $19 \mathrm{H}), 0.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,128.6,127.6,126.3,77.7,69.8$, 45.2, 45.1, 34.2, 32.1, 30.0, 29.9, 29.8 (3 peaks), 29.6, 27.3, 22.9, 14.3; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 318.2797$, found 318.2796.

cis-3-butyl-2-methyl-5-phenylisoxazolidine (11)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.26(\mathrm{~m}$, $5 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,128.7,127.7,126.4,77.8,69.9$, 45.2 (2 peaks), 33.9, 29.5, 23.1, 14.3; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 220.1701$, found 220.1697.

cis-5-(((tert-butyldiphenylsilyl)oxy)methyl)-2-methyl-3-undecylisoxazolidine (1m) ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 6 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J$ $=10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.45(\mathrm{~m}$, $1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 19 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.0,135.9,134.1,133.9,129.9,127.9$ (2 peaks), 76.6, 68.9, 66.4, calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 510.3767$, found 510.3783.

cis-2-methyl-3-nonyl-5-phenylisoxazolidine (1n)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.36(\mathrm{~m}$, $2 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 13 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4,128.7,127.7$, 126.4, 77.8, 69.9, 45.3 (2 peaks), 34.3, 32.2, 30.0, 29.9, 29.8, 29.6, 27.4, 23.0, 14.4; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$290.2484, found 290.2487

cis-2-methyl-3-phenyl-3,3a,4,8b-tetrahydro-2H-indeno[2,1- $\boldsymbol{d}]$ isoxazole (10)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.08(\mathrm{~m}$, $2 \mathrm{H}), 3.00(\mathrm{dd}, J=14.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,141.3,138.7$, 129.4, 129.1, 128.5, 128.3, 127.5, 126.2, 125.8, 86.0, 81.9, 56.0, 43.2, 35.1.; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 252.1388$, found 252.1388.

(2) General procedure for standard conditions

The isolated cis-isoxazolidine intermediate $\mathbf{1}(0.5 \mathrm{mmol})$ was directly dissolved into 2 mL toluene and then transferred by syringe into a Schlenk tube charged with $\left[\mathrm{RuCl}_{2} \text { (} p \text {-cymene) }\right]_{2}(0.0125 \mathrm{mmol}, 7.6 \mathrm{mg})$, $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.0375 \mathrm{mmol}, 14.2 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol}, 68 \mathrm{mg})$. Under stirring, water $(1 \mathrm{mmol}, 18$ $\mu \mathrm{L}$) was added. The reaction mixture was heated to $110{ }^{\circ} \mathrm{C}$. The reaction was monitored by TLC and quenched by filtration through a thin pad of silica gel, followed by washing with ethyl acetate. After concentrated by a rotary evaporator under reduced pressure, the crude reaction residue was examined on ${ }^{1}$ H NMR spectrometer to determine conversion and selectivity using nitromethane and methyl tert-butyl ether as internal standards. The crude product was purified by flash column chromatography on silica gel using petroleum ether and ethyl acetate as eluent to give the cis-1,3-isoxazolidine 2.

cis-6-(((tert-butyldiphenylsilyl)oxy)methyl)-4-((E)-styryl)-1,3-oxazinane (2a)
Prepared according to the general procedure, solid, $82 \% .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=$ $6.4,1.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 8 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=16.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=16.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-$ 3.72 (m, 2H), 3.64-3.57 (m, 2H), 1.86 (ddd, $J=13.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}$, 9H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,135.9,133.9,133.8,131.6,130.0,129.5,128.9,128.0$, $127.8,126.6,79.5,77.1,67.6,55.5,35.7,27.2,19.6$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 458.2515, found 458.2522.

cis-4-((E)-styryl)-6-(p-tolyl)-1,3-oxazinane (2b)
Prepared according to the general procedure, solid, 79%. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.36(\mathrm{~m}$, 2H), 7.33-7.29 (m, 2H), 7.28-7.21 (m, 3H), 7.19-7.17 (m, 2H), $6.57(\mathrm{dd}, J=16.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ $(\mathrm{dd}, J=16.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=11.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.79-3.73 (m, 1H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.02$ (ddd, $J=13.2,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{ddd}, J=13.2$, $12.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7,137.6,137.1,131.3,129.6,129.4,128.9$, 127.9, 126.6, 126.0, 80.0, 78.8, 56.0, 40.9, 21.4. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$280.1701, found 280.1697.

cis-6-(4-methoxyphenyl)-4-((E)-styryl)-1,3-oxazinane (2c)
Prepared according to the general procedure, solid, $87 \% .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J=16.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ (dd, $J=16.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=10.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.81 (s, 3 H), $3.78-3.72(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{ddd}, J=13.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1 \mathrm{H}), 1.59$ (ddd, $J=$ $13.2,12.8,11.4, \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,137.1,134.9,131.2,129.7,128.9$,
$127.9,127.4,126.6,114.2,80.0,78.6,56.1,55.6,40.8$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 296.1651, found 296.1653.

cis-4-((E)-styryl)-1,3-oxazinan-6-yl)methyl acetate (2d)
Prepared according to the general procedure, solid, $90 \% .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.36(\mathrm{~m}$, 2H), $7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=16.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=16.0,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J$ $=11.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{ddd}, J=12.8,2.8,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.34(\mathrm{ddd}, J=12.8,11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,137.0$, 130.9, 129.8, 128.9, 128.0, 126.6, 79.6, 74.4, 67.5, 55.3, 34.8, 21.2. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$262.1443, found 262.1439.

cis-4-butyl-6-hexyl-1,3-oxazinane (2e)
Prepared according to the general procedure, oil, 95%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.63(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{ddd}, J=12.8,2.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.28(\mathrm{~m}, 16 \mathrm{H}), 0.98-0.80(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 79.8,76.8,54.6$, $40.0,37.1,37.0,32.1,29.6,28.1,25.3,23.0,22.9,14.4,14.3$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 228.2327, found 228.2333.

cis-4-butyl-6-(4-(tert-butyl)phenyl)-1,3-oxazinane (2f)

Prepared according to the general procedure, oil, $81 \% .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.36(\mathrm{~m}$, $2 H), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=11.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.4$ Hz, 1H), 2.96-2.89 (m, 1H), 1.86 (ddd, $J=12.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.32(\mathrm{~m}, 8 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.8,140.0,125.9,125.6,80.2,78.9,54.9,41.5,36.9$, 34.8, 31.7, 28.0, 23.0, 14.3; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$276.2327, found 276.2330.

cis-6-hexyl-4-undecyl-1,3-oxazinane (2g)

Prepared according to the general procedure, solid (mp 31-34 ${ }^{\circ} \mathrm{C}$), $93 \%{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.62(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.59$ (ddd, $J=12.8,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.25(\mathrm{~m}, 30 \mathrm{H}), 0.97-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 79.9,76.9,54.7,40.0,37.4,37.2,32.2,32.1,30.0$ (3 peaks), 29.9 (2 peaks), 29.7, 25.9, 25.3, 23.0, 22.9, 14.4 (2 peaks); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 326.3423$, found 326.3431 .

cis-6-((E)-styryl)-4-undecyl-1,3-oxazinane (2h)

Prepared according to the general procedure, solid, $84 \%{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=16.0,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.82(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 20 \mathrm{H}), 1.21-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.2,130.5,130.2,128.8,127.9,126.8,79.8,77.1,54.5,39.9,37.3,32.2,30.0$ (2 peaks), 29.9 (3 peaks), 29.7, 25.8, 23.0, 14.4. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 344.2953$, found 344.2949.

cis-6-phenyl-4-propyl-1,3-oxazinane (2i)
Prepared according to the general procedure, oil, 77%. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.32(\mathrm{~m}, 4$ H), $7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{ddd}, J=13.2,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.50-1.33(\mathrm{~m}, 4 \mathrm{H})$, $1.33-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,128.7,127.8,126.0$, 80.2, 79.0, 54.6, 41.7, 39.3, 18.9, 14.4; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 206.1539$, found 206.1535.

cis-4-heptyl-6-phenyl-1,3-oxazinane (2j)

Prepared according to the general procedure, oil, 71%. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.33(\mathrm{~m}, 4$ H), $7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{ddd}, J=12.8,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.51-1.35(\mathrm{~m}, 3 \mathrm{H})$, $1.34-1.24(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,128.7,127.8,126.0$, 80.2, 79.1, 54.9, 41.8, 37.2, 32.1, 29.9, 29.5, 25.8, 23.0, 14.4; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 262.2165 , found 262.2162 .

cis-6-phenyl-4-undecyl-1,3-oxazinane (2k)

Prepared according to the general procedure, oil, 79%. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.33(\mathrm{~m}, 4$ H), $7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}), 1.87$ (ddd, $J=13.2,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 3 \mathrm{H})$, $1.35-1.27(\mathrm{~m}, 18 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,128.7,127.8,126.0$, 80.2, 79.0, 54.9, 41.7, 37.2, 32.2, 30.0 (2 peaks), 29.9 (3 peaks), 29.6, 25.8, 23.0, 14.4; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 318.2791$, found 318.2787.

cis-4-butyl-6-phenyl-1,3-oxazinane (21)

Prepared according to the general procedure, oil, 75%. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.33(\mathrm{~m}, 4$ H), $7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{ddd}, J=13.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 1 \mathrm{H})$, $1.40-1.24(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,128.7,127.8,126.0$, 80.2, 79.0, 54.8, 41.7, 36.9, 28.0, 23.0, 14.3; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 220.1696$, found 220. 1691.

cis-6-(((tert-butyldiphenylsilyl)oxy)methyl)-4-undecyl-1,3-oxazinane (2m)
Prepared according to the general procedure, solid, 75%. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.67(\mathrm{~m}$, $4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.64(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.0,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{ddd}, J=13.2$, $2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.23(\mathrm{~m}, 20 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.02-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.0,134.1,134.0,130.0,128.0,79.8,77.3,67.8,54.4,37.4,36.4,32.3$, 30.0 (3 peaks), 29.9 (2 peaks), 29.7, 27.2, 25.9, 23.0, 19.6, 14.5. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{NO}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 510.3767$, found 510.3778.

cis-4-nonyl-6-phenyl-1,3-oxazinane (2n)
Prepared according to the general procedure, oil, $81 \% .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.33(\mathrm{~m}, 4$ H), 7.31-7.26 (m, 1 H$), 4.82(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}), 1.87$ (ddd, $J=13.2,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.52-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.34-$ $1.27(\mathrm{~m}, 13 \mathrm{H}), 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,128.7,127.8,126.0,80.2$, 79.0, $54.9,41.7,37.2,32.2,30.0,29.9,29.8,29.6,25.8,23.0,14.4$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}$290.2478, found 290.2476.

cis-4-phenyl-2,3,4,4a,5,9b-hexahydroindeno $[2,1-e][1,3]$ oxazine (20)
Prepared according to the general procedure, oil, 71%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,141.8,141.4,129.0,128.3,127.9$ (2 peaks), 127.2, 126.1, 124.3, 80.0, 74.3, 59.2, 42.6, 33.6. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 252.1388$, found 252.1389.

(3) General procedure for Synthesis of $\boldsymbol{N}-\mathbf{H} \mathbf{1 , 3}$-aminoalcohols from 2.

To a solution of $2(0.3 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(208.5 \mathrm{mg}, 3.0 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}$ $(11.0 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and the resulting reaction mixture was heated under reflux until the starting material completely disappeared (monitored by TLC). ${ }^{2}$ The solution was quenched with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq.) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by flash column chromatography to give the corresponding 1,3-aminoalcohol 3 .

(syn, E)-4-amino-1-((tert-butyldiphenylsilyl)oxy)-6-phenylhex-5-en-2-ol (3a)

Prepared according to the general procedure, solid, 70%. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.66(\mathrm{~m}$, $4 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 11 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H})$, $3.74-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.83-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,135.9,135.1,133.8$, 130.0, 128.9 (2 peaks), 128.0, 127.9, 126.7, 72.5, 68.5, 54.0, 40.1, 27.2, 19.6. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 446.2515$, found 446.2516 .

(syn, E)-4-amino-2-hydroxy-6-phenylhex-5-en-1-yl acetate (3d)
Prepared according to the general procedure, solid, $87 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.20(\mathrm{~m}$, $5 \mathrm{H}), 6.54(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=15.6,6.8 \mathrm{~Hz} 1 \mathrm{H}), 4.75-4.68(\mathrm{~m}, 1 \mathrm{H}), 3.80$ (br s, 1H), $3.64(\mathrm{dd}, J=11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.69(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,136.9,131.3,129.5,129.0,128.1,126.8,70.2,66.9,49.7,38.7$, 23.7. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$250.1443, found 250.1442 .

syn-9-aminoicosan-7-ol (3g)
Prepared according to the general procedure, solid, $96 \%{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.81-3.74(\mathrm{~m}$, $1 \mathrm{H}), 2.82-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.57(\mathrm{ddd}, J=14.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.26(\mathrm{~m}, 30 \mathrm{H}), 1.15$ (ddd, $J=14.0,10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 73.4,53.6,42.6$, 41.4, 38.6, 32.2 (2 peaks), 30.0, 29.9 (4 peaks), 29.8, 29.7, 26.0, 25.8, 23.0 (2 peaks), 14.4 (two peaks).

HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 314.3423$, found 314.3427.

2-amino(phenyl)methyl)-2,3-dihydro-1H-inden-1-ol (3o)

Prepared according to the general procedure, solid, $87 \% .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 5 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7,144.7,142.9$, 129.0, 128.6, 127.6, 127.0, 126.9, 125.4, 125.0, 76.2, 57.4, 50.7, 35.1; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 240.1388$, found 240.1388 .

(4) General procedure for synthesis of \boldsymbol{N}-Me 1,3-aminoalcohols from 2.

To the solution of $2(0.3 \mathrm{mmol})$ in dried THF $(4 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(34.2 \mathrm{mg}, 0.9 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. ${ }^{3}$ The resulting reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 hours. The reaction was quenched by the addition of water $(35 \mu \mathrm{~L})$, followed by the addition of $15 \% \mathrm{NaOH}$ aqueous solution ($35 \mu \mathrm{~L}$) and additional water $(105 \mu \mathrm{~L})$. The mixture was allowed to warm to room temperature and MgSO_{4} was added. The reaction was stirred for 30 min and filtered through a short pad of Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (20:1) as the eluent. The filtrate was concentrated under vacuum and the crude residue was purified by flash chromatography to give the product 4.

(syn, E)-1-(4-methoxyphenyl)-3-(methylamino)-5-phenylpent-4-en-1-ol (4c)
Prepared according to the general procedure, solid, $84 \% .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.30(\mathrm{~m}$, $5 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.97 (dd, $J=15.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,137.7,136.8,131.9,130.2$, 128.9, 128.1, 127.1, 126.7, 114.0, 74.8, 63.6, 55.6, 44.3, 33.4. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 298.1807, found 298.1804.

syn-9-(methylamino)icosan-7-ol (4g)

Prepared according to the general procedure, solid, 92%. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.79-3.73(\mathrm{~m}$, $1 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{ddd}, J=14.2,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-$ $1.40(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.14(\mathrm{~m}, 29 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 73.5,60.6,39.7$, 38.7, 33.8, 32.2, 32.1, 30.1, 29.9 (4 peaks), 29.8, 29.6, 25.8, 25.7, 23.0, 22.9, 14.4 (2 peaks). HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{46} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 328.3574$, found 328.3569 .

(syn, E)-5-(methylamino)-1-phenylhexadec-1-en-3-ol (4h)
Prepared according to the general procedure, solid, 95%. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ (br d, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=16.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.87-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H})$, $1.55-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.4$, $133.0,129.2,128.8,127.6,126.7,73.9,60.4,39.6,33.3,32.2,31.8,30.0,29.9$ (4 peaks), 29.6, 25.8, 23.0, 14.4. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$346.3110, found 346.3104 .

2-((methylamino)(phenyl)methyl)-2,3-dihydro-1 \boldsymbol{H}-inden-1-ol (4o)

Prepared according to the general procedure, solid, 93%. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.39(\mathrm{~m}$, $3 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~s}, 3 \mathrm{H}), 5.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ $15.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.0,142.8,141.9,129.0,128.6,127.5,127.2,127.1,125.2,125.0,77.7,64.7,49.5,34.0,31.4$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 25.1545$, found 254.1535 .

(5) Synthesis of HPA-12

$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(0.355 \mathrm{mmol}, 215.8 \mathrm{mg}), p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.42 \mathrm{mmol}, 272.6 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(14.2$ $\mathrm{mmol}, 1.93 \mathrm{~g}$) were directly weighed into a Schlenk tube and purged with argon. Toluene (30 mL) and $\mathrm{H}_{2} \mathrm{O}(28.4 \mathrm{mmol}, 511 \mu \mathrm{~L})$ were added and the mixture was stirred for about 15 minutes until the color changed from dark brown to yellow. Nitrone $5(14.2 \mathrm{mmol}, 4.65 \mathrm{~g})$ and styrene ($56.8 \mathrm{mmol}, 6.8 \mathrm{~mL}$) were added. The mixture was stirred at $110^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the reaction mixture was filtered through a pad of silica gel and washed with ethyl acetate. The filtrate was concentrated and the residue was purified by flash column chromatography to give the oil product as oil in 56% (3.43 g). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=10.2,4.2 \mathrm{~Hz}, 1$ H), $3.65(\mathrm{dd}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.86(\mathrm{ddd}, J=13.0,11.2,11.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.73 (ddd, $J=13.2,2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.9$, 135.9, 133.5, 130.1, 128.8, 128.1 (2 peaks), 127.9, 126.3, 80.1, 79.1, 67.2, 56.1, 37.1, 27.2, 19.7. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 432.2367$, found 432.2366 .

To a stirred solution of 1,3-oxazinane $2 \mathbf{p}(2.62 \mathrm{~g}, 6.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ (18 $\mathrm{mmol}, 2.7 \mathrm{~mL}$) and 4-dimethylaminopyridine (DMAP, $0.3 \mathrm{mmol}, 36.6 \mathrm{mg}$). The solution of lauroyl chloride $(9.0 \mathrm{mmol}, 1.97 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ over 30 min . The resulting reaction mixture was then allowed to warm to room temperature, stirred for 17 hours, and poured into water (30 mL), then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by flash column chromatography to give the product $\mathbf{6}$ as an oil in 86% yield (3.16 g). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , acetone-d6) $\delta 7.69$ 7.65 (m, 4 H), 7.48-7.34(m, 10 H), 7.30-7.25 (m, 1 H), 5.31 (br s, 2 H), 4.81 (dd, J = 11.8, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.50 (br s, 1 H), 3.93-3.89 (m, 1 H), 3.81 (dd, J = 10.4, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82 (br s, 1 H), 2.43-2.20 (m, 3 H), $1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{br} \mathrm{s}, 16 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 173.9,142.4,135.8$ (2 peaks), 133.5, 133.4, 130.1 (2 peaks), 128.8, 128.1 (2 peaks), 128.0, 126.2, 74.6, $71.9,65.2,52.7,33.8,32.5,32.2,29.9,29.8,29.7,29.6,27.2,25.5,23.0,19.5,14.4$ HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 614.4024$, found 614.4025.

To the mixture of N-lauroyl 1,3-oxazinane $\mathbf{8}(4.72 \mathrm{mmol}, 2.9 \mathrm{~g})$ and $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(47.2 \mathrm{mmol}, 3.28 \mathrm{~g})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}(18.9 \mathrm{mmol}, 340 \mu \mathrm{~L})$. The resulting reaction solution was heated under reflux for 4 hours and quenched with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography to give the final racemic HPA-12 (($\mathbf{\pm})-7$) as a white solid product ($1.20 \mathrm{~g}, 70 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=6.0$ Hz, 1 H), 4.81 (dd, $J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (br s, 1 H), 3.70-3.64 (m, 2 H), 2.85 (br s, 2 H), 2.16 (t, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.04 (ddd, $J=14.6,5.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.22(\mathrm{~m}$, $16 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{43} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.7,144.6,128.8,127.9,125.9,72.0$, 65.6, 50.6, 41.1, 37.1, 32.2, 30.0 (2 peaks), 29.9, 29.7 (2 peaks), 29.6, 26.1, 23.0, 14.4. ${ }^{4}$ HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 364.2846$, found 364.2851.

2. References

1. (a) Cho, S. J.; Jensen, N. H.; Kurome, T.; Kadari, S.; Manzano, M. L.; Malberg, J. E.; Caldarone, B.; Roth, B. L.; Kozikowski, A. P. J. Med. Chem. 2009, 52, 1885. (b) Revuelta, J.; Cicchi, S.; Meijere, A. D.; Brandi, A. Eur. J. Org. Chem. 2008, 6, 1085. (c) Cawkill, E.; Clark, N. G. J. Chem. Soc., Perkin Trans. 1980, 1, 244.
2. Harding, K. E.; Marman, T. H.; Nam, D. Tetrahedron 1988, 44, 5605.
3. Charmantray, F.; Demeunynck, M.; Carrez, D.; Croisy, A.; Lansiaux, A.; Bailly, C.; Colson. P. J. Med. Chem. 2003, 46, 967.
4. (a) Duris, A.; Wiesenganger, T.; Moravcikova, D.; Baran, P.; Kozisek, J.; Daich, A.; Berkes, D. Org. Lett. 2011, 13, 1642. (b) Ueno, M.; Huang, Y.-Y.; Yamano, A.; Kobayashi, S. Org. Lett. 2013, 15, 2869.

5. NMR Spectra

77.679
-77.361
77.043
-76.375
-69.153
$-\cdots-69.153$
S-27

77.676
77.359
$-\quad-77.041$
-76.392
$-\quad 69.186$
53.743
45.025
42.013
35.868
34.498
32.255
-32.130
30.086
29.986
29.962
29.927
29.685
29.639
27.395
26.714
23.026
22.924
14.448
14.407

S-31

S-32

S-34

S-36

S-38

S-39

S-42

S-44

Wdd
$\stackrel{\rightharpoonup}{\circ}$

S-54
Wdd

S-56

S-57

S-66

S-72

-142.977
$-\quad 128.696$
-127.777
$\mathbf{1 2 6 . 0 2 1}$ 80.169
79.049
77.676
77.358
77.040
-54.922
41.703
37.195
32.186
29.969
29.866
29.846
29.612
25.812
22.969
14.406

S-82

S-90
 $\stackrel{\sum_{0}^{0}}{\substack{0 \\ \hline}}$

80.113
79.092
77.675
77.358
77.039
67.201
-56.062
-37.061
-27.234
-19.678

