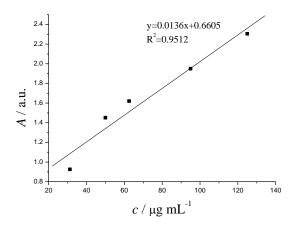
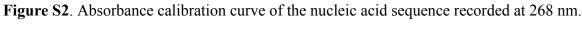

Synthesis and Self-assembly of a DNA Molecular Brush


Dawid Kedracki¹, Mahshid Chekini², Plinio Maroni¹, Helmut Schlaad³ and Corinne Nardin¹*


¹Departement of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland; ²Departement of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland; ³Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany

Supporting Information

Figure S1. X-ray diffraction curve of freeze-dried precipitate of PBOX, prior to (dashed line) and subsequent to crystallization (solid line) of a 1 wt% polymer solution in ethanol–water 55:45 (w/w) at room temperature

UV-Vis grafting density estimation. PBOX absorbance at 268 nm is negligible

For a representative quantification of the grafting density: absorbance value at 268; A_{268} = 1.809

Thus, concentration is equal to;

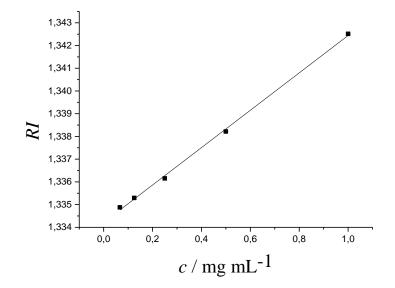
 $x = (1.809-0.6605)/0.0136 = 84.5 \ \mu g \ mL^{-1}$

Concentration for measurement; 0.1 mg mL⁻¹, volume; 1mL

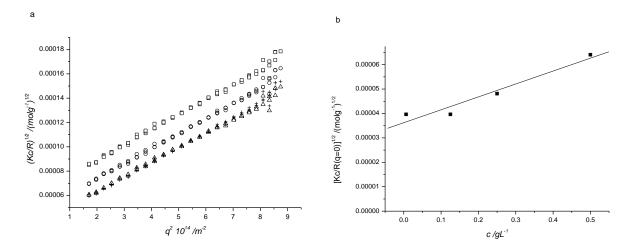
 m_{DNA} =84.5 µg

 $M_{PBOX} = 5381.45 \text{ g mol}^{-1}$

 M_{DNA} =3709.9 g mol⁻¹


 $m_{PBOX} = 100-84.5 = 15.5 \ \mu g$

 $n_{PBOX} = 15.5 \times 10^{-6} / 5381.45 = 2.9 \text{ nmol}$

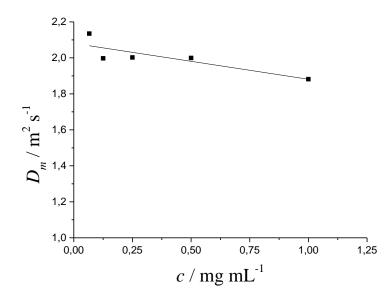
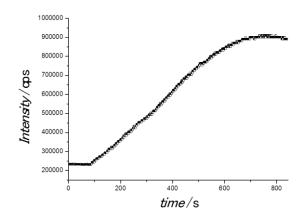
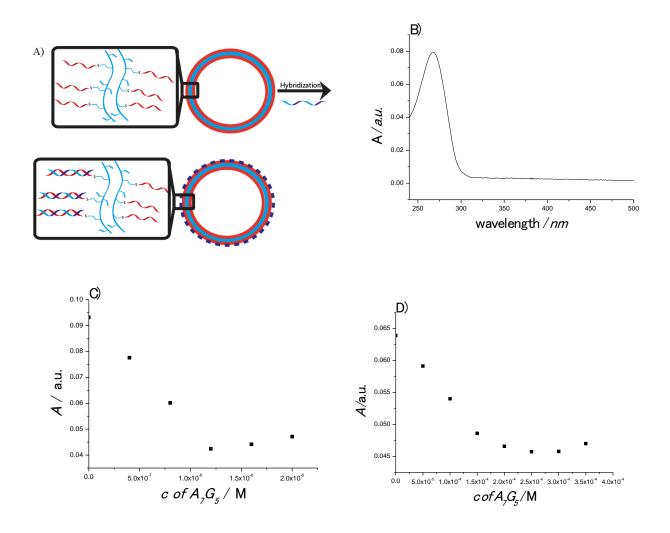

 $m_{DNA} = 84.5 \mu g$

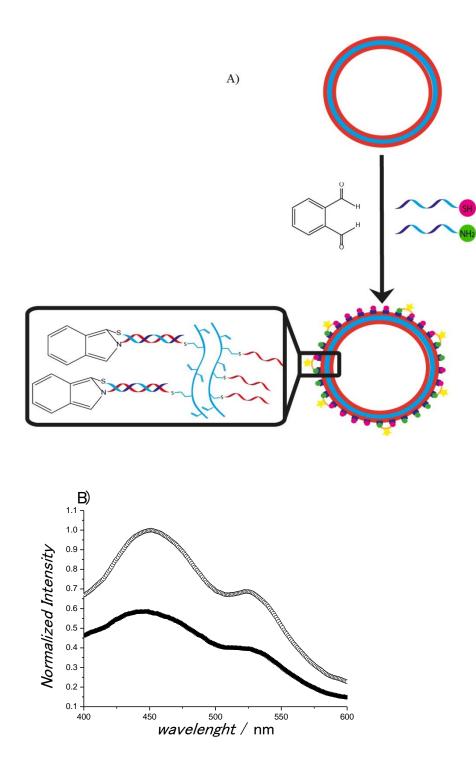
 $n_{DNA} = 84.5*10^{\text{-6}}/3709.9 = 22.8 \text{ nmol}$

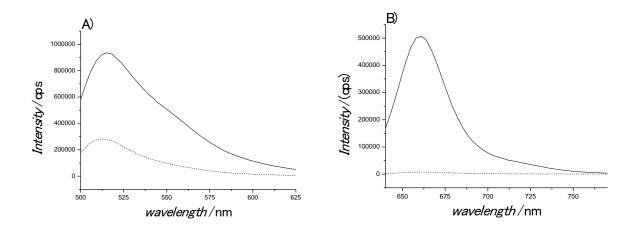
 n_{DNA} / n_{PBOX} = 7.86 $\,\approx\,$ 8 DNA strands for one PBOX chain

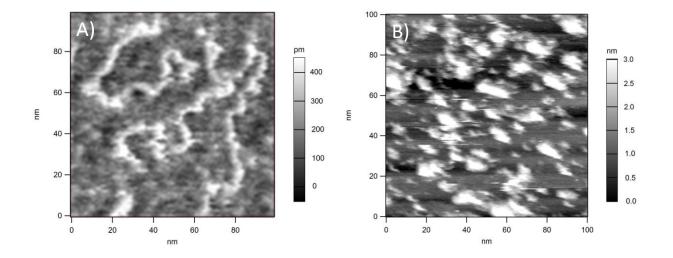
Figure S3. *Refractive index (RI) dependence on concentration (c):* $\frac{dn}{dc} = 0.0082 \text{ cm}^3 g^{-1}$

Figure S4. Berry analysis of the scattered intensity as assessed by static light scattering a) angle dependence for \Box) 0.5, \circ) 0.25, Δ) 0.125 et +) 0.00625 gL⁻¹; b) concentration dependence subsequent to 0 angle extrapolation


Figure S5. Concentration dependence of the mutual diffusion coefficient as measured by dynamic light scattering


Figure S6. *Time course of the fluorescein fluorescence intensity subsequent to encapsulation (concentration) and release by addition of sodium azide*


Figure S7. A) Schematic representation of hybridization. B) Representative spectrum which rules out hindrance owing to scattering C) Titration upon hybridization (maximum absorbance at 268 nm) D) Control hybridization of free C_5T_7 with A_7G_5 . Efficiency 100%: all complementary sequences did hybridize

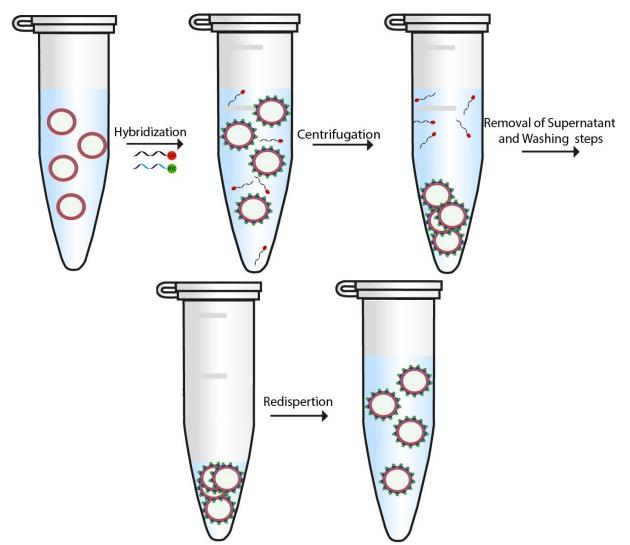

Figure S8. A) Schematic representation of isoindol reaction; B)Fluorescence spectroscopy upon isoindol formation at the surface of PBOX spheres, \blacktriangle) initial stage of reaction, \circ) reaction completed

Figure S9. Fluorescence intensity spectra upon speciation (solid line: before washing; dotted line: after washing) of a solution of PBOX-g-DNA self-assembled structures incubated with the complementary sequence stained with A) FITC which hybridizes with the nucleic acid grafts engaged in self-assembly and B) the non-complementary sequence labeled with Cye5 which remains in solution before washing (background). Subsequent to washing, the complementary sequence stained with FITC hybridizes with the PBOX-g-DNA composing the self-assembled structure, being the non-complementary sequence removed during the washing process (no background).

Figure S10. Atomic force microscopy imaging of A) molecularly dissolve PBOX polymer chains adsorbed on micaB) PBOX-g-DNA copolymer adsorbed on mica

Scheme S1. Procedure for sorting out nucleotides sequences with the use of PBOX-g-DNA spheres.

Wavenumber (cm ⁻¹)	Assignments
920	Vinyl C=CH2
970	P-O in (R-O)2-PO2 upper band
1064	$P=O \text{ in } (R-O)_2-PO_2 \text{ lower band}$
1226	P=O in (R-O)2-PO2 upper band
1471	N-H streching
1652	C=O amide I

 Table S1: Significant FTIR vibration bands and their corresponding wavenumbers