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Abstract

The discovery of many noncanonical peptides detectable with sensitive mass spec-

trometry inside, outside, and on cells shepherded the development of novel methods

for their identification, often not supported by a systematic benchmarking with other

methods. We here propose iBench, a bioinformatic tool that can construct ground

truth proteomics datasets and cognate databases, thereby generating a training court

wherein methods, search engines, and proteomics strategies can be tested, and their

performances estimated by the same tool. iBench can be coupled to themain database

search engines, allows the selection of customized features of mass spectrometry

spectra and peptides, provides standard benchmarking outputs, and is open source.

The proof-of-concept application to tryptic proteome digestions, immunopeptidomes,

and synthetic peptide libraries dissected the impact that noncanonical peptides could

have on the identification of canonical peptides by Mascot search with rescoring via

Percolator (Mascot+Percolator).
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1 INTRODUCTION

In the last decade, the striking progress in mass spectrometry (MS)

has triggered the development of methods that looked behind the cur-

tain of conventional peptidomics and proteomics. As a consequence, a

plethora of ‘noncanonical’ peptides and polypeptides have been identi-

fied both inside the cell, inside cell compartments, in the extracellular

space, as well as in the cleft of the Human Leukocyte Antigen class

(HLA-) I and II, also known as HLA-I and HLA-II immunopeptidomes.

The ‘noncanonical peptides’ can deviate from canonical peptides in

terms of features, origin, andmechanism of generation [1].

Abbreviations: FDR, false discovery rate; HLA, human leukocyte antigen; iBench, in silico

BENChmark Helper; MS, mass spectrometry; ORF, open reading frame; PTM,

post-translational modifications; PSM, peptide spectrummatch; PR, precision recall; ROC,

receiver operator characteristic; UTR, untranslated region.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Proteomics published byWiley-VCHGmbH.

Canonical peptides may be generated via peptide hydrolysis by

proteases either in physiological conditions such as proteasome pro-

teolysis in cellula or in technical reactions such as tryptic digestions

of intracellular protein content, also known as intracellular proteome.

These peptides derive from known proteins included in proteome

databases such as the human UniProt reference proteome. Non-

canonical peptides include those that underwent post-translational

modifications (PTMs) and/or are not derived from proteins listed in

canonical proteome databases. PTMs of proteins and peptides can be

achieved via chemical modifications either in cellula (biological PTMs)

or during the preparation of the samples and MS measurement (tech-

nical PTMs). Other kinds of PTMs modify the amino acid sequence of

peptides and proteins. Although often these reactions are catalyzed

by enzymes (e.g., transpeptidation that generates cis- and trans-spliced

peptides), also enzyme-independent reactions-, for example, protein
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splicing of inteins - can occur [2]. A large portion of noncanonical

peptides may derive from putative non-coding regions-, for example,

5′-UTR, 3′-UTR, introns - or alternative transcription and translation

processes, such as alternative open reading frame (ORF) usage, alter-

native RNA splicing, and ribosomal frameshift. These peptides are

defined as ‘cryptic’ [3, 4].

From the proteomics point of view, the identification of noncanoni-

cal peptides could not be achieved with standard methods. Novel tools

have been developed to this end (e.g., [3, 5-9]), and new challenges

to the statistics underlying proteomics confidence estimation have

emerged. In particular, the estimation of false discovery rate (FDR),

which is the cornerstone of many proteomics search engines, became

problematic since the theoretical database of noncanonical peptides

has been estimated to be dramatically larger than that of the canonical

peptides.

To address this issue, noncanonical peptide candidates identified in

various sample types such as tryptic proteome digestions and HLA-

I immunopeptidomes have been investigated at MS2 spectral level

by predicting MS2 spectra and comparing them with the measured

ones (e.g., [7, 10-13]), and at peptide level by comparing canonical and

noncanonical peptides’ features (e.g., [3, 14].

These attempts assumeda similarity between the features of canon-

ical and noncanonical peptides. In contrast, differences in the mech-

anism of production, features of the original proteins (among others)

between canonical and noncanonical peptides have been hypothesized

[3-5, 15-17], and therefore this strategy could be biased. To tackle this

issue, we could synthesize all noncanonical peptides identified in a pro-

teomic sample, measure them via MS and compare theMS2 spectra of

the peptides and synthetic peptides, which has only been undertaken

rarely [18].

Although the comparisonofMS2 spectra andpeptide features could

help identifying sequence misassignment, and thus improve the pre-

cision of a method, it could not estimate or improve the recall of a

method, that is, the proportion of peptides of a given kind that were

present in a sample but were not identified by a given method. By

neglecting this aspect, the low recall of a method could confound the

identification of peptides of a given kind, thereby leading to lower

estimates of the frequency of that specific peptide kind [19]. The gen-

eration of a ground truth dataset containing peptide spectrummatches

(PSMs) with characteristics similar to the target datasets, and the

benchmarking of a given method on that dataset could address both

issues. Indeed, this approach could let us estimate theprecision-, that is,

number of correctly identified peptides over number of identified pep-

tides –and recall-, that is, number of correctly identified peptides over

number of all correct peptides in the sample – of a given method. The

computationof precision and recall (PR) and receiver operating charac-

teristic (ROC) curves is a standard strategy for performance evaluation

of in silico predictors.

Recently, we applied this strategy to compare the impact of

database search engines and target database features on the

identification of post-translationally spliced peptides in HLA-I

immunopeptidomes. We manually created ground truth datasets and

cognate databases, and benchmarked PR performance of Mascot,

Mascot+Percolator and PEAKS as final search engines [20]. The

identification of post-translationally spliced peptides, which can be

generated by proteasomes as well as other proteases and trigger an

immune response [21], is an emblematic field wherein the automated

creation of ground truth datasets and databases could favor an edu-

cated evaluation of the performance of novel methods, and provide

a catharsis to the debate on the natural existence of this process

[19, 22]. To this end, we developed the software package in silico

BENChmark Helper (iBench). It constructs ground truth proteomics

datasets and reference databases, which can be used to test methods,

search engines, and proteomics strategies. iBench also provides a pool

of standard performances outputs such as PR and ROC curves. iBench

is open source, can be combinedwith various search engines and is not

computationally demanding or convoluted (Figure 1).

As proof-of-concept, we applied iBench to tryptic proteome diges-

tions, HLA-I immunopeptidomes and synthetic peptide libraries (see

Table 1) to estimate hownoncanonical peptides present in the datasets

could impinge upon the successful identification of canonical peptides

byMascot+Percolator, and to compare estimated andmeasured FDRs.

In this representative application, noncanonical peptides were uniden-

tifiable by standard Mascot+Percolator, and therefore represented a

‘stress-test’ for the investigated search engine, and the impact on its

performance could be quantified by applying iBench.

2 MATERIALS AND METHODS

2.1 Cell lines

K562-A*02:01 cell clone expresses single HLA-I alleles. It derives from

the leukemia K562 cell line (ATCC CCL-243), which does not express

endogenous HLA-I and -II molecules. K562-A*02:01 cell clone gener-

ation is described elsewhere [20]. K562 cells were grown in the same

conditions than K562-A*02:01 cells, as described elsewhere [20].

2.2 RNA sequencing

RNA was extracted from K562-A*02:01 and K562 cell pellets, pro-

cessed for polyA enrichment, then sequenced by using NEBNext Ultra

RNA Library Preparation Kit with random priming. Sequencing was

performed using HiSeq 2 × 150 PE HO with the depth of 20 to 25

million reads per sample.

2.3 RNA-informed, Gencode, and inflated
reference databases

As Gencode reference transcriptome we used the main annotation

Release 33 (GRCh38.p13) [23].

The RNA-informed database was generated using the RNA

sequencing data and by applying a pipeline described elsewhere

[20]. Briefly, reads were trimmed using Trim Galore with stringency
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F IGURE 1 iBench and benchmarking workflow. (A) Overview of the processing and data flow through the iBench “createDB” and “analysis”
workflows. (B) Flow chart representing the inputs and outputs of the iBench “createDB” and “analysis” workflows.

TABLE 1 Benchmarking strategies using Bench to generate ground truth datasets

Source of ground truth datasets Interpretation Advantages

High confidence PSMs from a

standard search

Internal Consistency of Search Engine Easy validation.

Similarity to target peptides.

High confidence PSMs frommultiple

search engines

Internal Consistency and Removal of

Search Engine Specific Bias.

Easy validation.

Similarity to target peptides.

Synthetic peptide library

measurements

True Precision-Recall High confidence in identifications.

Suitable for benchmarking of very precise tools.

parameter of 5. Quantification was performed using Salmon (v1.1.0)

[24] with decoy-augmented Gencode v33 human reference transcrip-

tome [23]. In short transcripts, the k-mer size was reduced to 23 bp

and 1000 Gibbs samples were drawn from the posterior distribution

of transcript abundances. Only the transcripts that received more

than 10 estimated counts in at least one sample were considered to

be expressed and their Gencode protein-coding transcript translation

sequences were selected for a common database forMS search.

The inflated reference databases created for testing the impact of

database size on Mascot+Percolator performance was generated by

reshuffling the entries in Gencode reference database and append-

ing the shuffled entries to the original reference database. To allow

increases in size of 25% to 150%, the shuffled protein entries were cut

off at the corresponding percentage of their original sequence length.

2.4 Datasets

HLA-I-bound peptides were isolated from 109 cells from K562-

A*02:01cell line, throughHLA-I-peptideelutionusingW6/32antibody,

as described elsewhere [20].

Tryptic digestions of cell proteome obtained from K562 cell line

were carried out as follows: cell pellet was lysed in cell lysis buffer

(50mMHEPES, pH7.5, 150mMNaCl, 4% SDS, 2mMDTT, 0.5%NP40)

 16159861, 2023, 2, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200271 by T
est, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 13

and heated at 95◦C for 10min. The cell lysate was then diluted to final

concentration of 1% SDS with 50 mMHEPES, pH 7.5. Pierce Universal

nuclease (Thermofisher scientific) was added according to the manu-

facturer’s recommendations and incubated at 37◦C for 30 min under

shaking condition (300 rpm). Protein concentration was determined

using Pierce BCA protein assay kit (Thermofisher scientific) and 50 µg
of protein was used for proteome digestion. Proteins were reduced

with 5 mM DTT for 30 min at 37◦C and alkylated by the addition of

20 mM iodoacetamide and incubation for 30 min at room tempera-

ture in the dark. The reactionwas quenched by incubationwith 20mM

DTT for 15 min at room temperature before purification with SP3

beads [25], and elution for proteome digestion with trypsin (Promega)

at protease to proteomeweight ratio of 1:25 at 37◦C for 16 h.

The synthetic peptide library contained 9, 10, or 15 amino acid long

peptides (n= 2981 unique peptide sequences and 4147 PSMs) related

to CD4+ and CD8+ T cell response to Dengue and VZV viruses. The

Dengue andVZVsynthetic peptides utilized in this studywere selected

for analysis because they were already available in-house and syn-

thesized for separate epitope identification studies [26]. The selection

and characterization of these peptides has been described previously

[27–34]. Each of the peptides in synthetic peptide librarieswas derived

from respective Dengue and VZV proteomes. Peptides were originally

selected for other studies based on bioinformatic analyses of predicted

capacity to bind various common HLA-I and -II alleles in the general

worldwide population. The set of Dengue protein sequences of prove-

nance represent all four Dengue serotypes and several different vari-

ant isolates. The VZV peptides were primarily derived from the atten-

uated varicella vaccine strain vOka and a few variant isolates. Peptides

were grouped in four library batches, with each peptide measured at

the concentration of 0.0625 pmol/µl. For each pool, 8 µl was injected in
the instrument, therebymeasuring 500 fmol of each peptide.

2.5 Mass spectrometry

MS data of HLA-I immunopeptidomes were originally collected using

either Orbitrap Fusion Lumos mass spectrometer coupled to an Ulti-

mate 3000 RSLC nano pump (both from ThermoFisherScientific), as

described elsewhere [20]. The samemethod and instrumentwere used

for the synthetic peptide library measurement. MS data of tryptic

digestions of cell proteome were measured through Thermo Scientific

Orbitrap Exploris 480mass spectrometer. Digested proteome samples

were injected using an Ultimate 3000 RSLC nano pump (both from

ThermoFisherScientific). Briefly, 0.5 µg of each sample was loaded and

separated by a nanoflowHPLC (RSLCUltimate 3000) on an Easy-spray

C18 nano column (30 cm length, 75 µm internal diameter). Peptides

were eluted with a linear gradient of 5% to 45% buffer B (80% ACN,

0.1% formic acid) at a flow rate of 300 nl/min over 58min at 50◦C. The

instrument was programmed within Xcalibur 3.1.66.10 to acquire MS

data in a Data Dependent Acquisition mode using Top 30 precursor

ions. We acquired one full-scanMS spectrum at a resolution of 60,000

with a normalized automatic gain control (AGC) target value of 300%

and a scan range of 350 to 1600m/z. TheMS2 fragmentation was con-

ducted using HCD collision energy (28%) with an orbitrap resolution

of 15,000. The normalized AGC target value was set up at 100% with

a max injection time of 40 ms. A dynamic exclusion of 22 s and 2 to 6

included charged states were definedwithin this method.

2.6 iBench implementation for construction of
ground truth datasets

The iBench software package is written in Python. iBench uses as input

MS files (mgf ormzML format) and generates constructed ground truth

datasets mapping scan numbers to identified peptides, an artificial ref-

erence database, and a reindexed mgf or mzML file with the scans of

interest selected (Figure 1A). iBench can be combined with the main

database search engines such as MaxQuant, Mascot, and PEAKS, as

well as Percolator identifications (Figure 1B). A constructed ground

truth dataset can be provided fromMS files derived from tryptic diges-

tions of proteomes, HLA-I immunopeptidomes, or synthetic peptide

libraries (see Table 1 for details on the benefits of each). With default

settings, iBench filters PSMs identified in those experimental datasets

to (i) provide a single peptide per MS2 spectrum (no chimeric spec-

tra allowed), (ii) remove I/L redundant peptides, (iii) remove peptides

identified with PTMs. The removal of modified peptides is to ensure

that only peptides with the highest confidence are assigned. How-

ever, if the users were eager to analyze the impact of PTMs, they can

set the flag “filterPTMs” to “False” in the iBench config file. In such

cases, the user should be aware of the greater risks of misassignment

and search engine specific biases in identification. iBench also starts

the creation of the constructed reference database by removing all

sequences included in the constructed ground truth datasets from

the original reference database, replacing all occurrences of the pep-

tides in theoriginal referencedatabasewith randomly sampledpeptide

sequences.

The peptides are then embedded in the constructed reference

database according to the frequency of each peptide stratum selected

by the user. In the current version of iBench, the possible strata are

canonical non-spliced, cis-spliced and trans-spliced peptides, although

further strata could be added in future developments of iBench. For

a canonical peptide, the complete sequence is embedded in a random

location in the proteome FASTA file (along with a preceding K residue

for tryptic datasets). For a cis-spliced peptide, a random point in the

sequence is selected as a splice site and the peptide is split into two

subsequences at that point. The subsequences are embedded in a ran-

domly selected protein with 1 to 25 randomly selected amino acid

residues added between them. In the case of a trans-spliced peptide,

iBench splits the peptide into two subsequences and the sub sequences

are embedded in two different randomly selected proteins. Therefore,

the latter are peptides that cannot be generated by either peptide

hydrolysis or cis-peptide splicing of canonical proteins.

Once, these sequences have been added, iBench iterates to ensure

that no trans-spliced peptides are present in the constructed refer-

ence database as canonical or cis-spliced peptides, and no cis-spliced

peptides are present as canonical peptides.
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Depending on the peptide identification method tested via iBench,

both cis- and trans-spliced peptides could be used as unidentifiable

peptides, that is, peptide sequences that cannot be identified by the

tested method. In the present study, we used only trans-spliced pep-

tides as unidentifiable peptides and had no cis-spliced peptides in the

constructed ground truth PSM datasets and cognate database. In this

use case, iBench did not perform the validation that trans-spliced pep-

tides were not also possible via peptide cis-splicing, since both strata

were unidentifiable by the search engine used in our representative

analysis, that is, a standardMascot+Percolator.

iBench also reads in the mzML or mgf files provided and returns a

single mzML or mgf file containing reindexed scan numbers. The user

can then apply the chosen identificationmethod(s) to the reindexed file

using the constructed reference database.

2.7 Identifications of PSMs for the ground truth
datasets in this study (iBench input generation)

To generate a constructed ground truth PSM dataset for the trypsin

proteome digestions and HLA-I immunopeptidomes, we searched the

original MS datasets with Mascot against an RNA-informed database

generated as described elsewhere [20]. In terms of search settings,

we set enzyme specificities to ‘trypsin’ for the trypsin proteomes and

‘non-specific’ for the HLA-I immunopeptidomes. Precursor mass tol-

erances were set to 5 ppm and fragment ion mass tolerances were

set to 0.02 Da. We then applied Percolator using engine score, delta

score, charge, sequence length, ms1 error and absolute ms1 error

as features. The PSMs with q-value less than 0.01 were selected as

ground truth identifications. The tryptic proteome digestions provided

a larger number of PSMs identified at 1% FDR and we wanted to com-

pare the peptide identifications in a tryptic proteome digestion and a

HLA-I immunopeptidome on equal footing. Therefore, we sampled the

tryptic proteome digestion dataset so that both constructed ground

truth datasets contained similar numbers of PSMs and peptides (1689

unique peptides for the HLA-I immunopeptidome and 1829 unique

peptides for the tryptic proteome digestion).

In the case of the synthetic peptide library, the MS data for each

of the four raw files were searched with PEAKS DB and MaxQuant

against a list of the synthetic peptides which were used in each

batch. Percolator was applied to the MaxQuant search results with

the same feature set used for Mascot. The PEAKS DB results were

exportedat1%FDR.These resultswereusedas input for iBench,which

selected only unique peptides with PSMs identified by both PEAKSDB

and MaxQuant+Percolator at 1% FDR leading to 3429 PSMs in the

constructed ground truth dataset.

2.8 iBench benchmarking framework

For the benchmark plots provided, all PR and ROC curves were gener-

ated using the iBench analysis functionality (see Result section; a more

detailed description is available in the GitHub repository mentioned in

the Associated Data and Software section). The iBench analysis was

TABLE 2 MS2 spectrum and peptide features included in iBench

Feature Description

charge The charge of the peptide.

sequenceLength The length of the peptide.

hydrophobicityIndex The hydrophobicity index of the peptide.

mass Themass of the peptide.

ms2Coverage The number of fragmentation positions on

the peptide backbone for which there is

at least onemzmatched peak in theMS2

spectrum divided by the total number of

possible fragmentation positions.

signalToNoise The ratio of the intensities of thematched

peaks to the unmatched peaks in the

MS2 spectra.

run separately on each set of identifications and then all PR curves for

each sample typewere replottedon the sameaxis usingPython and the

Plotly library so that performance could be compared.

2.9 FDR estimation by applying
Mascot ± Percolator and iBench

As with the benchmarking framework, the true versus estimated

FDR plots were generated using the iBench analysis functionality and

replotted using Python and the Plotly library. For each point estimate

the true FDR was calculated by considering all target PSMs with q-

value less than that value and comparing the number of correct PSMs

(C) and incorrect PSMs (I) to estimate the FDR as FDR = 100
I

C+I
.

2.10 MS2 spectra characteristics

For each MS2 spectrum in our ground truth datasets, iBench can com-

pute MS2 spectra characteristics. The default features are reported in

Table 2.

2.11 Statistical analysis

All statistical analysis has been implemented in Python. All statis-

tics for performance measurement are described in the benchmarking

framework. FDR calculation is described in the respective methods

sections.

3 RESULTS

3.1 Overview of iBench

The Python based iBench software package consists of two parts: (i)

construction of ground truth dataset, and (ii) performance evaluation

(Figure 1A).
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The ground truth dataset (i) consists of a constructed MS dataset

and a constructed reference database. First, user-provided annotated

MS2 spectra are filtered, selected and combined into a constructed

ground truth dataset. MS2 spectra can be derived from various

sources, such as tryptic digestions of proteomes, HLA-I immunopep-

tidomes, or synthetic peptide libraries (see Table 1 for details on the

benefits of each). iBench allows for flexible input formats for both MS

data (mgf ormzML) andMS search engines such asMaxQuant,Mascot,

and PEAKS, as well as combinations with Percolator (Figure 1B). Along

this process, iBench calculates a number of peptide features such as

hydrophobicity index as well as features describing the match to the

MS2 spectrum such as signal to noise ratio (Table 2, Figure 1A). The

default feature list present in iBench could be easily modified by the

user by adding new customized features. These features can later be

investigated for their impact on theMS identificationmethod.

The assigned peptide sequences of the constructed ground truth

dataset build the basis to generate the respective database for bench-

marking. Starting from a user-provided reference database, which

should reflect the complexity of thedesired analysis in termsof number

of database entries and entry length distribution, all assigned pep-

tide sequences of the constructed ground truth dataset are encoded

as defined by the user. In the current version of iBench, each pep-

tide can be categorized as either canonical non-spliced, cis-spliced, or

trans-spliced. Once the benchmarking database is constructed, iBench

provides the userwith both, the constructed ground truth datasetwith

known annotations as well as the constructed database in FASTA for-

mat. These iBench outputs can then be used by the user as inputs for

their search algorithms under investigation.

In this study, we demonstrate the functionality of iBench by

benchmarking the performance of Mascot+Percolator on constructed

ground truth datasets derived from tryptic proteome digestions, HLA-

I immunopeptidomes, and synthetic peptide libraries. In the examples

shownhere,we applied iBench toMS search strategies that could iden-

tify only canonical peptides, namely ‘identifiable’ peptides. Therefore,

both cis- and trans-spliced would have been ‘unidentifiable’ peptides.

For the sake of simplicity, during the construction of the constructed

ground truth databases in this study, only spliced peptides were

included and hence were considered as ‘unidentifiable’ peptides.

After the user has applied their identification method (or multi-

ple identification methods) to the constructed ground truth datasets,

iBench continues with performance evaluation (ii) via standard

benchmarking tests, producing various statistical outputs (Figure 1B,

Table 3). In the first step of this process, iBench creates a “query table”

merging the constructed datasets (the ground truth peptides and their

reindexed scan numbers along with iBench calculated PSM features)

with the user’s identifications and the score assigned to each PSM.

This query table is used to benchmark the method(s), which the user

applied. PR and ROC curves are generated by calculating correct and

incorrect identifications above a scoring threshold, which is varied

between the minimum search engine score and the maximum search

engine score. TrueFDRat a given cut off canbe identified by calculating

the fraction of incorrectly assigned PSMs above that threshold. If the

user provides the decoy identifications of the search algorithm under

TABLE 3 Benchmarking outputs included in iBench

Output Description

Precision-Recall (PR)

Curve

Plot of precision against recall whenwe vary

the threshold from theminimum score

assigned to themaximum score assigned.

Receiver-Operator

Characteristic (ROC)

Curve

Plot of true positive rate against false positive

rate whenwe vary the threshold from the

minimum score assigned to themaximum

score assigned.

Feature Distributions Scatter plots and violin plots as appropriate

for the feature for the distribution of search

engine score against the feature values for

correct and incorrect PSMs

investigation, iBench produces graphical outputs comparing search

engine score distributions of incorrect target PSMs against decoy

PSMs, particularly with respect to possible confounding variables such

as sequence length (Figure 1B).

These iBench generated benchmarking outputs provide insight into

the performance of a search algorithm (PR curves, ROC curves, etc.)

and potential sources of bias in the identification such as scatter plots

and violin plots of search engine scores against confounding variables

for correct, incorrect, and decoy PSMs. An example of the iBench

output is provided in the supplemental data which shows all of the

benchmarking and analysis plots (File S1). This example also provides

a useful practical example of using iBench to compare different identi-

fication methods. For the purposes of the example, we benchmarked

Percolator rescoring of Mascot search results using three slightly

different feature sets, although the same iBench analysis could be gen-

erated for many diverse identification tools. The PR and ROC curves

provide an easy comparison of identification performance, while anal-

ysis of FDR and confounding variable distributions could help to avoid

bias or inaccurate FDR estimation of a method analyzed. The exam-

ple output can also be generated by downloading the repository from

GitHub and following the instructions in the README (see Associated

Data and Software section).

3.2 Mascot+Percolator performance in
constructed ground truth datasets of tryptic
proteome digestions and HLA-I immunopeptidomes
with a variable frequency of identifiable canonical
peptides

As a first example of an iBench benchmarking strategy using con-

structed ground truth datasets and cognate databases, we applied

iBench to tryptic proteome digestions. The selection of the PSMs

used by iBench to construct the ground truth dataset is described

in the Materials and Methods. As a proof of concept, by applying

iBench we constructed seven reference databases, which contained

only a portion (between 30% and 90%) of the peptides present in

the constructed ground truth dataset. Therefore, only 30% to 90% of

the peptides present in the constructed ground truth dataset were
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F IGURE 2 Canonical peptide identification performances ofMascot+Percolator in ground truth datasets constructed from tryptic proteome
digestions andHLA-I immunopeptidomes varying the frequency of identifiable peptides. (A) PR curves for the identification of canonical peptides
byMascot+Percolator in ground truth datasets constructed from tryptic proteome digestions of K562 cell line. (B) PR curves for the identification
of canonical peptides byMascot+Percolator in ground truth datasets constructed fromHLA-I immunopeptidomes of K562-A*02:01. Each curve
represents a different frequency of canonical peptides present in the ground truth datasets that can be identified using the cognate ground truth
reference database, and is generated by applying a range of scoring cut-offs. All datasets were obtained throughmeasurement byOrbitrap Fusion
Lumos. The number of PSM in each constructed ground truth dataset is reported.

identifiable by the database-dependent search engine. We then

applied Mascot+Percolator on this constructed ground truth dataset

using the seven constructed reference databases. Thereby, we

could estimate the impact of any kind of noncanonical peptides,

which are not identifiable through a standard database-dependent

Mascot+Percolator search, on the identification of canonical peptides.

We hypothesized that the search engine performance in the identifi-

cation of canonical peptides would vary from an optimal performance-,

that is, whilst using a constructed reference database that had no

unidentifiable peptides – to less performant behaviors whilst using

constructed databases with a prevalence of unidentifiable peptides.

To test this, we computed PR curves for canonical peptide iden-

tification of Mascot+Percolator search engine by applying iBench.

The precision in the identification of canonical peptides was defined

as number of correctly identified canonical peptides over number of

identified canonical peptides. Therefore, the denominator included

both canonical peptides identified as such and unidentifiable peptides

wrongly assigned with one of the sequences of the canonical peptides

by Mascot+Percolator. The larger the pool of peptides misassigned as

canonical peptides, the lower is the precision in the identification of

canonical peptides. Optimal methods have the highest precision at the

highest recall. In this analysis, the increase of theunidentifiable peptide

pool in the constructed ground truth dataset had only a slight impact

on the PR curve in the tryptic proteome digestions. Indeed, while

the dataset containing 10% unidentifiable peptides achieved essen-

tially perfect performance (100% precision at any cut off), even the

datasetswith 70%unidentifiable peptides showed strong performance

(Figure 2A).

We then repeated the benchmarking strategy using constructed

ground truth datasets and cognate reference databases by applying

iBench to K562-A*02:01 HLA-I immunopeptidomes. The selection of

the PSMs used by iBench is described in the Materials and Meth-

ods. As done for the tryptic proteome digestions, we varied the

ratio of peptides present in this constructed ground truth dataset

that could be identified by using one of the seven constructed ref-

erence databases. We then applied Mascot-Percolator constructed

ground truth dataset. Again, in constructing the ground truth HLA-

I immunopeptidome datasets, Mascot+Percolator was used to select

high confidence PSMs of canonical peptides. Thereby, we could mea-

sure the search engine performance in the identification of canonical

peptides in a HLA-I immunopeptidome-derived dataset that contained

different proportions of identifiable (canonical) peptides and uniden-

tifiable (noncanonical) peptides. In this example, the increase of the

unidentifiable peptide pool in the constructed ground truth dataset

affected the PR curves (Figure 2B), in a much stronger manner than in

the constructed ground truth dataset of tryptic proteome digestions

(Figure 2A). Performance across all constructed ground truth datasets

was reduced as compared to the tryptic proteome digestions, and the

variation of the pool of unidentifiable peptides in the constructed ref-

erence dataset more remarkably affected the method performance.

For instance, when using a constructed reference database that could

allow the identification of 30% of the peptides in the constructed

ground truth dataset, Mascot-Percolator had a precision of 91% with

a recall of 80%. Conversely, when using a constructed reference

database that could allow the identification of 90% of the peptides in

the constructed ground truthdataset,Mascot-Percolator had the same

recall but an improvement in precision up to 99% (Figure 2B).

3.3 Mascot+Percolator performance in ground
truth constructed datasets of tryptic proteome
digestions and HLA-I immunopeptidomes using
ground truth reference databases of varying size

In our first analysis (Figure 2),we leveraged iBench to test the impact of

peptides present in the constructeddatasets but not in the constructed

reference database. We illustrated that increasing the percentage of

unidentifiable peptides using a given constructed reference database

had a negative impact on the identification of the identifiable peptides.

Our next goal was to test the opposite case. By applying iBench, we

constructed seven reference databases that could allow the identifica-

tion of a fixed number of peptides present in the ground truth dataset,
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F IGURE 3 Canonical peptide identification performances ofMascot+Percolator in ground truth datasets constructed from tryptic proteome
digestions andHLA-I immunopeptidomes using cognate databases of various sizes. (A) PR curves for the identification of canonical peptides by
Mascot+Percolator in ground truth datasets constructed from tryptic proteome digestions of K562 cell line. (B) PR curves for the identification of
canonical peptides byMascot+Percolator in ground truth datasets constructed fromHLA-I immunopeptidomes of K562-A*02:01. (C) ROC curves
for the identification of canonical peptides byMascot+Percolator in ground truth datasets constructed from tryptic proteome digestions of K562
cell line. (D) ROC curves for the identification of canonical peptides byMascot+Percolator in ground truth datasets constructed fromHLA-I
immunopeptidomes of K562-A*02:01. Each PR or ROC curves represent identifications using reference databases of differing size, and are
generated by applying a range of scoring cut-offs. All datasets were obtained throughmeasurement byOrbitrap Exploris 480. The number of PSMs
in each constructed ground truth dataset is reported.

and had a variable database size. The larger the database, the larger

the pool of identifiable peptides not present in the dataset. This test

allowed us to measure the impact of the reference database size on

the search engine performance. Recent strategies of limiting the size

of the reference database through RNA-sequencing information have

been proposed to boost MS search engine performance [35] and other

strategies have been proposed to address the frequently discussed

problems of working in enlarged search spaces [11].

To address this subject matter, by applying iBenchwe created seven

reference databases of varying sizes to be used byMascot+Percolator

on the constructed ground truth dataset derived from K562 tryptic

proteomedigestions andK562-A*02:01HLA-I immunopeptidomes. All

ground truth databases were created so that 70% of peptides in the

constructed ground truth datasets were identifiable and 30% uniden-

tifiable. By applying iBench, we created ground truth databases using

(i) an RNA-informed reference database, (ii) the Gencode reference

database, and (iii) progressively enlarged reference databases (up to

250% of the size of the original Gencode database). The enlarged ref-

erence databases were created by appending randomized copies to

the Gencode database (see Materials and Methods for more details).

We calculated PR curves for both kinds of constructed ground truth

datasets (Figure 3A,B). In this case, since the percentage of identifiable

peptides was set constant between datasets by iBench, we also calcu-

lated ROC curves for both datasets (Figure 3C,D). ROC curves which

report true positive rate (equivalent to recall) i.e., number of correctly

identified peptides divided by the number of all identifiable peptides in

the dataset – on the Y-axis, and false positive rate i.e., number of incor-

rectly identified peptides divided by the percentage of unidentifiable

peptides in the dataset – on the X-axis.

For the constructed ground truth datasets derived from tryptic

proteome digestions, we observed a near perfect performance asmea-

sured by both PR and ROC curves when using a constructed reference

database of the same size as the original RNA-informed database

(Figure 3A,C). Even with recall or true positive rate above 90%, pre-

cision remained above 99% and the false positive rate did not exceed

1%, even at the lowest scoring threshold. Performance remained rea-

sonably robust while searching in the constructed tryptic proteome

digestion datasets even when using the Gencode and inflated refer-

ence databases. In all cases, the true positive rate exceeded80%before

the false positive rate exceeded 1% (Figure 3C).

In contrast, the analysis of the constructed ground truth dataset

derived from the HLA-I immunopeptidomes was more sensitive to

the increase in cognate reference database size. As with the tryptic

proteome digestion dataset, optimal performance was achieved when

ground truth database construction was based on the RNA-informed

reference database. However, in this case there was a greater risk of

peptide sequence misassignment compared to the tryptic proteome

digestion dataset, with a false positive rate of 29% for the lowest scor-

ing threshold (Figure 3D). The impact of increasing reference database

size was also more remarkable in the constructed ground truth HLA-

I immunopeptidome dataset than the tryptic proteome digestions.

Indeed, we observed performance quickly decayed on both PR and

ROC curves when using the larger constructed reference databases.

WhenMascot+Percolator used constructed reference databases with

a size of 200% to 250% compared to the original Gencode refer-

ence database, the precision dropped below 99% at recall below 25%

(Figure 3B), and the false positive rate exceeded1%evenwhen the true

positive ratewasbelow40% (Figure3D).When the largest constructed
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reference databaseswere used, the false positive rate reached close to

50% for the lowest scoring thresholds, thus illustrating the dangers of

working with such enlarged databases (Figure 3D).

3.4 Experimentally measured FDRs of
Mascot+Percolator performance computed in
constructed ground truth datasets of synthetic
peptide libraries

The strategy adopted so far constructed ground truth datasets

using high confidence PSMs identified by a given search engine

(Mascot+Percolator, in this case) in the same sample type wherein

we wanted to test the search engine performance. Through this strat-

egy iBench could efficiently estimate, for instance, the impact of the

dataset structure and enzyme specificity (Table 1, Figure 2). Nonethe-

less, the PSMs selected by iBench to construct the ground truth

datasets were identified by the same search engine with high confi-

dence in the original datasets. This raises two issues; firstly, the PSMs

included in the constructed ground truth datasets were already iden-

tified under the same conditions and by the same method, so these

were likely MS2 spectra which the search engine already well identi-

fied. Secondly, we could not have full confidence in the PSMs used to

construct the ground truth datasets because they were initially identi-

fied in a dataset of unknown peptide content. For instance, if a search

engine severely underestimated the FDR but consistently identified

the same incorrect PSMs between the original dataset and the con-

structed ground truth dataset, then iBench couldwrongly estimate the

methods‘ precision.

If we wanted to measure the experimental FDR of a given search

engine, for example, we could adopt a different strategy. Rather than

using the same kind of sample both as a source for the constructed

ground truth dataset and the final search engine application, we could

generate a constructed ground truth dataset using PSMs with a range

of MS2 spectral quality identified in a synthetic peptide library by

applying iBench. As a proof-of-principle,we adopted this strategyusing

four MS files of synthetic peptide libraries derived from 9, 10, and 15

amino acid long peptides previously investigated as potential pathogen

epitopes (seeMaterials andMethods section).We also usedPEAKSDB

and MaxQuant in the initial identification of these peptides to ensure

that the search engine used in benchmarking (Mascot+Percolator)was

not used in the ground truth dataset construction (see Materials and

Methods section).

This benchmarking strategy resulted in a greater challenge to the

search engine, with the observed precision much lower at corre-

sponding recall values than for the previously constructed datasets

(Figure 4A and Figure 2B could be compared). Even with 90% of

PSMs identifiable in the constructed ground truth dataset using the

cognate reference database, a recall of 65% was achieved at 99%

precision (Figure 4A), compared to recalls in excess of 90% at 99%

precision for the constructed ground truth datasets derived from

HLA-I immunopeptidomes shown in Figure 2B. Using a ground truth

dataset constructed on a synthetic peptide library, themaximum recall

observed was also lower than when using a ground truth dataset con-

structed on an HLA-I immunopeptidomes (84% in Figure 4A vs. 99% in

Figure 2B). Despite this difference in the search engine performance,

the percentage of peptides, present in the ground truth datasets con-

structed using either the HLA-I immunopeptidomes (Figure 2B) or a

synthetic peptide library (Figure 4A), that could be identified using the

different constructed reference databases had a remarkable impact on

search engine performance.

In addition, by applying iBench on a synthetic peptide library

dataset, we had a much greater confidence in the PSMs included

in the constructed ground truth dataset since we knew what syn-

thetic peptides were present in the library. This could allow iBench to

assess theFDRpredictionof a given searchengine,Mascot+Percolator

in our representative study. In Figure 4B, we presented the exper-

imental FDR i.e., the percentage of wrongly assigned PSMs by

Mascot+Percolator – observed at various q-value/FDR cut offs. Perco-

lator was applied using target-decoy competition for FDR estimation.

In this case there was no obvious impact of the percentage of uniden-

tifiable peptides in the constructed ground truth dataset on the

FDR estimated by Mascot+Percolator. In most cases the FDR predic-

tion of Mascot-Percolator was conservative, and the predicted FDR

was greater than the experimentally measured FDR, although some

underestimation of predicted FDR by Mascot+Percolator emerged

(Figure 4B).

3.5 Practical aspects of iBench application

Regarding the informatic aspects, iBench software supports Linux,Mac

OS, andWindows operating systems. The software requires conda for

installation and canbe executed via command line.Due to the complex-

ity of the reference database creation, iBench does not allow parallel

execution and so runs on one core only.

Regarding the computational time required by iBench, as represen-

tative estimation, we computed the time taken to create the ground

truth reference database (“createDB” pipeline) for varying the ref-

erence database size (Table 4) and the number of high confidence

peptides (Table 5). For all benchmarking runs we embedded 70%

canonical peptides and 30% unidentifiable peptides to match the set-

tings used in our investigation varying the database size (Figure 3).We

observed that iBench execution time was not heavily impacted by the

size of the reference database (Table 4), with an execution time of less

than 10 min even when using a reference database 2.5 times larger

than the Gencode database. The number of high confidence peptides

embedded in theproteomehadamuchgreater impact on theexecution

time (Table 5). However, even for themost extreme case, where 20,000

high confidence peptides were embedded in the proteome, the execu-

tion time was less than 80 min, which we feel is perfectly acceptable

given that the same reference database can thenbeused to benchmark

multiple identification methods. We also note that given that iBench

runs on one core only and is not highly memory intensive, the user can

easily leave reference database creation running as a background task

without fear of over-allocation of computing resources.
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F IGURE 4 Estimated andmeasured FDR ofMascot+Percolator in ground truth datasets constructed from synthetic peptide libraries. (A) PR
curves for the identification of canonical peptides byMascot+Percolator in ground truth datasets derived from synthetic peptide libraries.
Datasets were obtained throughmeasurement byOrbitrap Fusion Lumos. Curves represent the performances by applying a range of scoring
cut-offs. Each curve represents a different frequency of canonical peptides present in the ground truth dataset that can be identified using the
cognate ground truth reference database. The constructed ground truth dataset contained 3429MS2 spectra. (B) Plot of the experimentally
observed FDRs against the corresponding q-value cut off as estimated by Percolator on the constructed ground truth datasets derived from
synthetic peptide libraries. Dots represent the observed FDR at q-value cut-offs from 0.5% to 5%. The dashed line represents a theoretical perfect
FDR prediction.

TABLE 4 Run times observed for iBench “createDB” pipeline for increasing Database size

Number of peptides Database size (Entries) Database size (Residues) Mean protein length Run time (Minutes)

5000 43,578 17,401,687 399 5.54

5000 100,551 38,113,847 379 6.14

5000 201,102 57,145,643 284 7.66

5000 201,102 76,227,694 379 7.91

5000 301,653 95,259,490 315 8.90

This table provides the run time in minutes on an Apple M1 CPU running the iBench “createDB” pipeline embedding 10,000 peptides into databases of

increasing size.

TABLE 5 Run times observed for iBench “createDB” pipeline for varying number of high confidence peptides

Number of peptides Database size (Entries) Database size (Residues) Mean protein length Run time (Minutes)

1000 100,551 38,113,847 379 1.31

2000 100,551 38,113,847 379 1.84

5000 100,551 38,113,847 379 6.14

10,000 100,551 38,113,847 379 21.49

20,000 100,551 38,113,847 379 79.42

This table provides the run time in minutes on an Apple M1 CPU running the iBench “createDB” pipeline embedding an increasing number peptides into the

Gencode v.33 database.

4 DISCUSSION

iBench is a useful open-source software, which can apply a stan-

dardized evaluation of search engine performances. The software can

accept input from Mascot, PEAKS, and MaxQuant search engines as

well as Percolator output for both ground truth dataset construction

and benchmarking analysis. The software can provide insights into the

performance of an identification method/strategy in terms of speci-

ficity and sensitivity (corresponding to precision and recall) as well as

the accuracy of the method’s FDR prediction and possible sources of

bias. Although in this study we focused on methods that could iden-

tify only canonical peptides, iBench could also be used to benchmark

novel methods able to identify noncanonical cis-spliced peptides. For

instance, a ‘manual’ version of iBenchwas used to benchmark database

search engine performance in the identification of non-spliced and cis-

spliced peptides in HLA-I immunopeptidomes, and only trans-spliced

peptides were used as ‘unidentifiable’ peptides in constructed ground

truth datasets and cognate databases [20]. Since iBench is an open-

source software, we do not exclude that it could be developed to

generate also other peptide strata (e.g., scrambled peptides); then,

iBench could be coupled to search engines able to identify also

trans-spliced peptides, thereby allowing the evaluation of the method

performance in identifying also this kind of noncanonical peptides. The

software could be expanded even further, for example, by embedding

 16159861, 2023, 2, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200271 by T
est, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



11 of 13

reverse-translated sequences into modified RNA-informed databases,

which could allow for benchmarking of methods designed to identify

cryptic peptides using various RNA-sequencing based strategies [3].

As a proof of concept, in the results shown in Figure 2 and

Figure 3, we tested Mascot+Percolator on ground truth datasets

that were constructed using high confidence PSMs identified by a

standardMascot+Percolator pipeline. Therefore, our analysis focused

exclusively on the impact of unidentifiable peptides and reference

database size on the search engine and rescoring performance in

the identification of canonical peptides. By constructing ground truth

datasets using original datasets that have the same characteristic as

the datasets that the user aims to analyze by the search engine(s),

the user has the advantage of testing the search engine performance

on the peptides with features similar to the target datasets. This

issue is well represented by the proof-of-concept benchmarking that

we proposed in this manuscript. Indeed, tryptic proteome digestions

and HLA-I immunopeptidomes differ in many aspects. According to

the iBench-mediated benchmarking, Mascot+Percolator performance

was differently affected by a variation of the frequency of uniden-

tifiable peptides and the size of the reference database in the two

types of datasets, with a much greater impact shown for the HLA-

immunopeptidome datasets. This illustrates the importance of having

a well-informed reference database, maximizing the percentage of

identifiable peptides while minimizing database size. While these con-

siderationswerenot remarkable in the analysis of the tryptic proteome

digestions, they were critical in exploring the murky waters of HLA-I

immunopeptidomics.

In the case of the ground truth datasets constructed on tryptic pro-

teome digestions, the Mascot+Percolator performance was relatively

robust to decreasing the percentage of identifiable peptides in the

ground truth datasets, with precision never dropping below 97% even

for the lowest percentage of identifiable peptides at the lowest scor-

ing cut off. The performance was much more variable in the ground

truth datasets constructed on HLA-I immunopeptidome dataset, par-

ticularly when less than 70% of peptides present in the constructed

ground truth datasets were identifiable using the constructed refer-

ence database. Similarly, we observed a stronger impact of the refer-

encedatabase sizeonMascot+Percolatorwhenapplied to constructed

ground truth datasets derived from HLA-I immunopeptidomes than

tryptic proteome digestion.

Our proof-of-concept application of iBench also demonstrated how

the use of ground truth datasets constructed on synthetic peptide

libraries can provide amore challenging task for the search engine, and

an estimation of the discrepancy between predicted and experimen-

tally measured FDRs.

While the datasets used in our analysis are provided (see Associ-

ated Data and Software), the iBench user could also choose from the

manypublicly available synthetic peptide libraries for the generation of

ground truth datasets (e.g., [10]). Since iBench allows a selection of the

MS2 spectrum and peptide features of the selected PSMs in the con-

structed ground truth dataset, the user could carefully choose these

features to mimic those of the target datasets, wherein the search

engine will be finally applied.

Of course, iBench could be used for many different objectives. For

example, a search engine A could be used for the ground truth dataset

and database construction, and the search engines B, C, and D could

be applied to the ground truth constructed datasets for benchmarking.

Such a strategy could investigate the specific different performance

comparing how well the assignments from search engines B, C, D align

with the search engine A. Further information could be gathered by

varying the features of the PSMs and cognate peptides assigned to

either identifiableorunidentifiablepeptidegroups,which is one iBench

functionality. To note, iBench constructs ground truth datasets and

cognate databases using one or more search engines for the selection

of the PSMs. This strategy contains a certain level of bias toward the

search engine(s) and the parameters used for the construction of the

ground truth datasets. This aspect should always be considered in the

experimental design and the interpretation of iBench outputs.

4.1 Associated data and software

The MS proteomics data have been deposited to the ProteomeX-

change Consortium via the PRIDE [36] partner repository with the

dataset identifier PXD031709 [20], PXD031812, PXD034056, and

PXD034968.

The RNA sequencing data have been deposited in the NCBI

Sequence Read Archive database with the accession code

PRJNA721129 [20].

The iBench software has been implemented with Python and is

available at GitHub (https://pypi.org/project/ibench/).

Analyses were carried out in Python 3.8.

Figures have been generated in Python using the Plotly library and

postprocessing was donewith Adobe Illustrator v26.2.

MS analysis was carried out with MaxQuant version 1.16.17, Mas-

cot v2.7.01, PEAKS X Pro 10.6. Rescoring was carried out with

Percolator version 3.0.5. RAW files were converted to mgf/mzML for-

mat for iBench input using ms-convert GUI (ProteoWizard version

3.0.9134).
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