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Abstract: This study experimentally validates a stress-optic law for a three-dimensional flow
using integrated photoelasticity. In this stress-optic law, the stress is related to the two photoelastic
parameters — the phase retardation Δ and orientation 𝜙— of elliptically-polarized light. Previous
studies have examined the stress-optic law of three-dimensional flows, but the importance of
the second-order stress terms in the three-dimensional stress-optic law, i.e., those relating to the
stress component along the camera’s optical axis, have not yet been experimentally validated. In
this work, we measure the retardation of a steady laminar flow of a Newtonian fluid (cellulose
nanocrystal suspension of 0.5 wt%) in a square channel and compare it with the theoretical
prediction. Remarkably, the theoretical result including the second-order stress terms shows
good agreement with the experimental result for various flow rates, while the calculation without
these terms, which is often referred to as a "stress-optic law", results in a significant deviation
from the measurements. Therefore, proper consideration of the second-order stress terms in
the three-dimensional stress-optic law is crucial for integrated photoelasticity measurements of
three-dimensional flow fields.
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1. Introduction

In recent years, there has been a high demand for non-contact optical measurements of three-
dimensional stress fields in fluids. Photoelasticity has great potential as a method of measuring
such fields [1, 2]. It is a solid-state stress-measurement technique that has been extensively
studied over the last 50 years, utilizing the retardation of polarized light [3, 4]. When circularly-
polarized light is incident on a photoelastic material under stress loading, birefringence occurs
depending on the stress state, and elliptically-polarized light with retardation Δ and orientation 𝜙
is emitted. Δ and 𝜙 are related to the principal stress difference and the principal stress direction,
respectively [5].

In photoelasticity, the stress can be estimated from Δ using the stress-optic law [6–8]. When the
stress field is uniform along the camera’s optical axis, the retardation and the stress can be related
by the two-dimensional stress-optic law, i.e., the secondary principal stress difference [9–11].
Note that the secondary principal stress difference is the principal stress difference projected
onto the plane perpendicular to the camera’s optical axis. In the case of a three-dimensional
stress field measurement, i.e., when the stress field is not uniform along the camera’s optical
axis, one should take into account the three-dimensional stress-optic law and the integrated
photoelasticity [1, 2, 9, 12]. The integrated photoelasticity requires the use of Mueller calculus
(calculations using the Stokes parameter and the Mueller matrix) as well as the stress-optic
law [13,14], as described later in Section 2.1.

In recent years, there have been some reports on the application of photoelasticity to quasi-
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two-dimensional fluid flows [15–19]. In particular, several measurements have used an aqueous
cellulose nanocrystal suspension (hereinafter, CNC suspension) as the photoelastic fluid [15,
20–22] to show that the above two-dimensional measurement principle can be successfully
applied [23,24]. These studies have shown the great potential of photoelasticity for flow field
measurements.

McAfee and Pih [25] observed three-dimensional flow in a channel and stated that “the isoclinic
(retardation in this paper) was dependent on shear strain rates both normal and parallel (camera’s
optical axis in this paper) to the light ray”, but they did not show the direct relation between the
stress-optic law and their observation. Doyle et al. [14] derived the extended stress-optic law for
measuring a three-dimensional flow by considering the stress acting on the plane parallel to the
camera’s optical axis. They also highlighted the importance of the stress component along the
camera’s optical axis, i.e., second-order stress terms in the extended stress-optic law, although
they did not validate their theory with experiments. Aben and Puro [13] discussed photoelastic
measurements of a three-dimensional fluid flow by referring to Doyle’s work. They used the
three-dimensional stress-optic law but neglected the second-order terms. Other significant
works [16,26,27] have also neglected these second-order terms. However, the results of some
studies have indicated that there is a discrepancy between theory and experiment, especially at the
channel center [16, 27]. To the best of the author’s knowledge, the three-dimensional stress-optic
law has never been directly validated with photoelastic measurements of a three-dimensional
flow.

Therefore, the purpose of this study is to experimentally validate the extended stress-optic
law for three-dimensional flows using integrated photoelasticity. A steady laminar flow of a
Newtonian fluid in a square channel is chosen as the focus of this work because an analytical
solution for the stress field is available for this case.

This paper is organized as follows. Section 2.1 describes integrated photoelasticity. In Section
2.2, we revisit the relation between the strain rate and dielectric constant in electromagnetism
and the stress-optic law. According to the stress-optic law, the optical parameters (the retardation
Δ and orientation 𝜙) can be expressed as a combination of the first-order and second-order stress
terms. As noted above, only the first-order stress term in the stress-optic law has been considered
in recent works. Section 2.3 explains the experimental method and Section 2.4 describes the
theoretical retardation field of a Newtonian laminar flow in a square channel. Section 3 describes
the experimental observations and provides a comparison and discussion of the experimental
and theoretical values. In Section 4, it is concluded that the second-order stress term in the
three-dimensional stress-optic law should be properly considered in stress measurements of
three-dimensional flows.

2. Method

In this section, we first explain integrated photoelasticity in the context of our measurement
system and describe the stress-optic law. We then explain how the experimental retardation is
measured and how the theoretical retardation is calculated.

2.1. Integrated photoelasticity with an optically equivalent model

This section explains integrated photoelasticity with an optically equivalent model in the context
of our experimental system.

A material with a three-dimensional stress field can be reduced to an optically equivalent
model consisting of one linear retarder and one rotator [28–30]. In general, the retardation Δ

due to the linear retarder, the orientation 𝜙1 of the linear retarder, and the rotation 𝜙2 due to the
rotator must be considered. The reason for considering 𝜙2 is that the direction of the secondary
principal stress is generally rotated around the camera’s optical axis in a three-dimensional stress
field. On the contrary, if the direction of the secondary principal stress does not rotate around



the camera’s optical axis, as in a two-dimensional stress field, only the retardation Δ due to the
linear retarder and the direction of the linear retarder 𝜙1 need to be considered. In other words,
when a three-dimensional stress field is divided into sufficiently thin plates that can be assumed
to be two-dimensional stress fields, each plate can be considered to consist of a linear retarder
without a rotator, i.e., 𝜙2 = 0. In this case, the polarization state of light passing through the
three-dimensional stress field can be calculated by multiplying the Mueller matrices of each
optically equivalent model [11, 31].

Figure 1 shows a schematic diagram of the measurement principle used in this study. The
camera’s optical axis is the 𝑧-axis. Unpolarized light emitted from a monochromatic light source
passes through both a linear polarizer and a quarter-wave plate and becomes circularly-polarized
light. The circularly-polarized light then passes through a three-dimensional laminar flow in
a square channel and becomes elliptically-polarized light. The elliptically-polarized light is
characterized by two optical parameters — the retardation Δ [nm] and the orientation 𝜙 [deg].
Both Δ and 𝜙 are measured using the phase-shifting method [32–35]. To examine the relationship
between the optical parameters (Δ and 𝜙) and the three-dimensional stress field in a flow, the
concept of integrated photoelasticity with an optically equivalent model [28, 31,36] is adopted.
In the optically equivalent model, a three-dimensional stress field is virtually divided into
𝑁 infinitesimal thin plates that can be assumed to be like two-dimensional stress fields [31].
Each plate can be replaced by an optically equivalent model that is characterized by Δ(𝑖) and
𝜙 (𝑖) [30, 37].
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Fig. 1. A schematic diagram of the measurement principle. Circularly-polarized light is
transmitted through the stress field. The light modulated by the stress field is measured
using a polarization camera that consists of an oriented analyzer and photodetector.
The stress field can be divided into 𝑁 infinitesimal thin plates that can be assumed to
be two-dimensional stress fields that can be replaced by an optically equivalent model.
The integrated retardation Δ and orientation 𝜙 are calculated using Mueller calculus
with the Stokes parameter and the Mueller matrix.

The retardation Δ of outgoing polarized light passing through all 𝑁 thin plates in the three-
dimensional stress field can be calculated using Mueller calculus with the Stokes parameters
and Mueller matrix [12, 31]. The Stokes vectors S and Sobject, which characterize the respective
polarized states of the incident unpolarized light and the outgoing polarized light modulated by



the stress field [38], are expressed as follows:

S =



𝑆0

𝑆1

𝑆2

𝑆3


=



𝐼

0

0

0


, (1)

Sobject =



𝑆object,0

𝑆object,1

𝑆object,2

𝑆object,3


, (2)

where 𝐼 is the intensity of the incident light emitted from the light source. Sobject is obtained by
multiplying S by the Mueller matrices of each optical element and the optically equivalent model
of each thin plate as follows:

Sobject = X(N) ...X(i) ...X(2)X(1)Q45P0S, (3)

where X(𝑖) is the Mueller matrix of the 𝑖-th thin plate,

X(i) =



1 0 0 0

0 1 − (1 − cosΔ(𝑖) ) sin2 2𝜙 (𝑖) (1 − cosΔ(𝑖) ) sin 2𝜙 (𝑖) cos 2𝜙 (𝑖) − sinΔ(𝑖) sin 2𝜙 (𝑖)

0 (1 − cosΔ(𝑖) ) sin 2𝜙 (𝑖) cos 2𝜙 (𝑖) 1 − (1 − cosΔ(𝑖) ) cos2 2𝜙 (𝑖) sinΔ(𝑖) cos 2𝜙 (𝑖)

0 sinΔ(𝑖) sin 2𝜙 (𝑖) − sinΔ(𝑖) cos 2𝜙 (𝑖) cosΔ(𝑖)


, (4)

and Δ(𝑖) and 𝜙 (𝑖) can be obtained using the stress-optic law, as described in Section 2.2. P0 and
Q45 are the Mueller matrices of the linear polarizer set to 0◦ and the quarter-wave plate at 45◦,
respectively,

P0 =
1
2



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0


, (5)

Q45 =



1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0


. (6)

The retardation Δ of the outgoing light from the stress field can be measured using a four-step
phase-shifting method [33,34,39]. The Stokes vectors S\ of polarized light passing through a



linear polarizer rotated by orientation \ can be described as

S\ =



𝑆\,0

𝑆\,1

𝑆\,2

𝑆\,3


= A\Sobject, (7)

where A\ is the Mueller matrix of the analyzer,

A\ =
1
2



1 cos 2\ sin 2\ 0

cos 2\ cos2 2\ sin 2\ cos 2\ 0

sin 2\ sin 2\ cos 2\ sin2 2\ 0

0 0 0 0


. (8)

The first component of the Stokes vector, 𝑆\,0, can be measured as the light intensity 𝐼\ . The
calculation of Eqs. (1)–(8) gives the relationship between the light intensity 𝐼\ and the optical
parameters of the outgoing polarized light, Δ and 𝜙, as

𝐼\ =
1
4
𝐼 (1 − sinΔ sin 2𝜙 cos 2\ + sinΔ cos 2𝜙 sin 2\). (9)

Using the four-step phase-shifting method with \ = 0◦, 45◦, 90◦, and 135◦, the relationship
between the light intensities of each angle \ and the optical parameters, Δ and 𝜙, can be described
as

𝐼0◦ =
1
4
𝐼 (1 − sinΔ sin 2𝜙), (10)

𝐼45◦ =
1
4
𝐼 (1 + sinΔ cos 2𝜙), (11)

𝐼90◦ =
1
4
𝐼 (1 + sinΔ sin 2𝜙), (12)

𝐼135◦ =
1
4
𝐼 (1 − sinΔ cos 2𝜙), (13)

𝐼 = 𝐼0◦ + 𝐼45◦ + 𝐼90◦ + 𝐼135◦ . (14)

Finally, the retardation Δ of the polarized light passing through the stress field is calculated as

Δ =
_

2𝜋
sin−1

√︃
(𝐼90◦ − 𝐼0◦ )2 + (𝐼45◦ − 𝐼135◦ )2

𝐼/2 , (15)

where _ is the wavelength of the light source.

2.2. Stress-optic law

In this section, we describe the stress-optic law used to calculate Δ(𝑖) and 𝜙 (𝑖) in Eq. (4).
Birefringence is caused by the phase retardation of light due to the anisotropic refractive index

tensor of a photoelastic material when loaded by stress. The refractive index of the material
is determined by the relative permittivity, which is also known as the dielectric constant. The



parameters Δ and 𝜙 are related to the components of the dielectric tensor in the 𝑥-𝑦 plane
(Y𝑥𝑥 , Y𝑦𝑦 , Y𝑥𝑦) as follows [13, 14]:

Δ cos 2𝜙 =
1

2𝑛0

(
Y𝑥𝑥 − Y𝑦𝑦

)
𝑑ℎ, (16)

Δ sin 2𝜙 =
1
𝑛0
Y𝑥𝑦𝑑ℎ, , (17)

where 𝑛0 is the initial refractive index of the material and 𝑑ℎ is the thickness of a thin plate. The
optical effect is a function of the strain rate ¤𝑒 𝑗𝑘 [13, 14]:

1
2𝑛0

Y 𝑗𝑘 = 𝑓 ( ¤𝑒 𝑗𝑘) (18)

By using the Cayley–Hamilton theorem [13,14], the optical effect can be written as

1
2𝑛0

Y 𝑗𝑘 = 𝛼0𝛿 𝑗𝑘 + 𝛼1 ¤𝑒 𝑗𝑘 + 𝛼2 ¤𝑒 𝑗𝑙 ¤𝑒𝑙𝑘 , (19)

where 𝛼0, 𝛼1, and 𝛼2 are the material-specific constants and 𝛿 𝑗𝑘 is the Kronecker delta. Here, 𝑗 ,
𝑘 , and 𝑙 are Einstein notation indices. Therefore, as described in previous studies [13, 14], the
relationship between the optical parameters of the 𝑖-th plate (1 ≤ 𝑖 ≤ 𝑁) and the components of
the strain rate tensor can be expressed by the following equations using Eqs. (16) and (17):

Δ(𝑖) cos 2𝜙 (𝑖) =

{
𝛼1

(
¤𝑒 (𝑖)𝑥𝑥 − ¤𝑒 (𝑖)𝑦𝑦

)
+ 𝛼2

[(
¤𝑒 (𝑖)𝑥𝑥 + ¤𝑒 (𝑖)𝑦𝑦

) (
¤𝑒 (𝑖)𝑥𝑥 − ¤𝑒 (𝑖)𝑦𝑦

)
+
(
¤𝑒 (𝑖)𝑦𝑧

)2
−
(
¤𝑒 (𝑖)𝑥𝑧

)2
]}
𝑑ℎ

(20)

Δ(𝑖) sin 2𝜙 (𝑖) =
{
2𝛼1 ¤𝑒 (𝑖)𝑥𝑦 + 𝛼2

[
2
(
¤𝑒 (𝑖)𝑥𝑥 + ¤𝑒 (𝑖)𝑦𝑦

)
¤𝑒 (𝑖)𝑥𝑦 + 2 ¤𝑒 (𝑖)𝑦𝑧 ¤𝑒 (𝑖)𝑥𝑧

]}
𝑑ℎ (21)

For a Newtonian fluid, the shear stress is proportional to the strain rate, i.e., 𝜎 (𝑖)
𝑗𝑘

= ` ¤𝑒 (𝑖)
𝑗𝑘

,
where ` is the liquid viscosity. Thus, Δ(𝑖) and 𝜙 (𝑖) can be expressed using stress instead of the
strain rate, as in the following equations.

Δ(𝑖) cos 2𝜙 (𝑖) =

{
𝐶1

(
𝜎

(𝑖)
𝑥𝑥 − 𝜎 (𝑖)

𝑦𝑦

)
+ 𝐶2

[(
𝜎

(𝑖)
𝑥𝑥 + 𝜎 (𝑖)

𝑦𝑦

) (
𝜎

(𝑖)
𝑥𝑥 − 𝜎 (𝑖)

𝑦𝑦

)
+
(
𝜎

(𝑖)
𝑦𝑧

)2
−
(
𝜎

(𝑖)
𝑥𝑧

)2
]}
𝑑ℎ, (22)

Δ(𝑖) sin 2𝜙 (𝑖) =
{
2𝐶1𝜎

(𝑖)
𝑥𝑦 + 𝐶2

[
2
(
𝜎

(𝑖)
𝑥𝑥 + 𝜎 (𝑖)

𝑦𝑦

)
𝜎

(𝑖)
𝑥𝑦 + 2𝜎 (𝑖)

𝑦𝑧 𝜎
(𝑖)
𝑥𝑧

]}
𝑑ℎ. (23)

Note that 𝐶1 = 𝛼1/` and 𝐶2 = 𝛼2/`2.
As described in Section 1, the second-order stress terms in Eqs. (22) and (23) have been

neglected in recent photoelasticity studies, i.e., it has been assumed that 𝐶2 = 0 [11,13,16,37,40].
This approach leads to the well-known equations of photoelasticity, as follows:

Δ(𝑖) = 𝐶1𝑑ℎ𝜎
(𝑖)
𝑑,𝑠𝑒𝑐

= 𝐶1𝑑ℎ
���𝜎 (𝑖)

1,𝑠𝑒𝑐 − 𝜎
(𝑖)
2,𝑠𝑒𝑐

��� = 𝐶1𝑑ℎ

√︂(
𝜎

(𝑖)
𝑥𝑥 − 𝜎 (𝑖)

𝑦𝑦

)2
+ 4

(
𝜎

(𝑖)
𝑥𝑦

)2
, (24)

𝜙 (𝑖) =
1
2

tan−1 2𝜎 (𝑖)
𝑥𝑦

𝜎
(𝑖)
𝑥𝑥 − 𝜎 (𝑖)

𝑦𝑦

, (25)



where 𝜎 (𝑖)
𝑑,𝑠𝑒𝑐

is the secondary principal stress difference and 𝜎 (𝑖)
1,𝑠𝑒𝑐 and 𝜎 (𝑖)

2,𝑠𝑒𝑐 are the maximum
and minimum values of the secondary principal stress, respectively. Hereinafter, we refer to
Eqs. (24) and (25) together as the “first-order stress-optic law”, which is often simply called the
“stress-optic law” in conventional photoelasticity studies. On the other hand, we call Eqs. (22)
and (23) with 𝐶2 ≠ 0 the “second-order stress-optic law” in the the remainder of this paper.

Finally, we can calculate the retardation Δ using the first- and second-order stress-optic laws
with integrated photoelasticity if the stress field is known a priori. In this study, we compare the
calculated retardation with the experimentally measured retardation.

2.3. Measurement of the experimental retardation field

A schematic diagram of the experimental setup is shown in Fig. 2. A linear polarizer, a
quarter-wave plate, and a square channel (made of quartz) are placed between a light source of
520-nm wavelength and a polarization camera (CRYSTA PI-5WP, Photron, temporal resolution:
1,000 f.p.s., spatial resolution: 732 × 280 pixels for an 8-bit light intensity image). Each pixel of
the image sensor of the polarization camera consists of four linear polarizers with four different
directions: 0◦, 45◦, 90◦, and 135◦ [see Fig. 2(b)], which function as the analyzer in Eq. (8).
The retardation of the polarized light is obtained from the light intensity values using software
(Photron Ltd., CRYSTA Stress Viewer). The spatial resolution of the retardation data is 366
× 140 pixels, which is a quarter of 732 × 280 pixels. To reduce noise, measurement data are
averaged over time and space. Since the measurement target is a steady laminar flow, the flow
field is assumed to be constant in the flow direction and in time. Therefore, the measurement
retardation is spatially averaged in the flow direction (𝑥-direction) and averaged over a period of
1 s.

The flow inlet of the square channel is defined as 𝑥 = 0 mm. The coordinate system is set up
as shown in Fig. 2. The length of the square channel is 60 mm and the cross-section size is 2 mm
× 2 mm. The fluid is supplied using a syringe pump to produce a steady laminar flow. The flow
rates are 15, 20, 25, and 30 ml/min. The Reynolds number 𝑅𝑒 is 217 at the maximum flow rate
of 30 ml/min. The measurement area is at 𝑥 = 45 mm because the entrance length is 30 mm at
the maximum flow rate (30 ml/min).

The working fluid is a CNC suspension (Cellulose Lab Ltd.). The CNC is mixed with ultrapure
water using a magnetic stirrer (CHPS-170DF, ASONE Co., Ltd.) at 25 ◦C and 600 rpm for at
least 1 hour. The CNC suspension is then sonicated using an ultrasonic processor (UX-300,
Mitsui Electric Co. Ltd.) for 10 minutes. The ultrasonic processor also reduces the error
between the experimental and theoretical orientation, as reported in a previous study [15, 16].
The concentration of the CNC suspension is set to 0.5 wt%. Figure 3 shows results for the shear
viscosity [ versus shear rate ¤𝛾 of the CNC suspension (0.5 wt%) and ultrapure water measured
using a rheometer (MCR302, Anton Paar Co. Ltd.). The CNC suspension (0.5 wt%) can be
regarded as a Newtonian fluid and its shear viscosity is 1.2 mPa·s.

2.4. Theoretical retardation field for a steady laminar flow in a square channel

In this section, we describe the calculation of the theoretical retardation field. First, the velocity
distribution 𝑢𝑥 (𝑦, 𝑧) of a steady laminar flow in a rectangular channel is derived from the
following Navier–Stokes equations [41, 42].(

𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2

)
𝑢𝑥 = − 4𝑄

𝑤𝑏3𝐾
, (26)

𝐾 =
16
3

− 1024
𝜋5

𝑏

𝑤

∞∑︁
𝑛=0

1
(2𝑛 − 1)5 tanh

(2𝑛 − 1) 𝜋𝑤
2ℎ

, (27)
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where 𝑄 [m3/s] is the flow rate, and 𝑤 [m] and 𝑏 [m] are the channel width and channel depth,
respectively. The velocity distribution 𝑢𝑥 (𝑦, 𝑧), which satisfies Eqs. (26) and (27), and the
no-slip boundary condition at the wall (𝑦 = ±1 mm or 𝑧 = ±1 mm) can be defined as follows:

𝑢𝑥 (𝑦, 𝑧) =
64𝑄
𝑤𝑏𝜋3𝐾

∞∑︁
𝑛=0

(−1)𝑛
(2𝑛 + 1)3

1 −
cosh

(
(2𝑛+1) 𝜋𝑦

2𝑏

)
cosh

(
(2𝑛+1) 𝜋𝑤

2ℎ

)  cos
(
(2𝑛 + 1)𝜋𝑧

2𝑏

)
. (28)



Note that the velocity 𝑢𝑥 (𝑦, 𝑧) is proportional to the flow rate𝑄 for a laminar flow. The theoretical
velocity distribution in a square channel is shown in Fig. 4(a).

From Eq. (28), we calculate the velocity gradients, 𝜕𝑢𝑥/𝜕𝑦 and 𝜕𝑢𝑥/𝜕𝑧, as shown in Fig.
4(b,c). 𝜕𝑢𝑥/𝜕𝑦 is zero at 𝑦 = 0 and 𝑧 = ±1 mm, while 𝜕𝑢𝑥/𝜕𝑧 is zero at 𝑧 = 0 and 𝑦 = ±1
mm. The stress components used in the stress-optic laws can be calculated using these velocity
gradients. For a steady laminar flow in a rectangular channel of a Newtonian fluid,

𝑢𝑦 = 𝑢𝑧 = 0, (29)

where 𝑢𝑦 and 𝑢𝑧 are the velocities in the 𝑦- and 𝑧- directions, respectively. Equations (28) and
(29) yield

¤𝑒 (𝑖)𝑥𝑥 = ¤𝑒 (𝑖)𝑦𝑦 = ¤𝑒 (𝑖)𝑧𝑧 = ¤𝑒 (𝑖)𝑦𝑧 = 0. (30)

For a Newtonian fluid, the shear stress is proportional to the strain rate, i.e., 𝜎 (𝑖)
𝑗𝑘

= ` ¤𝑒 (𝑖)
𝑗𝑘

, where
` is the liquid viscosity.

𝜎
(𝑖)
𝑥𝑥 = 𝜎

(𝑖)
𝑦𝑦 = 𝜎

(𝑖)
𝑧𝑧 = 𝜎

(𝑖)
𝑦𝑧 = 0, (31)

Figure 4 (d) and (e) shows the local distributions of the retardation, Δ(𝑖)
1st and Δ

(𝑖)
2nd, as calculated

using the first-order stress-optic law [Eq. (24)] and the second-order stress-optic law [Eqs. (22)
and (23)], respectively. At 𝑦 = 0 mm and 𝑧 = ±1 mm, there is a significant difference between
the two retardation distributions — the value at 𝑦 = 0, 𝑧 = ±1 mm is zero for Δ1st while it is
non-zero for Δ2nd. The theoretical retardation fields, Δ1st and Δ2nd, are finally obtained through
integration along the camera’s optical axis by integrating the local retardation using Mueller
calculus [Eqs. (1)–(15)] with the first- and second-order stress-optic laws, respectively. Note that
the theoretical retardation calculated through the aforementioned equations is proportional to the
flow rate because the velocity is proportional to the flow rate.

3. Results and discussion

Figure 5(a) shows the measured retardation field at each flow rate. The retardation increases
as the flow rate increases. The retardation is the highest at the channel wall (𝑦 = ±1 mm) and
the lowest at the center of the channel (𝑦 = 0 mm) for all flow rates. The measured retardation
averaged along the 𝑥-direction is plotted as the line profiles in Fig. 5(b). The retardation at each
𝑦-position increases with the flow rate. At 𝑦 = 1 mm, the retardation values at flow rates of
15, 20, 25, and 30 ml/min are 16, 23, 29, and 34 nm, respectively. When the flow rate is 25
ml/min, which is about 83% of 30 ml/min, the retardation is about 86% of that at 30 ml/min. For
flow rates of 20 ml/min (67%) and 15 ml/min (50%), the retardation values are about 68% and
48% of that at 30 ml/min, respectively. These results indicate a linear relationship between the
retardation and the flow rate, as theoretically expected.

Figure 5(c) shows the normalized distributions of the experimental retardation and theoretical
retardation as calculated using the first- and second-order stress-optic laws. The retardation is
normalized so that the value at 𝑦 = 1 mm is equal to 1. The normalized distributions of the
experimental retardation are similar for all flow rates. The theoretical retardation calculated using
the first-order stress optic law, Δ1st, is shown as a gray solid line. As 𝑦 approaches the center of
the channel (𝑦 = 0 mm), the difference increases. The discrepancy at the center of the channel is
consistent with measurement results reported in previous studies using similar setups [16, 27].
The stress component along the camera’s optical axis (𝑧-axis) is not considered in the first-order
stress-optic law [Eq. (24)]. Therefore, the value of Δ1st is zero at the center of the channel (𝑦 = 0
mm), where 𝜕𝑢𝑥/𝜕𝑦 = 0 [see Fig. 4(b)]. These results indicate that the first-order stress-optic
law [Eq. (24)] is invalid around the center of the channel for a three-dimensional fluid flow.
In contrast, the theoretical retardation calculated using the second-order stress-optic law (Δ2nd,
red solid line) is in good agreement with the experimental retardation for all flow rates, even
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Fig. 4. (a) The velocity distribution 𝑢(𝑦, 𝑧) calculated from Eq. (28). (b) The velocity
gradient distribution 𝜕𝑢𝑥/𝜕𝑦. (c) The velocity gradient distribution 𝜕𝑢𝑥/𝜕𝑧. (d) The
local retardation Δ

(𝑖)
1st calculated using the first-order stress-optic law [Eq. (24)]. (e)

The local retardation Δ
(𝑖)
2nd calculated using the second-order stress-optic law [Eqs. (22)

and (23)]. The results here were calculated at a flow rate of 30 ml/min and under a
stress-optic coefficient of 𝐶1 = 1.59 × 10−5 1/Pa. Note that (d) and (e) are integrated
along the camera’s optical axis (𝑧-direction) using Eqs. (1)–(15), and are used to
compare with the experimentally measured retardation.

around 𝑦 = 0. The second-order term includes the stress component (𝜎𝑥𝑧 = `𝜕𝑢𝑥/𝜕𝑧) along the
camera’s optical axis. This is because at 𝑦 = 0 mm, 𝜕𝑢𝑥/𝜕𝑦 = 0 while 𝜕𝑢𝑥/𝜕𝑧 ≠ 0, so Δ2nd has
a non-zero value [see Fig. 4(c)]. Therefore, our result indicates that it is crucial to consider the
second-order stress-optic law that includes the effect of the stress component along the camera’s
optical axis.

When the retardation is calculated using the second-order stress-optic law [Eqs. (22) and (23)],
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Fig. 5. (a) The measured retardation (Δ) distribution at flow rates of 15, 20, 25, and
30 ml/min. (b) The line profile of the retardation measurement results at flow rates
of 15, 20, 25, and 30 ml/min. (c) A comparison between the spatial distribution of
the experiment results and the spatial distribution of the theoretical retardation. The
first-order stress-optic law is calculated by neglecting the second-order stress term in
Eq. (24). The second-order stress-optic law includes the second-order stress term in
Eqs. (22) and (23).

the values of the stress-optic coefficients, 𝐶1 and 𝐶2, must be found. However, the values of 𝐶1
and 𝐶2 for a CNC suspension (0.5 wt%) have not yet been reported to the author’s knowledge. It
is therefore necessary to define them now. We first determine the value of𝐶1. At the wall (𝑦 = ±1
mm), the shear rate (𝜕𝑢𝑥/𝜕𝑧) is equal to zero [Fig. 4(c)], i.e., 𝜎𝑥𝑧 in Eqs. (22) and (23) equals



zero. Thus, the 𝐶2 term in the second-order stress-optic law becomes zero. Therefore, the value
of 𝐶1 can be determined by fitting the experimental and theoretical retardation at the wall. As a
result, 𝐶1 is estimated to be 1.61 × 10−5 Pa−1. We next determine 𝐶2 by considering the ratio of
𝐶1 and 𝐶2, which determines the normalized distribution of the second-order stress-optic law. As
𝐶2 increases with respect to 𝐶1, the value around the center of the channel increases. Therefore,
we calculate the mean squared error between the experimental and theoretical retardation values
when 𝐶2/𝐶1 is varied between 0.1 and 2.0. It is found that the mean-square error has its
minimum value when 𝐶2/𝐶1 ≈ 1.1. Therefore, 𝐶2 ≈ 1.1𝐶1, indicating that the contribution of
the second-order term in the stress-optic law (i.e., stress components along the camera’s optical
axis) is of the same order as the first-order term.

4. Conclusion

In this study, we have validated the extended stress-optic law for a three-dimensional fluid flow
using integrated photoelasticity. The focus was a steady laminar flow of Newtonian fluid (CNC
0.5 wt%) in a square channel, a case for which an analytical solution exists. The theoretical
retardation was calculated using the concepts of integrated photoelasticity with a stress-optic law
and an optically equivalent model. The experimental retardation was obtained by transmitting
circularly-polarized light through the stress field and the corresponding retardation was measured
using a high-speed polarization camera. It was found that when the second-order stress term in
the stress-optic law [Eq. (22) and (23)] was neglected (first-order stress-optic law, 𝐶2 = 0) as in
previous studies (e.g., [13]), the normalized distributions of the theoretical and experimental
retardation around the center of the channel disagreed with each other. In contrast, the theoretical
retardation from the second-order stress-optic law showed good agreement (𝐶2 ≈ 1.1𝐶1). We
conclude that when a photoelastic measurement is applied to the three-dimensional flow of a
CNC suspension, the second-order stress term in the stress-optic law, i.e., the stress component
along the camera’s optical axis, must be taken into account.
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