SUPPORTING INFORMATION

Bismuth Doped Lanthanum Ferrite Perovskites as Novel Cathodes for Intermediate-temperature Solid Oxide Fuel Cells

Mei Li^a, Yao Wang^{a,b}, Yunlong Wang^a, Fanglin Chen^b, Changrong Xia^{a,*}

^aCAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering& Collaborative Innovation Center of Suzhou Nano Science and Technology,

University of Science and Technology of China, Hefei, Anhui 230026, China.

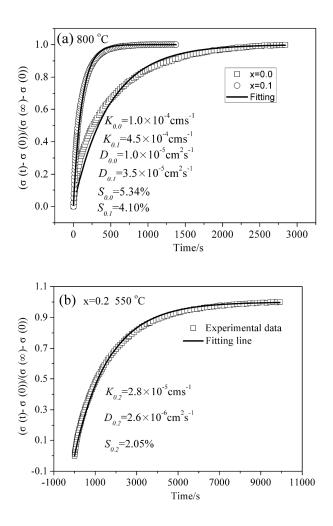
^bDepartment of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

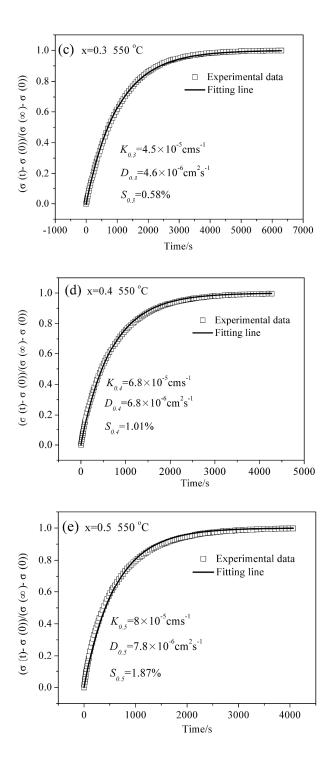
* Corresponding: xiacr@ustc.edu.cn

The ECR method is developed for a single phase mixed conductor such as $La_{0.8}Sr_{0.2}MnO_{3-\delta}$ and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ whose conductivity (σ) and oxygen nonstoichiometry (δ) depend on oxygen partial pressure, Po_2 . Its theoretical approach is briefly summarized below. In the measurement, variation in conductivity is resulted from the step change of Po_2 . A linear relation is assumed between the changes of the electrical conductivity and the concentration of the lattice oxygen/the oxygen vacancy.¹ The conductivity is normalized according Eq. (1a) and is fitted to a solution

1

of Fick's second law (Eqs. (1b, 1c, 1d)).^{2,3} The variable parameters in data fitting are the chemical surface exchange coefficient, K_{chem} (cm s⁻¹), and the chemical bulk diffusion coefficient, D_{chem} (cm² s⁻¹). In the following equations, K_{chem} and D_{chem} are represented by k and D for simplify.


$$n(t) = \frac{\sigma(t) - \sigma(0)}{\sigma(\infty) - \sigma(0)} = \frac{c(t) - c(0)}{c(\infty) - c(0)} = \frac{M(t)}{M(\infty)}$$
(1a)


$$\frac{M(t)}{M(\infty)} = 1 - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} \frac{2L_{\rho}^{2} \exp(-\beta_{n}^{2}Dt/x^{2})}{\beta_{m}^{2}(\beta_{m}^{2} + L_{\rho}^{2} + L_{\rho})} \times \frac{2L_{\gamma}^{2} \exp(-\gamma_{n}^{2}Dt/y^{2})}{\gamma_{n}^{2}(\gamma_{n}^{2} + L_{\gamma}^{2} + L_{\gamma})} \times \frac{2L_{\phi}^{2} \exp(-\phi_{p}^{2}Dt/z^{2})}{\phi_{p}^{2}(\phi_{p}^{2} + L_{\phi}^{2} + L_{\phi})}$$
(1b)

$$\beta_m \tan \beta_m = L_\beta; \ \gamma_n \tan \gamma_n = L_\gamma; \ \phi_p \tan \phi_p = L_\phi \tag{1c}$$

$$L_{\beta} = \frac{x}{L_{c}}; \ L_{\gamma} = \frac{y}{L_{c}}; \ L_{\phi} = \frac{z}{L_{c}}; \ L_{c} = \frac{D}{k}$$
(1d)

where *t* is time in seconds; n(t) is normalized conductivity; $\sigma(t)$ is instantaneous conductivity at time *t*, $\sigma(0)$ initial conductivity at equilibrium for the original Po_2 , and $\sigma(\infty)$ is conductivity at equilibrium for the step changed Po_2 ; c(t) is the oxygen ion concentration at time *t*, c(0) initial oxygen ion concentration at equilibrium for the original Po_2 , and $c(\infty)$ the oxygen ion concentration at the equilibrium to the step changed Po_2 ; M(t) is the amount of oxygen entering or leaving the single phase sample at time *t*; $M(\infty)$ is the total amount accumulated when the diffusion proceeds for an infinite time, the time to reach the equilibrium; *x*, *y* and *z* are dimensions of the sample in centimeters. The smallest dimension, *z*, is often referred as the sample thickness, L=z. L_c is the critical thickness; and β_m , γ_n , ϕ_p are the positive, non-zero roots of Eq. (1d). By fitting the experimental data with Fick's second law, K_{chem} and D_{chem} could be obtained. Figure S1 shows the typical experimental data and the fitting results for La_{0.8-x}Bi_xSr_{0.2}FeO_{3- δ} (0 \leq x \leq 0.8).

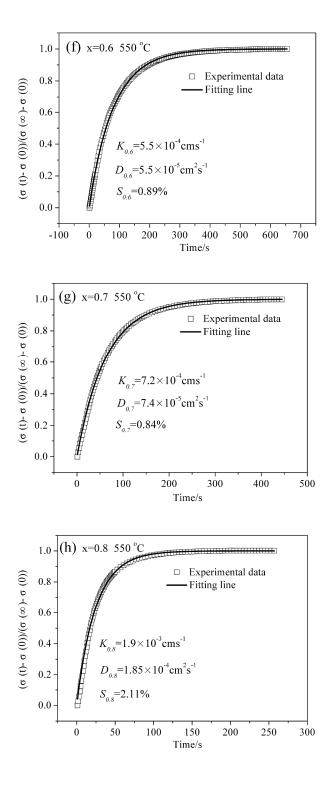


Figure S1. Experimental data and fitting curves of conductivity change profiles as a function of relaxation time for $La_{0.8-x}Bi_xSr_{0.2}FeO_{3-\delta}$ ($0 \le x \le 0.8$). (a) x = 0 and 0.1 at 800 °C. (b) x=0.2, (c) x =0.3, (d) x =0.4, (e) x =0.5, (f) x =0.6, (g) x =0.7, and (h) x

REFERENCES

(1) Yasuda, I.; Hikita, T. Precise Determination of the Chemical Diffusion Coefficient of Calcium -Doped Lanthanum Chromites by Means of Electrical Conductivity Relaxation *J. Electrochem. Soc.* **1994**, *141*, 1268-1273.

(2) Lane, J. A.; Kilner, J. A. Measuring Oxygen Diffusion and Oxygen Surface Exchange by Conductivity Relaxation *Solid State Ionics* **2000**, *136*, 997-1001.

(3) Yasuda, I.; Hishinuma, M. Electrical Conductivity and Chemical Diffusion
Coefficient of Strontium-Doped Lanthanum Manganites *J. Solid State Chem.* 1996, 123, 382-390.