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Low Field SSNMR Spectra 

 

Figure S1. Partial 35Cl WURST-QCPMG NMR spectrum of 2 at 9.4 T. * indicates an impurity 
of the hydrochloride salt of the carbene while # indicates a spectrometer artefact. The blank 
region from -20000 to -35000 ppm is due to limitations of the probe electronics. 

 

Figure S2. Partial 35Cl WURST-QCPMG NMR spectrum of 4 at 9.4 T. The low frequency edge 
of the spectrum was not acquired due to tuning limitations of the probe. The signal to high 
frequency of the fitted edge is due to contamination by GeCl2·dioxane. 
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Figure S3. 35Cl WURST-QCPMG NMR spectrum of 5 at 9.4 T. Part of the second signal can be 
observed 

 

Optimization of Computational Methodology 

The calculations of NMR parameters for 1 using CASTEP gave values for 35Cl parameters that 

were in excellent agreement with the experimental results (calculated: CQ = 27.6, ηQ = 0.04). In 

order to account for long range order in Gaussian 09, a series of clusters of increasing 

complexity were constructed (Figure S). Initial calculations were performed on the isolated 

monomer (1). Cluster I took into account the polymeric nature of the system by adding two 

repeat units. Cluster II was used to investigate the importance of long range Ge–Cl interactions 

by adding two adjacent GeCl2 units. Cluster III is, effectively, a combination of clusters I and II, 

accounting for both the extended chain and the adjacent units. Finally, cluster IV extended the 

network in three dimensions. In all cases the calculated 35Cl NMR parameters are for the 

chlorines bound to the central germanium as circled in Figure S. 
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PBE1PBE4 functional in a shorter time. The popular B3LYP5 functional was also investigated 

but was abandoned when it became apparent that it gave results very similar to PBE1PBE.  

Table S1. Assessment of computational methodology using 1 

Cluster Functional Basis Set CQ [
35Cl] 

(MHz)
ηQ [35Cl]  

Experimental 28.3 0.055 
monomer PBE1PBE 6-31G* 33.1 0.13 

6-311+G** 34.2 0.11 
TPSSTPSS 6-31G* 32.3 0.12 

6-311+G** 33.1 0.11 
B3LYP 6-31G* 32.3 0.12 

6-311+G** 34.0 0.10 
I 
 
 
 
 

PBE1PBE 6-31G* 33.5 0.14 
6-311+G** 34.6 0.12 

TPSSTPSS 6-31G* 32.7 0.15 
6-311+G** 33.5 0.12 

II PBE1PBE 6-31G* 27.9 0.07 
6-311+G** 29.4 0.12 

TPSSTPSS 6-31G* 27.0 0.12 
6-311+G** 28.5 0.11 

III PBE1PBE 6-31G* 26.6 0.06 
6-311+G** 29.7 0.13 

TPSSTPSS 6-31G* 27.3 0.14 
6-311+G** 27.9 0.10 

IV PBE1PBE 6-31G* 26.6 0.06 
6-311+G** N/Aa N/Aa 

TPSSTPSS 6-31G* 25.8 0.05 
6-311+G** 27.8 0.10 

a N/A = not applicable (job did not complete after 1 week) 

Not surprisingly, the isolated monomer gave results in poor agreement with experiment 

regardless of the functional or basis set employed, greatly overestimating CQ. Extending the 

linear chain (cluster I) offered very little improvement over the calculations on the monomer. 

However, the addition of the adjacent GeCl2 unit on either side of the fragment (cluster II) 

offered a dramatic improvement in the calculated value of CQ for the chloride attached to the 

central germanium atom, bringing it into excellent agreement with experiment. This suggests that 
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the long range contact between the terminal chlorine and the adjacent germanium atom is of 

importance to the overall EFG of the complex. Further elaboration (clusters III and IV) did not 

offer any notable improvement in the calculated values. In light for these results, the 

TPSSTPSS/6-311+G** model chemistry was used for the calculation of 35Cl NMR parameters 

for compounds 2-9. All compounds were modelled with the inclusion of long distance contacts 

which fell within the sum of the van der Waals radii. 
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