

Allenylphosphonium Complexes of Rhodium and Iridium

Ian A. Cade, Annie L. Colebatch, Anthony F. Hill* and Anthony C. Willis

Research School of Chemistry, Institute of Advanced Studies, The Australian National

University, Canberra, ACT 0200, Australia

a.hill@anu.edu.au

¹H NMR analysis of MCH₂ resonances in allenylphosphonium complexes

The CH₂ region of the ¹H NMR spectrum of $[4]PF_6$ is shown in Figure S1 below. The resonance on the right is assigned to the CH₂ group of the allenylphosphonium ligand of $[4]PF_6$. The resonance on the left is the equivalent resonance from the secondary product $[4a]PF_6$, the isomer with the CH₂ group *trans* to Cl instead of CO. The resonance is a triplet of doublet of doublets due to coupling to the PPh₃ ligands, the phosphonium group and the methine proton.

Figure S1. ¹H NMR spectrum (0.2 – 0.5 ppm) of crude [4]PF₆.

The coupling constants were determined through a series of ${}^{1}H{}^{31}P{}$ NMR experiments. In the broadband ${}^{31}P$ decoupled spectrum, the CH₂ resonance at 0.23 ppm collapsed to a doublet with ${}^{4}J_{HH} = 2.3$ Hz, revealing the proton-proton coupling constant. Selective decoupling of the PPh₃ ligands gave a doublet of doublets, from which it was determined that ${}^{4}J_{PH} = 4.5$ Hz. Finally, selective decoupling of the phosphonium resonance revealed a triplet of doublets and the coupling constant ${}^{3}J_{PH} = 9.5$ Hz. This was verified by a simulated spectrum which closely matches the observed spectrum (**Figure S2**). The coupling constants of [**4a**]**PF**₆ were elucidated in the same way. Once these coupling patterns were known, the analogous coupling constants for [**5**]**PF**₆ were calculated from the ${}^{1}H$ spectrum without the need for additional experiments.

Figure S2. (a) Experimental and (b) simulated ¹H NMR spectrum (0.15 – 0.30 ppm) of [4]PF6.

For comparitive purposes, the H NMR spectra showing the equivalent resonances of $[Ru(h^2-H_2C=C=CHPPh_3)(CO)_2(PPh_3)_2]_2Br(PF_6)$ and $[Pt(h^2-CH_2CCHPPh_3)(PPh_3)_2]PF_6$ are included for comparison below.

Figure S3. ¹H NMR spectrum (0.0 - -0.5 ppm) of [Ru(η²-H₂C=C=CHPPh₃)-(CO)₂(PPh₃)₂]⁺

The ¹H NMR spectrum in Figure S3 shows the CH₂ resonance of $[Ru(\eta^2 - H_2C=C=CHPPh_3)(CO)_2(PPh_3)_2]^+$. The same distinctive shape as those seen in Figure S1 is evident but the couplings are not as well resolved. Figure S4 shows the CH resonances in the ¹H NMR spectra of $[Pt(\eta^2 - CH_2CCHPPh_3)(PPh_3)_2]PF_6$ and $[RhCl(\eta^2 - CH_2CCHPPh_3)(PPh_3)_2]PF_6$. These resonances do not show the same distinctive shape as the iridium and ruthenium examples as a result of the differing nature of the CH₂ environment.

Figure S4. (a) ¹H NMR spectrum (1.37 – 1.61 ppm) of $[Pt(\eta^2-CH_2CCHPPh_3)(PPh_3)_2]PF_6$; (b) ¹H NMR spectrum (0.92 – 1.08 ppm) of $[RhCl(\eta^2-CH_2CCHPPh_3)(PPh_3)_2]PF_6$.