Supporting Information. Part 2.

Efficient Functionalization of Oligonucleotides
 by New Achiral Nonnucleosidic Monomers

Maxim S. Kupryushkin, ${ }^{1}$ Mikhail D. Nekrasov, ${ }^{1,2}$ Dmitry A. Stetsenko, ${ }^{1}$ and Dmitrii V. Pyshnyi ${ }^{1,2 *}$
${ }^{1}$ Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave, Novosibirsk 630090, Russia
${ }^{2}$ Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia
pyshnyi@niboch.nsc.ru

Content

Page

3
5

Notes
NMR spectra

NMR spectra.

Notes

It has been observed that in ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{4 a}-\mathbf{g}$ the expected signals in some cases were accompanied by additional signals of lesser intensity, or the expected signals had more complex structure (higher multiplicity). Careful analysis showed that in all cases the ratio between the expected and the additional signals was constant and equal to 5:3. In the cases of more complex structure (higher multiplicity) the additional signal overlapped with the expected signal. Integration of the spectra by combining the expected and the additional peaks produced values that correlate well with the expected structure of the compound.
${ }^{13} \mathrm{C}$ NMR spectra demonstrated similar splitting of the signals; the same ratio of $5: 3$ was maintained. We ascribe such a splitting of the signals to the presence of two rotamers in the ratio of $5: 3$ due to restricted rotation around a rigid oxalamide fragment in the presence of bulky substituents such as dimethoxytrityl group. In phosphoramidites 5a-g the effect is even more pronounced due to the presence of another bulky group N, N-diisopropylamino-2cyanoethoxyphosphinyl.

Fig. 1. Splitting of signals in ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of $\mathbf{4 a}$.

An example of such a splitting is shown in Fig. 1. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ (top) the peaks 1 and 3 double up; in the peak 4 there is overlap of two signals resulting in higher multiplicity. In the ${ }^{13} \mathrm{C}$ spectrum (bottom) all the main signals are accompanied by additional minor peaks.

Analysis of the reaction mixtures of early oligonucleotide syntheses has revealed the presence of truncated sequences with the 5 '-terminal ethyl phosphate group. The same byproducts were present in the reaction mixtures from different phosphoramidites such as $\mathbf{5 b}, \mathbf{5 c}$ or $\mathbf{5 g}$. In ${ }^{31} \mathrm{P}$ NMR spectra of phosphoramidites $\mathbf{5 b}, \mathbf{5}$ c and $\mathbf{5 g}$ an additional peak at 140.0-146.6 ppm was observed that we have identified as N, N-diisopropyl- O -ethyl phosphoramidite. In some initial batches of the phosphoramidites the content of the byproduct was quite substantial and this could have resulted in the formation of oligonucleotide byproducts as ethyl phosphoramidite coelutes with the monomer on column. We have traced the origin of the admixture to the workup of phosphitylation reaction with dichloromethane stabilized with 0.05% ethanol. After we have uncovered the fact, we have introduced quenching of phosphitylation reaction with small volume of $0.3 \mathrm{M} \mathrm{aq} \mathrm{KH}_{2} \mathrm{PO}_{4}$ followed by extraction with dichloromethane. After quenching the amount of ethyl phosphoramidite in ${ }^{31} \mathrm{P}$ spectra (e.g. 5a, 5d and 5e) was significantly reduced, which has resulted in elimination of oligonucleotide byproducts with ethyl phosphate group.

Fig. 2. ${ }^{31}$ P NMR spectrum of phosphoramidite $\mathbf{5 b}$ purified by gel filtration on Sephadex LH-20.

Analytically pure samples of phosphoramidites $\mathbf{5}$ could be obtained after gel filtration on a Sephadex LH-20 column eluted with dichloromethane (Fig. 2).

SpinWorks 2.5: KMSH-33;DMSO-D6

file: H:IMaxim|ЯMP\nibh-kmsh-33\nibh-kmsh-33111fid expt: <zg>
freq. of 0 ppm: 300.130003 MHz
transmitter freq.: 300.132401 MHz
freq. 0 ppm: 300.130
time domain size: 32768 points
width: $5411.26 \mathrm{~Hz}=18.029561 \mathrm{ppm}=0.165138 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 32
LB: 0.000 GB: 0.0000

SpinWorks 2.5: KMSH - 86; CDCI3

file: H:IMaxim\ЯMP\nibh-kmsh-86\nibh-kmsh-86|137\fid expt: <jmod>
transmitter freq.: $125,771572 \mathrm{MHz}$
time domain size: 65536 points
width: $37593.98 \mathrm{~Hz}=298.906854 \mathrm{ppm}=0.573639 \mathrm{~Hz} / \mathrm{p}$
number of scans: 160

[^0]freq. of 0 ppm: 125.757806 MHz
$\mathrm{Hz} / \mathrm{cm}: 841.148 \mathrm{ppm} / \mathrm{cm}: 6.68790$

SpinWorks 2.5: $\mathrm{KMSH}-82$; CDCl 3

file: H:IMaxim|GMP194-95-96\nibh-kmsh-96\nibh-kmsh-96111fid expt: <zg30> transmitter freq.: 400.131884 MHz
me domain size: 65536 points
width: $6203.47 \mathrm{~Hz}=15.503573 \mathrm{ppm}=0.094658 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 16
freq. of 0 ppm: 400.130017 MHz
processed size: 32768 complex points
LB: 0.000 GB: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 118.012 \mathrm{ppm} / \mathrm{cm}: 0.29493$

file: H:MaximlЯMP194-95-96lnibh-kmsh-96lnibh-kmsh-96l136lfid expt: <zgpg>
transmitter freq.: 100.624820 MHz
time domain size: 65536 points
width: $28409.09 \mathrm{~Hz}=282.326875 \mathrm{ppm}=0.433488 \mathrm{~Hz} / \mathrm{p}$
freq. of 0 ppm : 100.612789 MHz
processed size: 131072 complex points
LB: 0.000 GB: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 676.990 \mathrm{ppm} / \mathrm{cm}: 6.72786$

file: H:IMaximlЯMP\nibh-kmsh-56lnibh-kmsh-5611|fid expt: <zg30>
transmitter freq.: 400.132801 MHz
time domain size: 65536 points
width: $8802.82 \mathrm{~Hz}=21.999738 \mathrm{ppm}=0.134320 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 16

[^1]
SpinWorks 2.5: KMSH - 62; (CD3)2CO

(

SpinWorks 2.5: KMSH - 88; DMSO - d6
(

SpinWorks 2.5: KMSH-79; CDCI3

file: H:IMaxim|ЯMPlnibh-kmsh-791nibh-kmsh-7911|fid expt: <zg30> freq. of 0 ppm: 400.130018 MHz
transmitter freq.: 400.131884 MHz
time domain size: 65536 points
width: $6203.47 \mathrm{~Hz}=15.503573 \mathrm{ppm}=0.094658 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 32
processed size: 32768 complex points
LB: 0.000 GB: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 112.817 \mathrm{ppm} / \mathrm{cm}: 0.28195$

SpinWorks 2.5: KMSH - 95; CDCI3

file: H:IMaxim\GMP194-95-96lnibh-kmsh-95\nibh-kmsh-95\11fid expt: <zg30>
transmitter freq.: 400.131884 MHz
time domain size: 65536 points
width: $6203.47 \mathrm{~Hz}=15.503573 \mathrm{ppm}=0.094658 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 64
freq. of $0 \mathrm{ppm}: 400.130017 \mathrm{MHz}$
processed size: 32768 complex points
LB: 0.000 GB: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 109.664 \mathrm{ppm} / \mathrm{cm}: 0.27407$

SpinWorks 2.5: KMSH - 83; CDCl3

		\|	\|									\|	1
PPM	150	140	130	120	110	100	90	80	70	60	50	40	30

$\begin{array}{ll}\text { file: H:IMaximlяMPlnibh-kmsh-83lnibh-kmsh-83\136lfid expt: <zgpg> } & \text { freq. of } 0 \text { ppm: } 100.612786 \mathrm{MHz} \\ \text { transmitter freq.: } 100.624820 \mathrm{MHz} & \text { processed size: } 131072 \text { complex points } \\ \text { time domain size: } 65536 \text { points } & \text { LB: } 0.000 \text { GB: } 0.0000\end{array}$
width: $28409.09 \mathrm{~Hz}=282.326875 \mathrm{ppm}=0.433488 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 128
$\mathrm{Hz} / \mathrm{cm}: 596.297 \mathrm{ppm} / \mathrm{cm}: 5.92594$

SpinWorks 2.5: KMSH - 84; CDCI3

[^2]width: $6203.47 \mathrm{~Hz}=15.503573 \mathrm{ppm}=0.094658 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 32
$\mathrm{Hz} / \mathrm{cm}: 112.836 \mathrm{ppm} / \mathrm{cm}: 0.28200$

SpinWorks 2.5: KMSH - 95; CDCI3

file: H:IMaxim|GMP194-95-96|nibh-kmsh-95\nibh-kmsh-95111fid expt: <zg30> \quad freq. of 0 ppm: 400.130017 MHz
ransmitter freq.: 400.131884 MHz
time domain size: 65536 points
width: $6203.47 \mathrm{~Hz}=15.503573 \mathrm{ppm}=0.094658 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 64
processed size: 32768 complex points
LB: 0.000 GB: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 109.664 \mathrm{ppm} / \mathrm{cm}: 0.27407$

SpinWorks 2.5: $\mathrm{KMSH}-81$; $\mathrm{CDCl3}$

file: $\mathrm{H}:$ IMaximlЯMP\nibh-kmsh-81 \nibh-kmsh-81131|fid expt: <zgpg>
transmitter freq.: 121.502141 MHz
time domain size: 32768 points
width: $31645.57 \mathrm{~Hz}=260.452774 \mathrm{ppm}=0.965746 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 80
freq. of 0 ppm: 121.494824 MHz
processed size: 65536 complex points
LB: 0.000 GB: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 780.836 \mathrm{ppm} / \mathrm{cm}: 6.42652$

file: H:IMaximlЯMP194-95-96|nibh-kmsh-94\nibh-kmsh-94111fid expt: <zg30>
transmitter freq.: 400.131884 MHz
time domain size: 65536 points
width: $6203.47 \mathrm{~Hz}=15.503573 \mathrm{ppm}=0.094658 \mathrm{~Hz} / \mathrm{p}$
number of scans: 16

[^3]$\mathrm{Hz} / \mathrm{cm}: 112.100 \mathrm{ppm} / \mathrm{cm}: 0.28016$

SpinWorks 2.5: KMSH - 94; CDCL3

file: H:IMaxim\GMP194-95-96\P31 \nibh-kmsh-94\nibh-kmsh-94131\fid expt: <zgpg> transmitter freq.: 121.502141 MHz
time domain size: 32768 points
width: $31645.57 \mathrm{~Hz}=260.452774 \mathrm{ppm}=0.965746 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 120

[^4]Hz/cm: $764.473 \mathrm{ppm} / \mathrm{cm}: 6.29185$

[^0]: processed size: 131072 complex points
 LB: 0.000 GB: 0.0000

[^1]: freq. of 0 ppm: 400.130005 MHz
 processed size: 32768 complex points
 LB: 0.000 GB: 0.0000
 $\mathrm{Hz} / \mathrm{cm}: 111.551 \mathrm{ppm} / \mathrm{cm}: 0.27878$

[^2]: file: H:IMaxim\ЯMPlnibh-kmsh-841nibh-kmsh-84111fid expt: <zg30>
 transmitter freq.: 400.131884 MHz
 freq. of $0 \mathrm{ppm}: 400.130018 \mathrm{MHz}$
 time doman
 processed size: 32768 complex points

[^3]: req. of 0 ppm: 400.130017 MHz
 processed size: 32768 complex points
 B: 0.000 GB: 0.0000

[^4]: freq. of 0 ppm: 121.494824 MHz
 processed size: 65536 complex points
 LB: 0.000 GB: 0.0000

