ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) FOR

Multinuclear Cobalt(II)-Containing Heteropolytungstates: Structure, Magnetism, and Electrochemistry

Masooma Ibrahim,^{[a,b]#} Ali Haider,^{[a]#} Yanhua Lan,^[c] Bassem S. Bassil,^[a] Akina M. Carey,^[a] Rongji Liu,^{d,e} Guangjin Zhang,^d Bineta Keita,^f Wenhui Li,^d George E Kostakis,^b Annie K. Powell,^[b,c] and Ulrich Kortz,^[a]*

[#] These authors contributed equally to this work.

^a Jacobs University, School of Engineering and Science, P.O. Box 750 561, 28725 Bremen, Germany.

* U. K.: e-mail, <u>u.kortz@jacobs-university.de</u>; fax, (+49)-421-200 3229; tel, (+49)-421-200 3235.

^b Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen, Germany.

^c Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, D-76131, Karlsruhe, Germany.

^d Key laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, 100190, Beijing, China.

^e University of Chinese Academy of Sciences, 100049, Beijing, China.

^fLaboratoire de Chimie Physique, Groupe d'Electrochimie et de Photoélectrochimie, UMR 8000, CNRS, Université Paris-Sud, Bâtiment 350, 91405 Orsay cedex, France. Table S1: Selected bond valence sum (BVS) values for 2 (upper) and 3 (lower).

μ ₃ -Ο (3Co-Ο)	BVS Value	Со	BVS value
O34C	1.038	Col	1.919
0340	1.043	Co2	1.963
O24C	1.050	Co3	1.895
O56C	1.031	Co4	1.884
μ ₂ -Ο (Co-O-P)		Co5	1.929
O3P1	1.616	C06	1.883
O1P2	1.632	Р	
O1P1	1.789	P1	5.212
O2P1	1.616	P2	5.091
μ ₄ -Ο (3Co-Ο-Ρ)			
O4P1	2.023		
O2P2	2.058		

 $[{C0_4(OH)_3PO_4}_4(A-\alpha-SiW_9O_{34})_4]^{32-}(2)$

 $[\{Co_4(OH)_3PO_4\}_4(A-\alpha-GeW_9O_{34})_4]^{32-}(3)$

μ ₃ -Ο (3Co-Ο)	BVS Value	Со	BVS value
012C	1.048	Co1	2.115
μ ₂ -Ο (Co-O-P)		Co2	1.950
O1P	1.603	Р	
μ ₄ -Ο (3Co-Ο-Ρ)		P1	4.883
O1Co	2.048		

Figure S1. Infrared spectra of KNa-3 (green), RbNa-1 (red), and Na-2 (blue).

Figure S2. Thermogram of Na-2.

Figure S3. Thermogram of KNa-3.

Figure S4. The plots of χT vs T for Na-2 (left) and KNa-3 (right).

Figure S5: The plots of M vs H for Na-2 (left) and KNa-3 (right).

Figure S6. The relaxation time as a function of 1/T for Na-2 (left) and KNa-3 (right).

Figure S7. Frequency dependence of the in-phase (left) and the out-of-phase (right) components of the ac susceptibility at 1.8 K for **Na-2** under different dc field.

Figure S8. Frequency dependence of the in-phase (left) and the out-of-phase (right) components of the ac susceptibility at 1.8 K for **KNa-3** under different dc field.

Figure S9. Absorption spectra of **2** and **3** recorded in a pH 7 (1M CH₃COOLi + CH₃COOH) medium with a 0.2 cm optical path quartz cuvette. (A) Spectra of the W^{VI} centers. (B) Spectra of the Co^{II} centers. The polyanion concentration was 5 x 10⁻⁴ M.

Figure S10. Cyclic voltammograms of the two first W^{VI} -waves of **3** (10⁻⁴ M) run in a pH 7 (1M CH₃COOLi + CH₃COOH) medium. The scan rate was 10 mVs⁻¹ and the reference electrode was saturated calomel electrode (SCE).