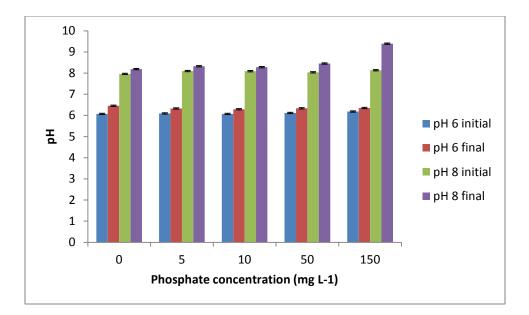
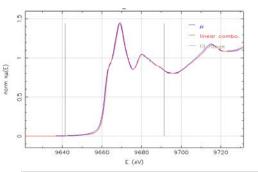
Supplementary Information


A multi-technique investigation of the pH dependence of phosphate

induced transformations of ZnO nanoparticles


Sewwandi Rathnayake^{1,2}, Jason M. Unrine^{1,2,*}, Jonathan Judy^{1,2}, Anne-Frances Miller³, William Rao¹, Paul M. Bertsch^{1,2,4}

- 1. Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
 - 2. Center for Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina, USA
 - 3. Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
 - 4. Division of Land and Water, CSIRO, Ecosciences Precinct, Brisbane, Australia

* To whom correspondence may be addressed (jason.unrine@uky.edu).

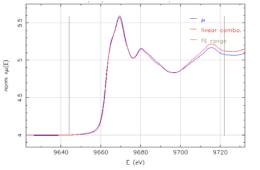
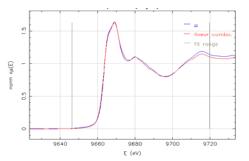


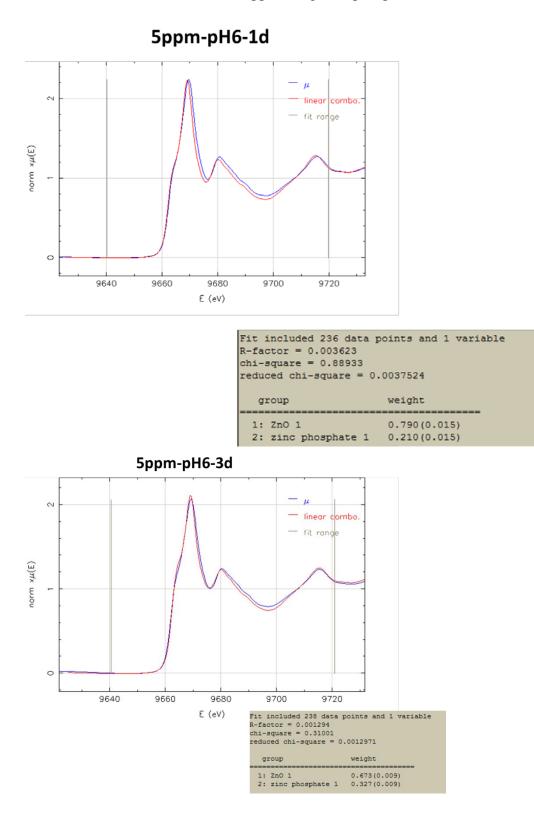
Figure S1. pH values at the beginning and end of aging as a function of initial pH and phosphate concentration. Results were similar regardless of aging duration so the different time points and replicates were averaged for each pH value and phosphate concentration.

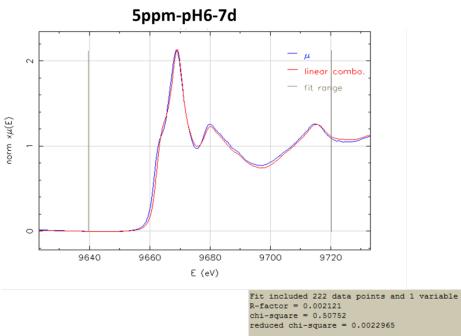


A – 90% ZnO, 10% Zn-phosphate

R	0.000304
Chi square	0.05186
Reduced chi square	0.0002284
ZnO	91.2
Zn-phosphate	8.8

R	0.000473
Chi square	0.09710
Reduced chi square	0.0004296
ZnO	73.9
Zn-phosphate	26.1




C – 50% ZnO, 50% Zn-phosphate

R	0.000320
Chi square	0.06283
Reduced chi square	0.0002869
ZnO	50.8
Zn-phosphate	49.2

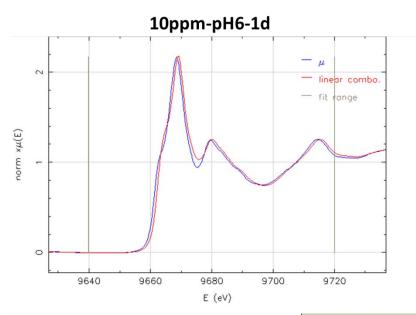
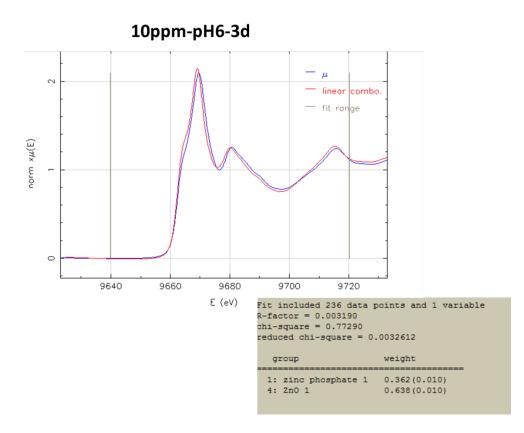
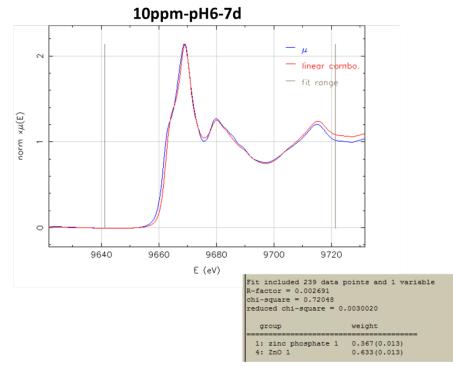
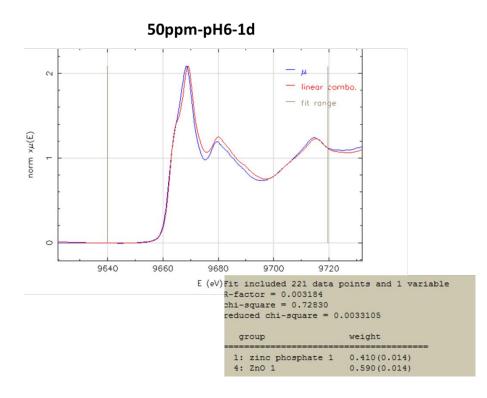
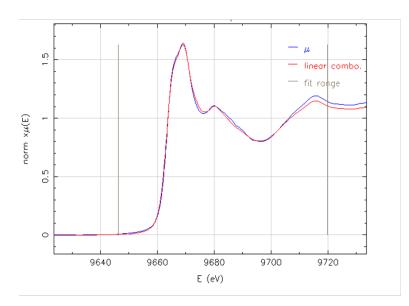

Figure S2. Linear combination fits for X-ray absorption near edge spectra (XANES) of standards containing known proportions of ZnO and $Zn_3(PO_4)_2$.

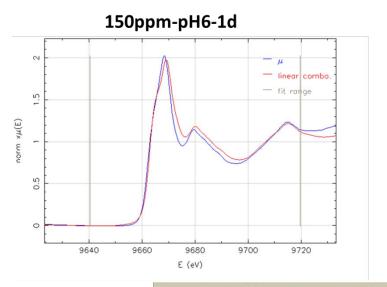
Figure S3. Example linear combination fits for X-ray absorption near edge spectra (XANES) aged ZnO manufactured nanomaterials. The treatment conditions are given above each panel (ppm = mg/L of phosphate).



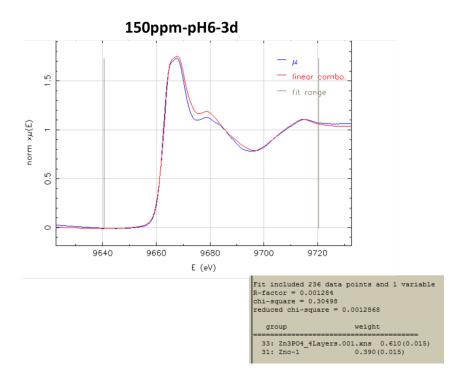


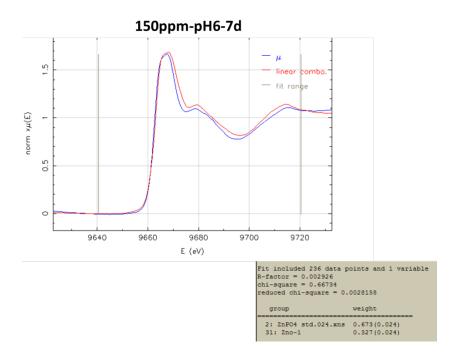

gı	roup		weight
2:	zinc phosphate	1	0.300(0.012)
1:	ZnO 1		0.700(0.012)

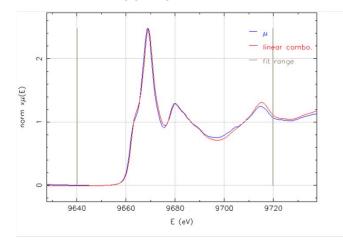

Fit included 221 data p R-factor = 0.004497 chi-square = 1.05227 reduced chi-square = 0.	
group	weight
1: ZnO 1 2: zinc phosphate 1	0.672(0.016) 0.328(0.016)



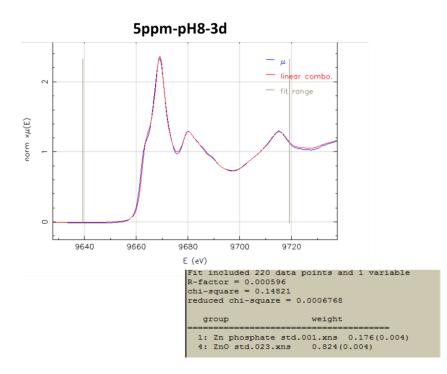
50ppm-pH6-7d

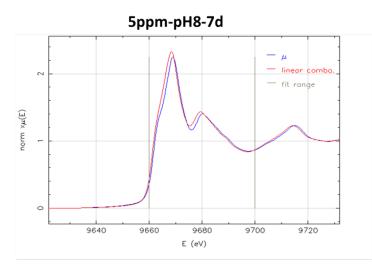


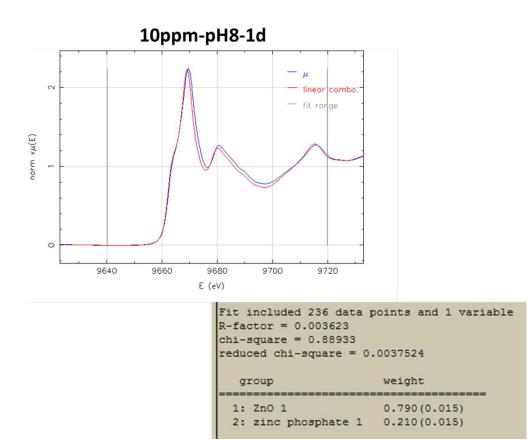

R	0.000320
Chi square	0.06283
Reduced chi square	0.0002869
ZnO	50.8
Zn-phosphate	49.2

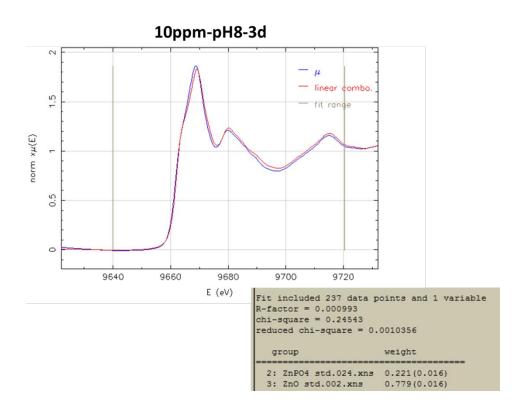

Fit included 220 data points and 1 variable R-factor = 0.005601 chi-square = 1.23505 reduced chi-square = 0.0056138

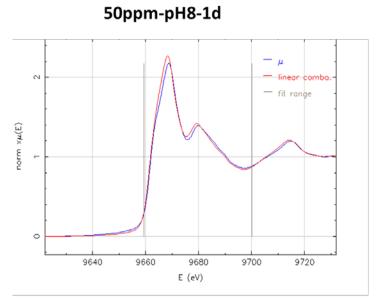
group			weight
	ZnPO4 ZnO 1	std.024.xns	0.600(0.019) 0.400(0.019)



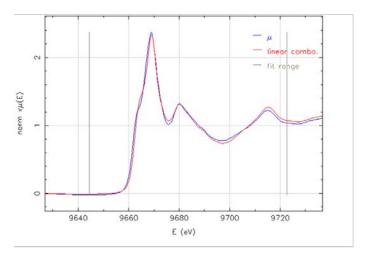

5ppm-pH8-1d


Fit included 220 data points and 1 variable R-factor = 0.001816 chi-square = 0.44799 reduced chi-square = 0.0020363


g1	roup	weight	
1:	Zn phosphate st	d.001.xns	0.095(0.008)
3:	ZnO std.023.xns	0.905	(0.008)



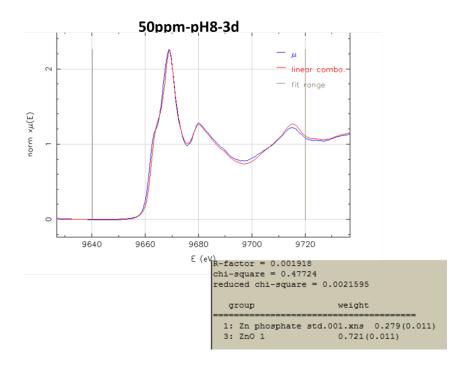
Chi square	1.0414
Reduced schi square	0.0078301
ZnO	82.5
Zn3(PO4)2	17.5

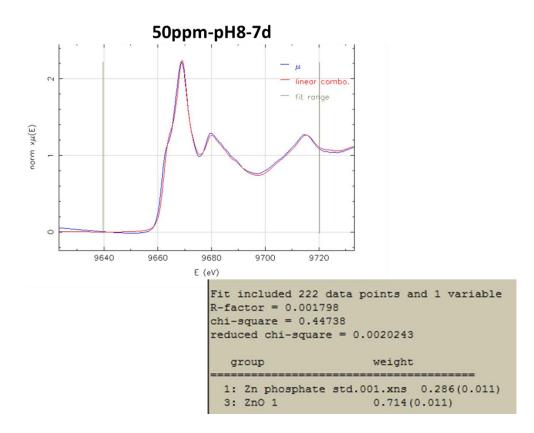


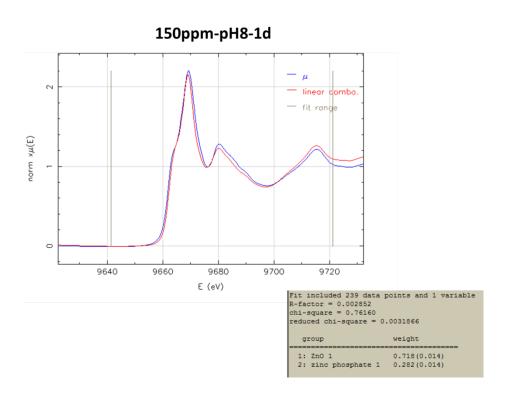
Chi square	0.46576
Reduced schi square	0.0034246
ZnO	73.1
Zn3(PO4)2	26.9


```
Fit included 226 data points and 1 variable

R-factor = 0.001964

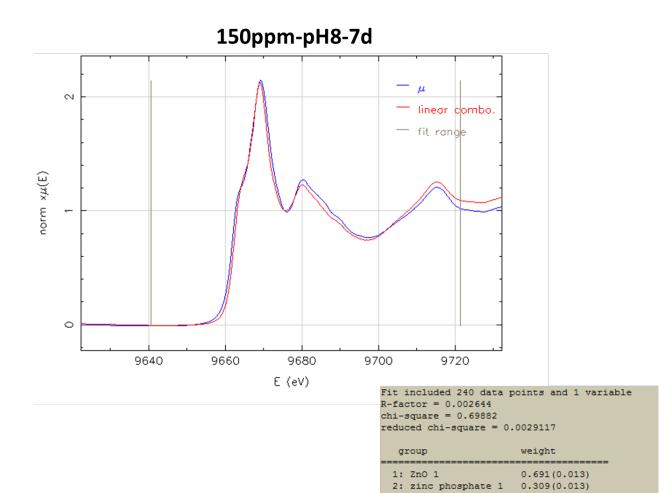

chi-square = 0.52810


reduced chi-square = 0.0023471


group weight


1: Zn phosphate std.001.xns 0.249(0.008)

4: ZnO std.023.xns 0.751(0.008)
```



R	0.000473
Chi square	0.09710
Reduced chi square	0.0004296
ZnO	73.9
Zn-phosphate	26.1

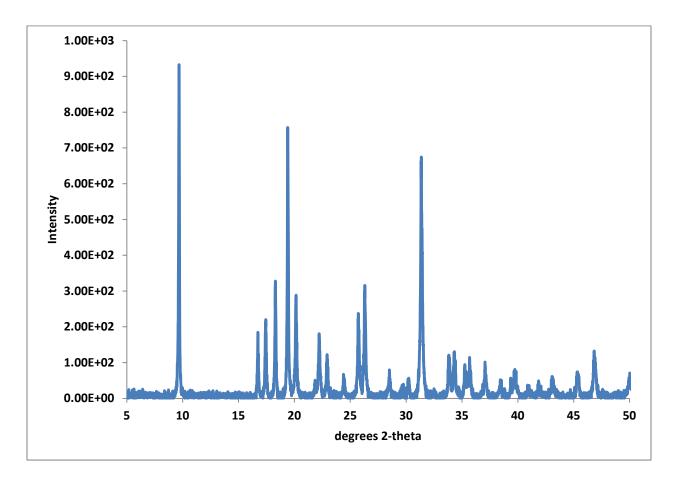
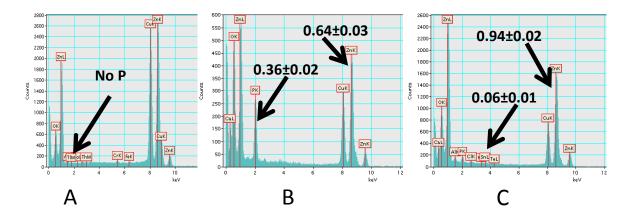



Figure S4. X-ray diffraction pattern for hopeite reported on the RUFF database (<u>http://rruff.info/</u>, RUFF ID R050254).

Figure S5 X-ray energy dispersive spectra for pristine material (A) micron sized fraction of aged material (B) and nano sized fraction of aged material (C). The ratios of P and Zn are indicated on the figure.

Additional interpretation of NMR spectra.

The NMR spectra provide additional detail regarding particles aged at pH 8, showing that one reason for the low hopeite formation is that a greater number of other species were formed in competition. Whereas the species with the chemical shift of 8.0 ppm (**Fig 6**) was the only byproduct at pH 6, only 47% of the pH 8 material being accounted for by the analogous species (7.8 ppm) with 27% of the pH 8 aged material was accounted for by a third component (5.3 ppm) not evident in particles aged at pH 6. The signals we observe near 4.2 ppm bear qualitative similarlities with that of α -Zn₃(PO₄)₂ with respect to both isotropic chemical shift (3.9 ppm) and individual principal values (See **Table S1**). Our T₁s were all considerably shorter than those reported by Roming et al. ³⁶ for α -Zn₃(PO₄)₂, likely because our materials include water molecules which place ¹H near the phosphate ³¹P. Indeed Roming et al. ³⁶ report a T₁ of 48 s for 'as-prepared' zinc phosphate, in the range of our values ranging from 33 to 67 s for the signal near 4.2 ppm we assign to hopeite.

Table S1: Isotropic chemical shifts (δ_{iso}) and tensors (δ_{11} , δ_{22} , and δ_{33}), T₁ relaxation times, cross-polarization buildup times (τ_{cp}) and T_{1H,p} relaxation times for ZnO MNMs aged at pH 6 and pH 8 and standards.

Species	δ_{iso}	δ_{11}	δ ₂₂	δ ₃₃	span	T ₁	τ_{cp}	T _{1H,p}
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(s)	(ms)	(ms)
рН 6 В	8.0	46.0 ±.5	-7 ± 4	-15 ± 4	61 ±4	102	1.2	26
рН 6 А	4.3	38.6 ±.3	1.2 ±.4	-27.0 ± .1	66 ± .3	67	.65	5.7
hopeite	4.2	38.8 ± .4	2.5 ± .3	-28.6 ± .1	67.4 ± .6	33	.67	24
pH 8 A	4.5	37.65±.0 7	1.3 ± .3	-25.5 ± .4	63.2 ± .4	67		
рН 8 В	5.3	33 ± 2	-9 ± 1	-9 ± 2	42 ± 3			
pH 8 D ^b	7.8	39 ± 2	6 ± 2	-21.6 ± .6	60.1 ± .9	71		
Zn ₃ (PO ₄) ₂	3.9	39.8 ±.2	6.7 ± .7	-34.9 ± .5	74.7 ± .3			
α - Zn ₃ (PO ₄) ₂ ^c	3.9	37.0	6.4	-31.7	68.7	1948		
β- Zn ₃ (PO ₄) ₂ ^c	7.6	27.7	3.8	-8.8	36.5	946		

The T₁s of each of the ³¹P signals were evaluated by varying the delay between scans from 900 s to 4 s in 9 steps and fitting the resulting signal amplitudes to the function $A=M_o(1-e^{-t/T_1})$ where 'A' is the signal amplitude obtained using an interscan delay of 't', M_o is the maximum amplitude expected after infinite delay and T₁ is the longitudinal relaxation time.

^a Data for the particles aged at pH 6 and hopeite were obtained using 100 s delays between direct polarization ³¹P scans or 20 s between cross-polarized scans and acquisition times of 80 ms. Data for particles aged at pH 8 were obtained similarly except that they employed 200 s delays between direct polarization scans.

^b pH 8 C: a fourth component is needed to describe the spectrum of material aged at pH 8 in 150 mg L^{-1} phosphate. However due to extensive overlap we do not have a unique description for it at present. A shoulder is seen at 7.1 ppm (**Figure 6**) but simulation of the pH 8 150 mg L^{-1} spectrum with four components yields best agreement when the fourth component included is broad and centered at 10.6 ppm (data not shown).

^c Our isotropic chemical shifts ranging from 4 - ≈ 10 ppm and spans smaller than 70 ppm demonstrate that the phosphate is orthophosphate not a polyphosphate, as Roming et al. ³⁰ report isotropic shifts of 3.9 ppm and 7.6 ppm associated with spans of 68.7 ppm and 36.4 ppm for α - and β - Zn₃(PO₄)₂, respectively but spans greater than 80 ppm for most of the components of their Zn₂P₂O₇ samples 80.7, 84.4, 84.6, 81.2, 99.1 and 69.3 ppm. Similarly, our relatively modest signal spans are most consistent with un-protonated PO₄³⁻ groups, as Rothwell et al. ³¹ found that for Ca²⁺ salts, HPO₄²⁻ and H₂PO₄⁻¹ have broader spans of 123 ppm and 127 ppm for HPO₄²⁻ species and 97 ppm, 125 ppm for H₂PO₄⁻ species vs. 34 ppm and 33 ppm for PO₄³⁻ species.