Ionothermal Synthesis, Crystal Structure, and Magnetic Study of Co₂PO₄OH Isostructural with Caminite

Guangmei Wang^a, Martin Valldor^c, Eike T. Spielberg^a, Anja-Verena Mudring^{a,b}*

^a Inorganic Chemistry III – Materials Engineering and Characterization, Ruhr-Universität Bochum, D-

44780 Bochum

^b Materials Science and Engineering, Iowa State University, and Ames Laboratory, Ames, IA, USA

^c Physics of Correlated Matter, Max-Planck-Institute for Chemical Physics of Solids, D-01187 Dresden

Identification code	1
Empirical formula	Co ₂ (PO ₄)OH
Formula weight (g / mol)	919.35
Temperature (K)	293(2)
Wavelength	0.71073 Å
Crystal system, space group	tetragonal, I4 ₁ /amd
Unit cell dimensions	
a=b (A)	5.2713(7)
c (Å)	12.907(3)
Volume (Å ³)	358.64(11)
Z, calculated density (mg/m ³)	4, 4.257
Absorption coefficient (mm ⁻¹)	9.584
F(000)	440
Theta range for data collection	4.18 to 27.43 °.
Limiting indices	$-6 \le h \le 7, -6 \le k \le 6, -16 \le l \le 16$
Reflections collected / unique	1535 / 130 [R(int) = 0.0647]
Completeness to	$\theta = 27.43$ 100.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	130 / 0 / 15
Goodness-of-fit on F ²	1.220
Final R indices [I>2 σ (I)]	R1 = 0.0870, wR2 = 0.2490

Table S1. Crystal data and structure refinement for $Co_2(PO_4)OH$

R indices (all data)

R1 = 0.0896, wR2 = 0.2536

Largest diff. peak and hole

3.124 and -1.317 e.Å⁻³

Table S2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² ×10³) for Co₂(PO₄)OH (1). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)
Co(1)	-7500	-2500	2500	32(2)
P(1)	-5000	-7500	1250	9(2)
O(1)	-5000	-5172(16)	1931(8)	16(2)
O(1H)	5000	-2500	1250	10(3)

Table S3. Bond lengths [Å] and angles [°] for $Co_2(PO_4)OH(1)$.

Co(1)-O(1)#1	2.064(6)	Co(1)-Co(1)#4	2.6356(4)
Co(1)-O(1)#2	2.064(6)	Co(1)-Co(1)#2	2.6356(4)
Co(1)-O(1)#3	2.064(6)	P(1)-O(1)	1.510(8)
Co(1)-O(1)	2.064(6)	P(1)-O(1)#5	1.510(8)
Co(1)-O(1H)#3	2.0832(3)	P(1)-O(1)#6	1.510(8)
Co(1)-O(1H)	2.0832(3))	P(1)-O(1)#7	1.510(8)

O(1)#1-Co(1)-O(1)#2	180.0(5)	O(1)#2-Co(1)-Co(1)#2	50.32(15)
O(1)#1-Co(1)-O(1)#3	86.1(4)	O(1)#3-Co(1)-Co(1)#2	129.68(15)
O(1)#2-Co(1)-O(1)#3	93.9(4)	O(1)-Co(1)-Co(1)#2	50.32(15)
O(1)#1-Co(1)-O(1)	93.9(4)	O(1H)#3-Co(1)-Co(1)#2	50 758(7)
O(1)#2-Co(1)-O(1)	86.1(4)	O(1H)-Co(1)-Co(1)#2	120.242(0)
O(1)#3-Co(1)-O(1)	180.0(5)	Co(1)#4-Co(1)-Co(1)#2	129.242(8)
O(1)#1-Co(1)-O(1H)#3	97.4(2)	O(1)-P(1)-O(1)#5	180.0
O(1)#2-Co(1)-O(1H)#3	82.6(2)	O(1)-P(1)-O(1)#6	109.8(4)
O(1)#3-Co(1)-O(1H)#3	97.4(2)	O(1)#5-P(1)-O(1)#6	109.8(4)
O(1)-Co(1)-O(1H)#3	82.6(2)	O(1)-P(1)-O(1)#7	108.7(8)
O(1)#1-Co(1)-O(1H)	82.6(2)	O(1)#5-P(1)-O(1)#7	108.7(8)
O(1)#2-Co(1)-O(1H)	97.4(2)	O(1)#6-P(1)-O(1)#7	109.8(4)
O(1)#3-Co(1)-O(1H)	82.6(2)	P(1)-O(1)-Co(1)#2	109.0(4)
O(1)-Co(1)-O(1H)	97.4(2)	P(1)-O(1)-Co(1)	109.8(4)
O(1H)#3-Co(1)-O(1H)	180.0	Co(1)#2-O(1)-Co(1)	139.63(19)
O(1)#1-Co(1)-Co(1)#4	50.32(15)	Co(1)#8-O(1H)-Co(1)	139.63(19)
O(1)#2-Co(1)-Co(1)#4	129.68(15)	Co(1)#8-O(1H)-Co(1)#9	79.4(3)
O(1)#3-Co(1)-Co(1)#4	50.32(15)	Co(1)-O(1H)-Co(1)#9	126.857(9)
O(1)-Co(1)-Co(1)#4	129.68(15)	Co(1)#8-O(1H)-Co(1)#4	78.485(15)
O(1H)#3-Co(1)-Co(1)#4	129.242(7)	Co(1)-O(1H)-Co(1)#4	126 857(9)
O(1H)-Co(1)-Co(1)#4	50.758(8)	Co(1)#9-O(1H)-Co(1)#4	120.057(0)
O(1)#1-Co(1)-Co(1)#2	129.68(15)		126.857(9)

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters ($Å^2 \times 10^3$) for Co₂(PO₄)OH (1).

The anisotropic displacement factor exponent takes the form:

	U11	U22	U33	U23	U13	U12
Co(1)	54(2)	24(2)	18(2)	0	-1(1)	0
P(1)	11(2)	11(2)	6(3)	0	0	0
O(1)	25(5)	11(4)	13(5)	-11(3)	0	0
O(1H)	13(5)	13(5)	3(6)	0	0	0

-2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

Figure S1. Experimental and simulated X-ray powder diffraction pattern of Co₂(PO₄)OH (1).

Figure S2. TG curve of Co₂(PO₄)OH (1).

Figure S3. Thermal ellipsoid plot (50% probability) and atomic labeling scheme for Co₂(PO₄)OH (1).