Dermal Uptake of Organic Vapors Commonly Found in Indoor Air

Charles J. Weschler ${ }^{1,2^{*}}$ and William W Nazaroff ${ }^{3}$

${ }^{1}$ Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
${ }^{2}$ International Centre for Indoor Environment and Energy, Technical University of Denmark, DK-2800 Lyngby, Denmark
${ }^{3}$ Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710 USA

Supporting Information

S1. Calculating transdermal permeability coefficients
S2. Calculating maximum flux for DEP and DnBP vapors
S3. Time scale to achieve steady state
S4. Comparison with ten Berge model predictions

Nomenclature

References

Table S1. For selected indoor pollutants, MW, $K_{\text {sc } _ \text {g }}, K_{\text {ow }}, K_{\mathrm{og}}, H, B, k_{\mathrm{p} _\mathrm{b}}, k_{\mathrm{p} _\mathrm{g}}, D / I$ and f_{g}.
Table S2. For selected indoor pollutants, MW, $K_{\mathrm{og}}, k_{\mathrm{p} _\mathrm{b}}$ and τ_{s}.
Table S3. Comparison of $k_{\mathrm{p} _\mathrm{g}}$ calculated for fully and partially hydrated stratum corneum.
Figure S1. Measured versus modeled values for $k_{\mathrm{p} _\mathrm{g}}$.
Figure S2. Measured versus modeled values for D / I.
Figure S3. For selected indoor pollutants, $\log \left(K_{\text {sc } _g}\right)$ versus $\log \left(K_{\text {og }}\right)$.
Figure S4. Sensitivity of $k_{\mathrm{p} _\mathrm{g}}$ to an order of magnitude change in $K_{\text {ow }}$.
Figure S5. Sensitivity of $k_{\mathrm{p}_{\mathrm{g}} \mathrm{g}}$ to an order of magnitude change in H.
Figure S6. Comparisons between $k_{\mathrm{p} _\mathrm{g}}$ estimated using the approach presented in the present paper and that presented by ten Berge (SkinPermMultiScen v1.1).

S1. Calculating transdermal permeability coefficients. To calculate $k_{\mathrm{p} _\mathrm{g}}$ for a given organic compound, we begin by using SPARC v4.6
(http://archemcalc.com/sparc/test/login.cfm?CFID=14923\&CFTOKEN=18639285) to calculate the values at $32{ }^{\circ} \mathrm{C}$ of the compound's octanol-water partition coefficient, $K_{\text {ow }}$ (dimensionless) and Henry's constant, H (in units of (moles per liter) per atmosphere). We then use a deterministic model proposed by Mitragotri [1] to calculate the compound's permeability coefficient through the stratum corneum when the vehicle in contact with the skin is water $\left(k_{\text {p_cw }}\right)$:

$$
\begin{equation*}
\log \left(k_{\mathrm{p} _\mathrm{cw}}\right)=0.7 \log \left(K_{\text {ow }}\right)-0.0722\left(\mathrm{MW}^{2 / 3}\right)-5.252 \tag{S1}
\end{equation*}
$$

Here, MW is the compound's molecular weight $(\mathrm{g} / \mathrm{mol})$ and $k_{\mathrm{p}_{-} \mathrm{cw}}$ is in units of $\mathrm{cm} \mathrm{s}^{-1}$. A relationship developed by Bunge et al. [2] is used to estimate B, the ratio of a compound's stratum corneum permeability coefficient ($k_{\mathrm{p}_{-} \mathrm{cw}}$) to its viable epidermis permeability coefficient $\left(k_{\text {p_ew }}\right):$

$$
\begin{equation*}
B=\left[k_{\mathrm{p}_{-} \mathrm{cw}} \times(\mathrm{MW})^{0.5}\right] /\left(2.6 \mathrm{~cm} \mathrm{~h}^{-1}\right) \tag{S2}
\end{equation*}
$$

where $k_{\mathrm{p}_{\mathrm{c}} \mathrm{cw}}$ is expressed in units of $\mathrm{cm} \mathrm{h}^{-1}$. The value of B is then used to estimate the compound's permeability coefficient through the stratum corneum/viable epidermis composite when the vehicle in contact with the skin is water $\left(k_{\mathrm{p}_{-} \mathrm{w}}\right)$:

$$
\begin{equation*}
k_{\mathrm{p}_{\mathrm{-}} \mathrm{w}}=k_{\mathrm{p} _\mathrm{cw}} /(1+B) \tag{S3}
\end{equation*}
$$

The permeability coefficient through the stratum corneum/viable epidermis composite when the vehicle in contact with the skin is air $\left(k_{\mathrm{p}_{-} \mathrm{b}}\right)$ is calculated using Henry's constant:

$$
\begin{equation*}
k_{\mathrm{p} _\mathrm{b}}=k_{\mathrm{p} _\mathrm{w}} \times(H R T) \tag{S4}
\end{equation*}
$$

where R is the gas constant $\left(0.0821 \mathrm{~atm}\right.$ liter $\left.\mathrm{mole}^{-1} \mathrm{~K}^{-1}\right)$ and T is the skin temperature ($305 \mathrm{~K}=$ $32^{\circ} \mathrm{C}$). Finally the overall "indoor air transdermal permeability coefficient," $k_{\mathrm{p} _\mathrm{g}}$, is calculated using a resistor-in-series model:

$$
\begin{equation*}
1 / k_{\mathrm{p} _\mathrm{g}}=1 / v_{\mathrm{d}}+1 / k_{\mathrm{p} _\mathrm{b}} \tag{S5}
\end{equation*}
$$

Here, v_{d} is the mass-transfer coefficient that describes the external transport of a compound from the gas phase in the core of a room through the boundary layer adjacent to the skin. Throughout the work reported in this paper, we assume that $v_{\mathrm{d}} \sim 6 \mathrm{~m} \mathrm{~h}^{-1}$ [3].

S2. Calculating maximum flux for DEP and DnBP vapors. For air saturated with vapors, we calculate a maximum flux for direct dermal absorption of $4600 \mu \mathrm{~g} \mathrm{~m}^{-2} \mathrm{~h}^{-1}$ for DEP and 185 $\mu \mathrm{g} \mathrm{m}^{-2} \mathrm{~h}^{-1}$ for DnBP. These fluxes are calculated as the product of the gas phase concentration $\left(C_{\mathrm{g}}\right)$ and the overall permeability coefficient $\left(k_{\mathrm{p}_{\mathrm{g}}}\right)$ - see equation (3) in the main text. The saturated gas-phase concentrations of DEP and DnBP are calculated from their respective vapor pressures $\left(P_{\mathrm{s}}\right)$ at $25^{\circ} \mathrm{C}$. For DEP, $P_{\mathrm{s}}=1.5 \times 10^{-7} \mathrm{~atm}$ and for DnBP, $P_{\mathrm{s}}=3.4 \times 10^{-9} \mathrm{~atm}$ (values calculated using SPARC v4.6). These vapor pressures are equivalent to gas-phase concentrations of $1360 \mu \mathrm{~g} \mathrm{~m}^{-3}$ for DEP and $39 \mu \mathrm{~g} \mathrm{~m}^{-3}$ for DnBP. The values for $k_{\mathrm{p} _\mathrm{g}}$ are taken from Table S1 $3.4 \mathrm{~m} / \mathrm{h}$ for DEP and $4.8 \mathrm{~m} / \mathrm{h}$ for DnBP. Hence, the flux for DEP is $1360 \mu \mathrm{~g} / \mathrm{m}^{3} \times 3.4 \mathrm{~m} / \mathrm{h}=4600$ $\mu \mathrm{g} \mathrm{m}^{-2} \mathrm{~h}^{-1}$, while the flux for DnBP is $39 \mu \mathrm{~g} / \mathrm{m}^{3} \times 4.8 \mathrm{~m} / \mathrm{h}=185 \mu \mathrm{~g} \mathrm{~m}^{-2} \mathrm{~h}^{-1}$.

S3. Time scale to achieve steady state. The values for $k_{\mathrm{p} _\mathrm{g}}$ listed in Table S1 apply for steady-state conditions. The time required for a steady-state model to serve as a reasonable representation of the transdermal permeation process can be approximated by the time scale necessary for an organic compound to achieve equilibrium sorption with skin-surface lipids by means of transport from the gas-phase, τ_{s} [3]. Under typical living conditions, there may be
insufficient time for this to occur for some compounds. We have previously written that τ_{s} can be estimated as

$$
\begin{equation*}
\tau_{s} \sim K_{\mathrm{lg}} X / v_{\mathrm{d}} \tag{S6}
\end{equation*}
$$

where $K_{\lg }$ is the equilibrium partitioning coefficient between skin-surface lipids and the gaseous species and X is the thickness of the skin-surface lipid layer [3]. While this is a reasonable approximation when $k_{\mathrm{p}_{\mathrm{b}}}$ is less than or comparable to v_{d}, it is an inaccurate approximation when v_{d} is much smaller than $k_{\mathrm{p}_{\mathrm{b}} \mathrm{b}}$. For the latter condition, the steady-state level of the compound in the skin-surface lipids is substantially less than the value for equilibrium partitioning. In this case, τ_{s} is more accurately estimated as follows:

$$
\begin{equation*}
\tau_{s} \sim\left(v_{\mathrm{d}} / k_{\mathrm{p}_{-} \mathrm{b}}\right) \times\left(K_{\mathrm{lg}} X / v_{\mathrm{d}}\right)=K_{\mathrm{lg}} X / k_{\mathrm{p}_{-} \mathrm{b}} \tag{S7}
\end{equation*}
$$

This alternative expression reflects the fact that, when transport across the stratum corneum is fast compared with the rate of external mass transfer (i.e., $k_{\mathrm{p}_{-} \mathrm{b}} \gg v_{\mathrm{d}}$), the steady-state concentration of the species at the air-skin interface, $C_{\mathrm{g} i}$, is reduced:

$$
\begin{equation*}
C_{\mathrm{gi}} \sim\left(v_{\mathrm{d}} / k_{\mathrm{p}_{-} \mathrm{b}}\right) \times C_{\mathrm{g}} \tag{S8}
\end{equation*}
$$

As a consequence, the time scale to establish concentration profiles for steady flux is smaller than estimated by equation (S6), which applies for conditions when $k_{\mathrm{p}_{-} \mathrm{b}} \gg v_{\mathrm{d}}$.

In our 2012 paper [3] we equated the equilibrium partitioning between the gas phase and the skin-surface lipids, K_{lg}, with $K_{\text {sc_g. }}$. Upon further consideration, based in part on the analysis presented by Nitsche et al. [4], we now consider this to be a poor assumption. Instead, we return to the assumption that we used in our 2008 paper [5] that K_{lg} can be approximated as the coefficient for equilibrium partitioning between octanol and air, K_{og}. That is, we assume that the
solubility of an organic in skin surface lipids is similar to that in octanol. The relationship between $K_{\text {sc_g }}$, as calculated in the present paper, and $K_{\text {og }}$ is displayed in Figure S3.

Table S2 lists estimates of τ_{s} for three cases: i) using equation (S7) when $k_{\mathrm{p}_{\mathrm{b}}}$ is $17 \mathrm{~m} \mathrm{~h}^{-1}$ or larger; ii) using equation (S6) when $k_{\mathrm{p} _ \text {b }}$ is $0.79 \mathrm{~m} \mathrm{~h}^{-1}$ or smaller; and iii) using both equations when $k_{\mathrm{p} _} \mathrm{b}$ lies between 17 and $0.79 \mathrm{~m} \mathrm{~h}^{-1}$. In making these calculations we have assumed that the average lipid layer thickness is $X \sim 1 \mu \mathrm{~m}$ [6] and that the external mass transfer coefficient to the skin is $v_{\mathrm{d}} \sim 6 \mathrm{~m} \mathrm{~h}^{-1}$. As a rough guide, τ_{s} is more than a day for organics with molecular weights larger than $225 \mathrm{~g} / \mathrm{mol}$ and $\log \left(K_{\mathrm{og}}\right)>8$. A value of $\log \left(K_{\mathrm{og}}\right)$ of 8 corresponds to $\log \left(K_{\text {sc_g }}\right) \sim 7$; see Figure S3. Note that among the nineteen compounds with modeled D / I greater than 10 , approximately half (nine of 19) have estimated τ_{s} values longer than a day. However, even if there is insufficient time to strictly justify the use of a steady-flux two-resistor model for evaluating transport from air through the skin to blood, one would still conclude that these compounds are absorbed by skin at a rate that is larger than inhalation intake into the body. For $D / I>1$, twenty-three of thirty-three compounds have τ_{s} values shorter than a day. The corresponding proportions are seventeen of twenty for compounds with $0.1<D / I<1$ and 100% for compounds with $D / I<0.1$. Overall, the steady-state approximation is deemed reasonable for a majority of the compounds considered, including half of the compounds for which the maximum dermal uptake rate is much larger than the maximum inhalation intake rate.

S4. Comparison with ten Berge model predictions. Wil ten Berge has developed a spreadsheet application (SkinPermMultiScen v1.1; http://home.wxs.nl/~wtberge/qsarperm.html) for semi-empirical estimation of the permeation of substances (neat liquids, aqueous solutions and vapors) through the skin; it is a refinement of an earlier dermal absorption model [7, 8]. This model is also the basis for the American Industrial Hygiene Association's IH SkinPerm [9]. There are several differences in the derivation of ten Berge's semi-empirical model compared to
the model that we have presented. The ten Berge model calculates v_{d} for each compound rather than using a fixed value for every compound. A quantitative structure-activity relationship (QSAR) is used to estimate permeation through the transcellular and intercellular pathways in the stratum corneum in contrast to using the Mitragotri model, as is done in the present paper. Finally, ten Berge has used EPA's EpiSuite to estimate the parameters needed to calculate $k_{\mathrm{p}_{\mathrm{g}}}$, whereas we have used SPARC. For thirty-six compounds, Figure S 6 compares values of $k_{\mathrm{p} _\mathrm{g}}$ calculated using the approach presented in the present paper with values calculated using the ten Berge model. For compounds with $k_{\mathrm{p} _\mathrm{g}}$ larger than $1.0 \mathrm{~m} / \mathrm{h}$ in Table S 1 , the ten Berge model predicts $k_{\mathrm{p} _\mathrm{g}}$ values that are roughly 60% of those in Table S 1 . For compounds with $k_{\mathrm{p} _\mathrm{g}}$ smaller than $1 \mathrm{~m} / \mathrm{h}$, the ten Berge model predicts values that are typically larger than those in Table S1. Overall, the strong qualitative and fair quantitative agreement between estimates made with these two models is sufficient to reinforce the message that the transdermal pathway should be considered when evaluating exposures to indoor organic pollutants.

Nomenclature (for primary paper and for supporting information)

Dimensions: L — length; M — mass; T — time
B - ratio of stratum corneum permeability to viable epidermis permeability (-)
BSA — body surface area (L^{2})
C_{g} — gas-phase concentration of an organic compound (M L ${ }^{-3}$)
$C_{g i}$-steady-state gas-phase concentration of the species at the air-skin interface $\left(\mathrm{M} \mathrm{L}^{-3}\right)$
C_{p} — particle-phase concentration of an airborne organic compound ($\mathrm{M} \mathrm{L}^{-3}$)
D - dermal uptake rate ($\mathrm{M} \mathrm{T}^{-1}$)
f_{g} - fraction of the airborne organic that is in the gas phase (-)
$f_{\text {om }}$ - fraction of airborne particulate matter that is organic (-)
H - Henry's law constant, with units of (mole/liter) per atmosphere
I - inhalation intake rate $\left(\mathrm{M} \mathrm{T}^{-1}\right)$
J - transdermal flux of an organic compound (M L $\left.{ }^{-2} \mathrm{~T}^{-1}\right)$
$k_{\mathrm{p} _}$- permeability coefficient for transport of a gas-phase organic compound from the gaseous boundary layer at the skin surface (b) through the stratum corneum/viable epidermis composite to dermal capillaries ($\mathrm{L} \mathrm{T}^{-1}$)
$k_{\mathrm{p}_{-} \mathrm{cw}}-$ permeability coefficient through the stratum corneum (c) of an organic compound when the species concentration is measured in water (w) in contact with skin ($\mathrm{L} \mathrm{T}^{-1}$)
$k_{p_{-} e w}-$ permeability coefficient through the viable epidermis $\left(\mathrm{L} \mathrm{T}^{-1}\right)$
$k_{\mathrm{p} _\mathrm{g}}$ — indoor air transdermal permeability coefficient for transport of a gas-phase organic from the bulk air of a room through the boundary layer adjacent to skin and then through the stratum corneum/viable epidermis composite to dermal capillaries $\left(\mathrm{L} \mathrm{T}^{-1}\right)$
$k_{\mathrm{p}_{\mathrm{L}}}$ — permeability coefficient for an organic from water in contact with the skin through the stratum corneum and viable epidermis composite $\left(\mathrm{L} \mathrm{T}^{-1}\right)$
$K_{\lg }$ — coefficient of equilibrium partitioning for an organic compound between skin-surface lipids and the gas phase (-)
K_{og} — coefficient of equilibrium partitioning for an organic compound between octanol and air (一)
K_{ow} - coefficient of equilibrium partitioning for an organic compound between octanol and water (-)
K_{p} - coefficient of equilibrium partitioning of an organic compound between the gas phase and airborne particulate matter (-)
$K_{\text {sc } _\mathrm{g}}$ - coefficient of equilibrium partitioning for an organic compound between the stratum corneum and the gas phase (-)

MW — molecular weight of compound $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$
$P_{\mathrm{s}}-$ organic compound's vapor pressure (atm)
Q_{b} — volumetric breathing rate; estimated as $0.5 \mathrm{~m}^{3} \mathrm{~h}^{-1}$ for an adult at rest $\left(\mathrm{L}^{3} \mathrm{~T}^{-1}\right)$
R — the gas constant (0.082 atmosphere liter/(K mole))
T - temperature $\left(\mathrm{K}^{\circ}\right.$ or ${ }^{\circ} \mathrm{C}$)
TSP — total suspended particulate matter mass concentration $\left(\mathrm{M} \mathrm{L}^{-3}\right)$
v_{d} - mass-transfer coefficient for external transport of an organic compound from the gas phase in the core of a room through the boundary layer adjacent to the skin $\left(\mathrm{L} \mathrm{T}^{-1}\right)$
X - thickness of the skin-surface lipids (L)
$\rho_{\text {part }}$ — density of airborne particulate matter $\left(\mathrm{M} \mathrm{L}^{-3}\right)$
τ_{s} - time scale needed for a species in skin-surface lipids to equilibrate with its gaseous concentration by means of gas-phase mass transfer (T)

References

1. Mitragotri, S. A theoretical analysis of permeation of small hydrophobic solutes across the stratum corneum based on scaled particle theory. J. Pharm. Sci. 2002, 91, 744-752.
2. Bunge, A. L.; Cleek, R. L.; Vecchia, B. E. A new method for estimating dermal absorption from chemical exposure. 3. Compared with steady-state methods for prediction and data analysis. Pharm. Res. 1995, 12, 972-982.
3. Weschler, C. J.; Nazaroff, W. W. SVOC exposure indoors: fresh look at dermal pathways. Indoor Air 2012, 22, 356-377.
4. Nitsche, J. M.; Wang, T.-F.; Kasting, G. B. A two-phase analysis of solute partitioning into the stratum corneum. J. Pharm. Sci. 2006, 95, 649-666.
5. Weschler, C. J.; Nazaroff, W. W. Semivolatile organic compounds in indoor environments. Atmos. Environ. 2008, 42, 9018-9040.
6. Nicolaides, N. Skin lipids: their biochemical uniqueness. Science 1974, 186, 19-26.
7. Wilschut, A.; ten Berge, W. F.; Robinson, P. J.; McKone, T. E. Estimating skin permeation. The validation of five mathematical skin permeation models. Chemosphere 1995, 30, 12751296.
8. ten Berge, W. A simple dermal absorption model: Derivation and application. Chemosphere 2009, 75, 1440-1445.
9. Tibaldi , R.; ten Berge, W.; Drolet, D. Dermal absorption of chemicals: estimation by IH SkinPerm, J. Occup. Environ. Hyg. 2014, 11, 19-31.
10. Wang, T. F.; Kasting, G. B.; Nitsche, J. M. A multiphase microscopic diffusion model for stratum corneum permeability. II. Estimation of physicochemical parameters, and application to a large permeability database. J. Pharm. Sci. 2007, 96, 3024-3051.

Table S1. For selected organics that are found indoors and exist primarily in the gas phase, relevant physical and chemical properties (MW, $K_{\text {ow }}, H, K_{\text {sc_g }}$) ratio of stratum corneum to viable epidermis permeability (B), permeability coefficient $\left(k_{\mathrm{p} _\mathrm{g}}\right)$, modeled steady-state ratio of dermal uptake to inhalation intake (D / I) of gas-phase species and fraction of organic in the gas-phase $\left(f_{g}\right)$; compounds rank ordered according to D / I.

Compound	MW $\mathrm{g} / \mathrm{mol}$	$\underset{\left(\boldsymbol{K}_{\mathrm{ow}}\right)}{\log }$	$\begin{gathered} \log (\boldsymbol{H})^{\mathbf{a}} \\ \left(\mathrm{mol} / \mathrm{miter}^{2}\right) \\ \mathrm{atm}^{-1} \end{gathered}$	$\log _{\left(\boldsymbol{K}_{\mathrm{sc}, \underline{g}}\right)}$	$\begin{gathered} B^{\mathbf{a}} \\ {[-]} \end{gathered}$	$\begin{aligned} & \boldsymbol{k}_{\mathrm{pg}} \\ & \mathrm{~m} / \mathrm{h} \end{aligned}$	$\begin{gathered} \boldsymbol{D} / \mathbf{I} \\ {[-]} \end{gathered}$	$\begin{gathered} f_{g} \\ {[-]} \end{gathered}$
diethanolamine	105	-2.5	8.68	8.2	<0.001	6.0	24	1.00
2,4-D ${ }^{\text {b }}$	221	2.9	5.16	8.7	0.026	5.8	23	0.98
butyl paraben	194	3.4	4.10	8.0	0.097	5.4	22	0.99
propyl paraben	180	2.8	4.22	7.7	0.048	5.2	21	1.00
ethyl paraben	166	2.2	4.39	7.4	0.023	4.9	20	1.00
di(n-butyl) phthalate	278	4.6	3.61	8.4	0.17	4.8	19	0.97
methyl paraben	152	1.5	4.61	7.1	0.010	4.7	19	1.00
o-phenylphenol	170	3.5	3.42	7.4	0.18	4.6	18	1.00
di(isobutyl) phthalate	278	4.2	3.76	8.3	0.092	4.6	18	0.98
nicotine ${ }^{\text {b }}$	162	2.0	4.31	7.2	0.017	4.4	18	1.00
diethyl phthalate	222	2.6	4.06	7.3	0.016	3.4	14	1.00
diazinon	304	4.9	3.10	8.1	0.18	3.3	13	0.98
dimethyl phthalate	194	1.5	4.45	6.9	0.0043	2.9	12	1.00
Galaxolide (HHCB)	258	4.6	2.85	7.6	0.22	2.8	11	0.99
Tonalide (AHTN)	258	5.0	2.58	7.7	0.44	2.6	11	0.99
monoethanolamine	61	-1.8	5.32	5.4	<0.001	2.5	9.9	1.00
nonylphenol	220	6.2	2.00	8.0	5.9	2.3	9.3	0.97
Phantolide	244	4.8	2.35	7.3	0.40	1.8	7.4	1.00
pentachlorophenol ${ }^{\text {b }}$	266	4.9	2.30	7.3	0.36	1.6	6.2	1.00
Texanol	216	2.4	3.46	6.7	0.014	1.4	5.5	1.00
ethylene glycol	62	-1.4	4.62	5.0	<0.001	1.2	5.0	1.00
hexyl cinnamal	216	5.0	1.86	6.9	0.88	1.2	4.8	1.00
n-methyl pyrrolidone	99	0.063	3.97	5.4	0.002	1.2	4.8	1.00
α-terpineol	154	2.5	2.72	6.0	0.045	0.98	3.9	1.00
phenol	94	1.5	2.62	5.2	0.029	0.70	2.8	1.00
eugenol	164	3.2	2.12	5.9	0.12	0.6	2.5	1.00
4-oxopentanal	100	0.10	3.57	5.0	0.003	0.56	2.2	1.00
chlorpyrifos	351	6.4	1.39	7.5	1.0	0.41	1.6	0.99
linalool	154	3.2	1.85	5.6	0.13	0.40	1.6	1.00
BHT	220	4.7	1.44	6.3	0.50	0.38	1.5	1.00
2-butoxyethanol	118	1.1	2.78	5.0	0.010	0.33	1.3	1.00
dimethylacetamide	87	-0.18	3.37	4.6	0.002	0.32	1.3	1.00
p-tert-bucinal	204	4.0	1.52	5.9	0.22	0.26	1.0	1.00
aniline	93	0.99	2.43	4.6	0.012	0.21	0.84	1.00
2-ethoxyethanol	90	0.058	3.07	4.4	0.002	0.19	0.74	1.00
methyl ionone	206	4.1	1.31	5.8	0.26	0.18	0.74	1.00
1-octen-3-ol	128	2.79	1.49	5.0	0.11	0.18	0.71	1.00
PCB28	258	5.5	0.84	6.3	1.1	0.14	0.58	1.00

2-methoxyethanol	76	-0.66	3.21	4.1	0.001	0.14	0.56	1.00
furfural	96	0.38	2.70	4.4	0.004	0.14	0.56	1.00
1-methoxy-2-propanol	90	-0.35	3.13	4.3	0.001	0.13	0.54	1.00
PCB52	292	6.1	0.74	6.7	1.7	0.13	0.52	1.00
α-chlordane	410	6.5	1.02	7.2	0.53	0.11	0.46	0.99
γ-chlordane	410	6.5	1.02	7.2	0.53	0.11	0.46	1.00
geranyl acetone	208	5.3	0.58	5.9	1.6	0.10	0.41	1.00
hexanol	102	2.1	1.44	4.4	0.060	0.10	0.40	1.00
3-octanol	130	2.80	1.16	4.6	0.11	0.083	0.33	1.00
dimethylformamide	73	-0.55	2.86	3.9	0.002	0.081	0.33	1.00
benzyl acetate	150	2.2	1.59	4.6	0.030	0.060	0.24	1.00
butanol	74	1.0	1.64	3.7	0.016	0.053	0.21	1.00
cyclohexanone	98	1.0	1.81	4.0	0.011	0.048	0.19	1.00
isobutanol	74	0.76	1.68	3.6	0.012	0.043	0.17	1.00
nitrobenzene	123	1.8	1.35	4.1	0.026	0.033	0.13	1.00
methyl glyoxal	72	-0.70	2.42	3.3	0.001	0.024	0.096	1.00
naphthalene	128	3.3	0.17	4.0	0.25	0.017	0.067	1.00
glyoxal	58	-1.1	2.32	2.9	0.001	0.015	0.060	1.00
nonanal	142	3.6	-0.03	4.0	0.31	0.012	0.049	1.00
3-octanone	128	2.86	0.18	3.7	0.13	0.0099	0.040	1.00
hexanal	100	2.0	0.42	3.3	0.050	0.0081	0.033	1.00
methyl ethyl ketone	72	0.75	0.90	2.9	0.012	0.0075	0.030	1.00
tetrahydrofuran	72	0.44	0.99	2.7	0.008	0.0056	0.022	1.00
acrolein	56	0.37	0.73	2.4	0.009	0.0043	0.017	1.00
p-dichlorobenzene	147	3.1	-0.34	3.3	0.12	0.0027	0.011	1.00
styrene	104	2.9	-0.63	2.9	0.20	0.0025	0.010	1.00
o-xylene	106	2.9	-0.84	2.7	0.22	0.0016	0.0065	1.00
m-xylene	106	3.0	-0.95	2.7	0.24	0.0014	0.0056	1.00
p-xylene	106	3.0	-0.90	2.7	0.25	0.0016	0.0063	1.00
toluene	92	2.5	-0.96	2.3	0.15	0.0010	0.0038	1.00
formaldehyde	30	-0.55	0.32	1.3	0.004	0.00087	0.0035	1.00
benzene	78	2.0	-0.92	1.9	0.080	0.00066	0.0026	1.00
limonene	136	4.6	-1.93	2.8	1.7	0.00041	0.0017	1.00
chloroform	119	1.6	-0.58	2.0	0.018	0.00028	0.0011	1.00
isoprene	68	2.4	-1.81	1.3	0.18	0.00019	0.00076	1.00
1,1,1-trichloroethane	133	2.5	-1.31	1.9	0.062	0.00016	0.00065	1.00
α-pinene	136	4.5	-2.51	2.2	1.6	0.00011	0.00043	1.00
trichloroethylene	131	2.7	-1.74	1.7	0.10	0.00009	0.00036	1.00
tetrachloroethylene	166	3.4	-1.93	2.0	0.16	0.00008	0.00032	1.00
hexane	86	3.7	-3.11	1.1	1.1	0.00003	0.00012	1.00
undecane	156	6.5	-3.84	2.4	29	0.00001	0.00003	1.00

${ }^{\text {a }}$ Computed for $T=32{ }^{\circ} \mathrm{C}$. ${ }^{\text {b }}$ Compound assumed nonionized. Abbreviations: 2,4-D - 2,4dichlorophenoxyacetic acid; BHT - butylated hydroxy toluene; PCB28-2,4,4'-trichlorobiphenyl; PCB52 $-2,2^{\prime}, 5,5^{\prime}$-tetrachlorobiphenyl.

Table S2. For the organics listed in Table S1, molecular weights (MW), parameters used to estimate $\tau_{s}\left(K_{\mathrm{og}}, k_{\mathrm{p} _}\right)$and values of τ_{s} estimated using equation (S6) ($K_{\mathrm{og}} \mathrm{X} / v_{\mathrm{d}}$) or equation (S7) ($K_{\mathrm{og}} \mathrm{X} / k_{\mathrm{p} _\mathrm{b}}$) with compounds rank ordered as in Table S1.

Compound	$\begin{aligned} & \text { MW } \\ & \mathrm{g} / \mathrm{mol} \end{aligned}$	$\begin{gathered} \mathbf{l o g} \\ \left(K_{\mathrm{og}}\right) \\ {[-]} \\ \hline \end{gathered}$	$\begin{aligned} & \boldsymbol{k}_{\mathrm{p}, \mathrm{~b}} \\ & \mathrm{~m} / \mathrm{h} \end{aligned}$	$\begin{gathered} \boldsymbol{\tau}_{s} \text { estimated as } \\ \left(K_{\mathrm{og}} X / v_{\mathrm{o}}\right)^{\mathrm{a}} \\ \mathrm{~h} \\ \hline \end{gathered}$	$\begin{gathered} \boldsymbol{\tau}_{\boldsymbol{s}} \text { estimated as } \\ \left(K_{\text {og }} X / \boldsymbol{k}_{\mathrm{p} _} \mathrm{b}^{\mathbf{b}}\right. \\ \mathrm{h} \\ \hline \end{gathered}$
diethanolamine	105	7.6	1030		0.04
2,4-D ${ }^{\text {b }}$	221	9.4	162		16
butyl paraben	194	8.9	52		15
propyl paraben	180	8.4	37		7
ethyl paraben	166	8.0	28		4
di(n-butyl) phthalate	278	9.6	23		160
methyl paraben	152	7.6	21		2
o-phenylphenol	170	8.3	20		11
di(isobutyl) phthalate	278	9.3	19		120
nicotine ${ }^{\text {b }}$	162	7.7	17		3
diethyl phthalate	222	8.0	7.9	17	13
diazinon	304	9.4	7.3	400	310
dimethyl phthalate	194	7.3	5.7	3	4
Galaxolide (HHCB)	258	8.8	5.3	110	120
Tonalide (AHTN)	258	9.0	4.7	150	190
monoethanolamine	61	4.9	4.2	0.01	0.02
nonylphenol	220	9.6	3.8	700	1100
Phantolide	244	8.5	2.7	60	120
pentachlorophenol ${ }^{\text {b }}$	266	8.6	2.1	70	190
Texanol	216	7.3	1.8	3	11
ethylene glycol	62	4.6	1.6	0.01	0.03
hexyl cinnamal	216	8.2	1.5	30	120
n-methyl pyrrolidone	99	5.4	1.5	0.05	0.18
α-terpineol	154	6.6	1.2	0.7	4
phenol	94	5.6	0.79	0.06	
eugenol	164	6.7	0.7	0.9	
4-oxopentanal	100	5.1	0.61	0.02	
chlorpyrifos	351	9.1	0.43	200	
linalool	154	6.4	0.43	0.4	
BHT	220	7.5	0.40	5	
2-butoxyethanol	118	5.3	0.35	0.03	
dimethylacetamide	87	4.6	0.34	0.01	
p-tert-bucinal	204	6.9	0.27	1.4	
aniline	93	4.8	0.22	0.01	
2-ethoxyethanol	90	4.4	0.19	<0.01	
methyl ionone	206	6.8	0.20	1.1	
1-octen-3-ol	128	5.7	0.18	0.08	
PCB28	258	7.8	0.15	10	
2-methoxyethanol	76	4.0	0.14	<0.01	
furfural	96	4.5	0.14	0.01	

1-methoxy-2-propanol	90	4.2	0.14	<0.01	
PCB52	292	8.3	0.13	30	
α-chlordane	410	8.9	0.12	120	
γ-chlordane	410	8.9	0.12	120	
geranyl acetone	208	7.3	0.11	3	
hexanol	102	4.9	0.10	0.01	
3-octanol	130	5.4	0.084	0.04	
dimethylformamide	73	3.7	0.082	<0.01	
benzyl acetate	150	5.2	0.061	0.03	
butanol	74	4.0	0.053	<0.01	
cyclohexanone	98	4.2	0.048	<0.01	
isobutanol	74	3.8	0.043	<0.01	
nitrobenzene	123	4.6	0.033	0.01	
methyl glyoxal	72	3.1	0.024	<0.01	
naphthalene	128	4.8	0.017	0.01	
glyoxal	58	2.6	0.015	<0.01	
nonanal	142	4.9	0.012	0.01	
3-octanone	128	4.4	0.010	<0.01	
hexanal	100	3.8	0.0081	<0.01	
methyl ethyl ketone	72	3.1	0.0075	<0.01	
tetrahydrofuran	72	2.8	0.0056	<0.01	
acrolein	56	2.5	0.0043	<0.01	
p-dichlorobenzene	147	4.1	0.0027	<0.01	
styrene	104	3.6	0.0025	<0.01	
o-xylene	106	3.5	0.0016	<0.01	
m-xylene	106	3.5	0.0014	<0.01	
p-xylene	106	3.5	0.0016	<0.01	
toluene	92	3.0	0.0010	<0.01	
formaldehyde	30	1.2	0.00087	<0.01	
benzene	78	2.5	0.00066	<0.01	
limonene	136	4.0	0.00041	<0.01	
chloroform	119	2.4	0.00028	<0.01	
isoprene	68	2.0	0.00019	<0.01	
1,1,1-trichloroethane	133	2.6	0.00016	<0.01	
α-pinene	136	3.4	0.00011	<0.01	
trichloroethylene	131	2.4	0.00009	<0.01	
tetrachloroethylene	166	2.9	0.00008	<0.01	
hexane	86	2.0	0.00003	<0.01	
undecane	156	4.1	0.00001	<0.01	
a		0			

${ }^{\mathrm{a}} K_{\mathrm{og}}$ used to approximate K_{lg} (see text); $X \sim 1 \mu \mathrm{~m} ; v_{\mathrm{d}} \sim 6 \mathrm{~m} \mathrm{~h}^{-1}$ 。 ${ }^{\mathrm{b}} K_{\mathrm{og}}$ used to approximate K_{lg} (see text); $X \sim 1 \mu \mathrm{~m}$.

Compound	$\boldsymbol{k}_{\mathbf{p} \mathbf{g}}$ [fully hydrated stratum corneum] m / h	$\boldsymbol{k}_{\mathbf{p} \mathbf{g}}$ [partially hydrated stratum corneum] m / h
butyl paraben	5.4	4.7
propyl paraben	5.2	4.1
ethyl paraben	4.9	3.5
di(n-butyl) phthalate	4.8	4.4
methyl paraben	4.7	2.8
di(isobutyl) phthalate	4.6	3.9
diethyl phthalate	3.4	1.8
dimethyl phthalate	2.9	1.1
Galaxolide (HHCB)	2.8	2.3
Tonalide (AHTN)	2.6	2.4
Phantolide	1.8	1.6
Texanol	1.4	0.53
α-terpineol	0.98	0.36
phenol	0.70	0.22
eugenol	0.63	0.28
4-oxopentanal	0.56	0.12
linalool	0.40	0.17
m-xylene	0.0014	0.00065

Table S3. For a subset of compounds from Table S1, a comparison of $k_{\mathrm{p} _\mathrm{g}}$ values calculated using the procedure in the Methods section of this paper for fully hydrated stratum corneum with values calculated using the procedure outlined in Wang et al. [10] for partially hydrated stratum corneum.

Figure S1. Measured versus modeled values for $k_{\mathrm{p}_{\mathrm{g}} \mathrm{g}}(n=17$; MW $=76-166 \mathrm{~g} / \mathrm{mol})$. Dashed line: slope $=1.00$, intercept $=0$. Solid line: least-squares regression with fit reported in the figure.

Figure S2. Measured versus modeled values for D / I ($n=27$; MW $=72-166 \mathrm{~g} / \mathrm{mol}$). Dashed line: slope $=1.00$, intercept $=0$. Solid line: least-squares regression with fit reported in the figure.

Figure S3. For the compounds listed in Table S1, the relationship between $\log \left(K_{\text {sc } _\mathrm{g}}\right)$ and \log $\left(K_{\mathrm{og}}\right)$. Values calculated using SPARC v4.6. Dashed line: slope $=1.00$, intercept $=0.0$. Solid line: least-squares regression with fit reported in the figure.

Figure S4. Sensitivity of $k_{\mathrm{p} _\mathrm{g}}$ to an order of magnitude change in $K_{\text {ow }}$. Numbers on the x-axis correspond to the order in which compounds are listed in Table S1: 1 - diethanolamine; 2-2,4D; 3 - butyl paraben, etc.

Figure S5. Sensitivity of $k_{\mathrm{p} _\mathrm{g}}$ to an order of magnitude change in H. Numbers on the x-axis correspond to the order in which compounds are listed in Table S1: 1 - diethanolamine; 2-2,4D; 3 - butyl paraben, etc.

Figure S6. Comparisons between $k_{\mathrm{p} _\mathrm{g}}$ estimated using the approach presented in the present paper and that presented by ten Berge (SkinPermMultiScen v1.1). Dashed line: slope = 1.00, intercept $=0.0$. Solid line: least-squares regression with fit reported in the figure.

