Supporting Information

Reinvestigation of the Role of Humic Acid in the Oxidation of Phenols by Permanganate

Bo Sun,^{†,‡} Jing Zhang,[‡] Juanshan Du,[‡] Junlian Qiao,[†] Xiaohong Guan,^{†,*}

[†]State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 20092, P. R. China

[‡]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China

E-mail addresses: sunbo880628@163.com (B. Sun), zhangjing2336@163.com (J.

Zhang), dujuanshan1209@yahoo.com.cn (J.S. Du), qiaoqiao@tongji.edu.cn (J.L.

Qiao), guanxh@tongji.edu.cn (X.H. Guan)

*Corresponding author: Professor Xiaohong Guan

Phone: +86-21-65980956; Fax: +86-21-65986313; Email: guanxh@tongji.edu.cn.

Prepared for Environmental Science & Technology

Number of pages (including this page): 10 Number of Texts: 1 Number of Figures: 7

Summary

Text S1 The details of the experiments on UPLC. (Page S3)

Figure S1 Absorbance at 526 nm *vs.* absorbance at 418 nm for the reduction of permanganate by phenol in the presence or absence of HA. (Page S4)

Figure S2 The role of MnO₂ in phenol removal. (Page S5)

Figure S3 Removal efficiency of phenols by MnO₂, KMnO₄, KMnO₄+MnO₂ over the

pH range of 5.0-9.0. (Page S6)

Figure S4 Oxidation of 2-CH₃-P and 2-NO₂-P by MnO₂ or KMnO₄ in the presence or absence of HA at pH 5.0. (Page S7)

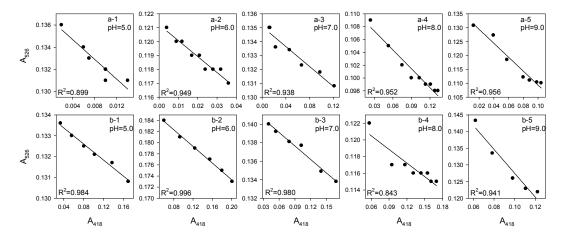
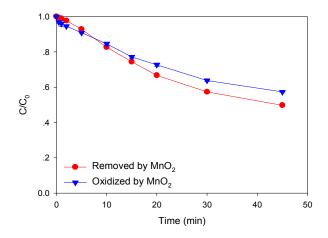

Figure S5 Influence of $Na_2S_2O_3$ applied at multiple dosing mode on 3,4-DCP oxidation by permanganate at pH 6.0. (Page S8)

Figure S6 The proportion of phenol bonded to HA at pH 9.0. (Page S9)


Figure S7 Influence of HA on the oxidation of 2,6-DCP by permanganate at pH 9.0. (Page S10)

Text S1

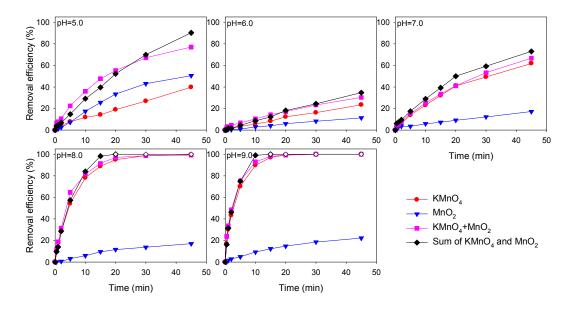

Separation was accomplished with an UPLC BEH C 18 column (2.1×50 mm, 1.7 μ m; Waters) at 35±1 °C and a mobile phase of methanol-0.1% formic acid aqueous solution (from 30:70 to 70:30). The flow rate was 0.5 mL·min⁻¹ and the largest volume injection was 10 μ L. Concentrations of phenols were determined by comparing the peak area at 270-305 nm with that of the corresponding phenol standards.

Figure S1. Absorbance at 526 nm *vs.* absorbance at 418 nm for the reduction of permanganate a) by phenol; b) by phenol in the presence of HA. Experimental conditions: $[KMnO_4]_0=50 \ \mu M$, $[phenol]_0=5 \ \mu M$, $T=25 \ ^{\circ}C$.

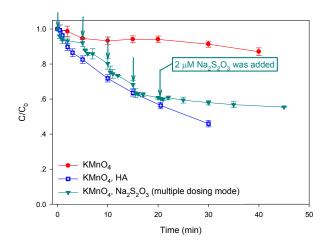

Figure S2. The role of MnO_2 in phenol removal. Reaction conditions: [phenols]₀=5 μ M, [MnO₂]₀=25 μ M, pH=5.0. Oxidized by MnO₂: After the sample was transferred into the beaker, excess sodium thiosulfate was added into the beaker immediately and the pH was adjusted to 2.0-3.0 by adding concentrated HCl, then the MnO₂ was reduced to Mn²⁺ and the phenol adsorbed by MnO₂ was released into the solution.


Figure S3. Removal efficiency of phenols by MnO₂, KMnO₄, KMnO₄+MnO₂ over the pH range of 5.0-9.0. The black symbols show the sum of phenol removal by KMnO₄ and MnO₂, respectively. When the sum exceeded 100%, 100% (represented by the \blacklozenge symbols) was plotted in this figure since the maximum removal efficiency of phenol could not exceed 100%. Reaction conditions: [phenols]₀=5 µM, [MnO₂]₀=25 µM, [KMnO₄]₀=50 µM.

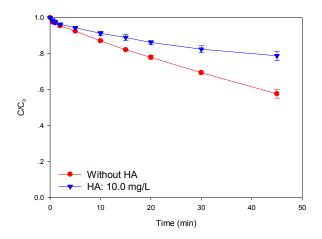

Figure S4. Oxidation of 2-CH₃-P and 2-NO₂-P by MnO₂ or KMnO₄ in the presence or absence of HA at pH 5.0. Reaction conditions: [phenols]₀=5 μ M, [KMnO₄]₀=50 μ M, [MnO₂]₀=25 μ M, [HA]₀=1.0 mg L⁻¹ as DOC.

Figure S5. Influence of Na₂S₂O₃ applied at multiple dosing mode on 3,4-DCP oxidation by permanganate at pH 6.0. The kinetics of 3,4-DCP oxidation by permanganate in the absence or presence of HA was also present in this figure as references. Multiple dosing mode: Na₂S₂O₃ of 2 μ M was applied every 5 minutes for 5 times. Reaction conditions: [3,4-DCP]₀=5 μ M, [KMnO₄]₀=50 μ M, [HA]₀=1.0 mg/L as DOC.

Figure S6. The proportion of phenol bonded to HA at pH 9.0. [HA]=10.0 mg/L as DOC. HA and phenol were mixed and stirred for 2 hours in a volumetric flask. The mixture was then filtrated through a membrane with an average molecular weight exclusion point of 4000 Daltons. The phenol in the filtrate was referred to free phenol.

Figure S7. Influence of HA on the oxidation of 2,6-DCP by permanganate at pH 9.0. Reaction conditions: $[2,6-DCP]_0=5 \ \mu M$, $[KMnO_4]_0=50 \ \mu M$.