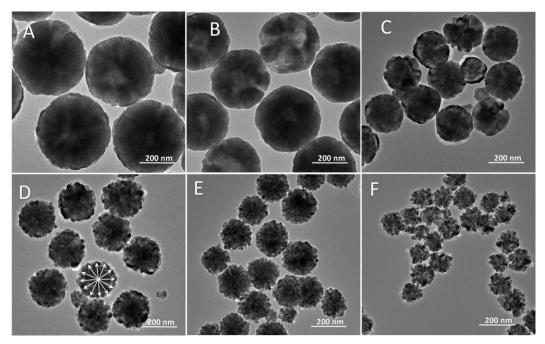
Supporting information

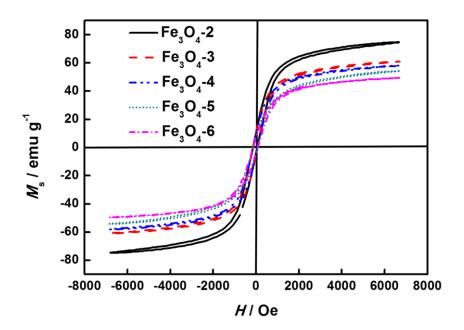
Controllable synthesis of hierarchical porous Fe₃O₄ particles mediated by poly (diallyldimethylammonium chloride) and their application in arsenic removal

Ting Wang, † Liyuan Zhang, † Haiying Wang, †,‡ Weichun Yang, †,‡ Yingchun Fu, § Wenli Zhou, § Wanting Yu, † Kaisong Xiang, † Zhen Su, † Shuo Dai, † Liyuan Chai, *,†,‡

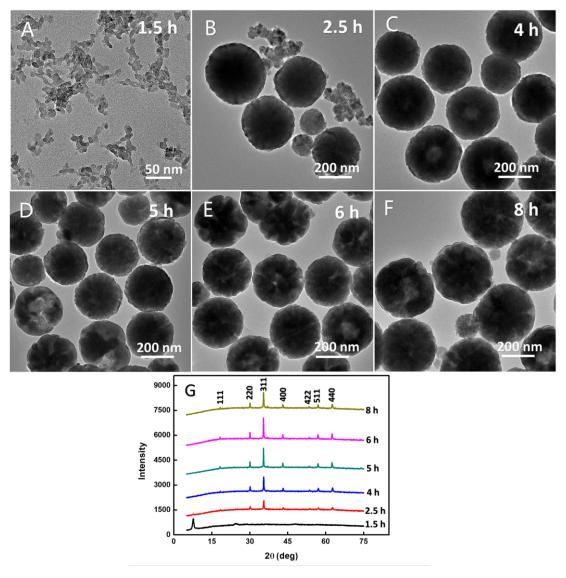
†Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410017, China

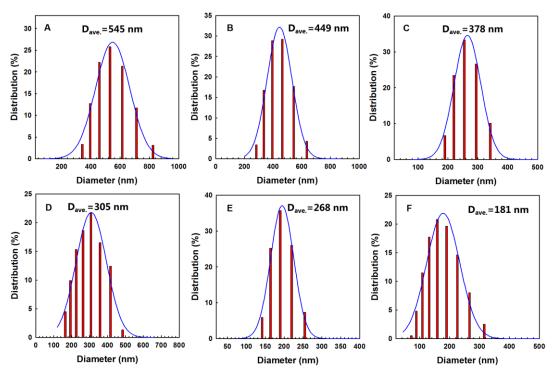

‡Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410017, China

[§]Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China


*Corresponding author

E-mail: Lychai@csu.edu.cn


Tel. / Fax: +86 0731 88710171.


Figure S1. TEM images of (A) Fe_3O_4-1 , (B) Fe_3O_4-2 , (C) Fe_3O_4-3 , (D) Fe_3O_4-4 , (E) Fe_3O_4-5 , (F) Fe_3O_4-6 with initial PDDA dosage varying from 1 g to 6 g.

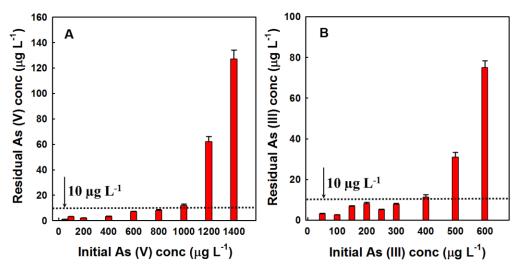

Figure S2. Room temperature hysteresis loops for the Fe₃O₄-i (i=2-6) with initial PDDA dosage increasing from 2 g to 6 g.

Figure S3. The TEM images (A-F) and XRD patterns (G) of Fe₃O₄-2-xh samples at x=1.5, 2.5, 4, 5, 6, 8 h.

Figure S4. The size distribution of Fe_3O_4 -1 (A), Fe_3O_4 -2 (B), Fe_3O_4 -3 (C), Fe_3O_4 -4 (D), Fe_3O_4 -5 (E), and Fe_3O_4 -6 (F) in aqueous solution.

Figure S5. The residual arsenic concentration exploiting Fe₃O₄-5 as the adsorbent for the low-level arsenic removal (T=25 $^{\circ}$ C; adsorbent doses=0.5 g L⁻¹; pH=5 ± 0.2).

 $\begin{table l} \textbf{Table S1.} Equilibrium & Adsorption Isotherm & Fitting Parameters for As (V)/As (III) \\ onto & Fe_3O_4-i \ (i=2-6) \\ \end{table}$

			Fe ₃ O ₄ -2	Fe ₃ O ₄ -3	Fe ₃ O ₄ -4	Fe ₃ O ₄ -5	Fe ₃ O ₄ -6
As	Langmuir isotherm	$q_{ m m}({ m mg}$ ${ m g}^{ ext{-}1})$	1.967	2.340	4.203	6.422	7.257
(V)		$K_{\rm L}({\rm L/mg})$	248.05	34.484	11.384	11.44	28.744
		\mathbb{R}^2	0.999	0.992	0.996	0.994	0.996
		1/n	3.806	2.995	2.847	2.243	2.261
As (III)	Freundlich isotherms	$K_{\rm F}(({\rm mg}$ ${\rm g})^{1-1/n})$	2.70	1.53	0.55	0.27	0.15
		R^2	0.98	0.965	0.987	0.995	0.990