Systematic Approach to Determination of Maximum Achievable Capture Capacity via Leaching and Carbonation Processes for Alkaline Steelmaking Wastes in a Rotating Packed Bed

Shu-Yuan Pan, Pen-Chi Chiang, Yi-Hung Chen, Chun-Da Chen, Hsun-Yu Lin, and E-E Chang *

The number of pages: 12 The number of figures: 7 The number of tables: 5 **Figure S1.** Schematic diagram of the experimental set-up for carbonation of BOFS slurry in an RPB. (1) BOFS slurry storage tank, (2) pump, (3) slurry inlet, (4) RPB reactor, (5) rotor, (6) gas inlet, (7) gas outlet, (8) gas flow rate controller, (9) rotameter, and (10) CO_2 concentration analyzer.

Figure S2. QXRD Procedure using Rietveld method via GSAS program.

Figure S3. Experimental and calculated XRD diffractogram by Rietveld method in GSAS program for (a) fresh and (b) carbonated BOFS.

Figure S4. Rietveld refinement results for BOFS before and after carbonation in the case of CRW, with 95% confidence interval. Abbreviation: BRO: brownmillerite ($Ca_2Fe_{1.014}Al_{0.986}O_5$); DSH: α -dicalcium silicate hydrate (C_2 -S-H); POR: portlandite ($Ca(OH)_2$); WUS: wustite (FeO); WOL: wollastonite (C_1S); CAL: calcite ($CaCO_3$).

Figure S5. Summary of Mass balance results of CO_2 and calcium ions for carbonation reaction of BOFS via an RPB, as reported in our previous research work.^{12,36}

Figure S6. SEM image with elemental mapping of Ca, Fe, Si, C and O for (a) fresh and (b) carbonated BOFS.

(a)

(b)

Figure S7. Systematic approach to determination of maximum achievable capture capacity (MACC) via leaching and carbonation processes for BOFS in an RPB.

Itom		Unit	Categories					
nem		Unit	< 125 µm	125–350 μm	350–500 μm	500–840 μm	840–1190 μm	
	Weight fraction ^a	%	27.9	23.3	6.23	10.0	6.5	
Physical	True density ^b	g cm ⁻³	3.04	3.40	3.54	3.63	3.66	
Properties	BET surface area ^c	$m^2 g^{-1}$	5.615 ± 0.015	2.248 ± 0.005	1.975 ± 0.003	1.745 ± 0.006	1.945 ± 0.009	
	Langmuir surface area	$m^2 g^{-1}$	7.342 ± 0.205	2.960 ± 0.081	2.599 ± 0.678	2.301 ± 0.062	2.544 ± 0.071	
	Loss on ignition (LOI)	%	8.9	4.3	2.9	1.7	1.3	
Chemical properties d	SiO ₂	%	8.6	9.1	9.2	9.3	9.6	
	Al ₂ O ₃	%	0.8	1.1	1.1	1.2	1.3	
	Fe ₂ O ₃	%	26.0	29.4	31.0	31.9	32.9	
	CaO	%	48.2	47.2	46.5	45.3	43.6	
	MgO	%	3.5	4.9	5.2	5.4	5.5	
	SO ₃	%	0.2	0.2	0.2	0.2	0.2	
	TiO ₂	%	0.4	0.5	0.5	0.5	0.6	
	MnO	%	2.8	2.8	2.9	2.9	2.9	

Table S1. Physicochemical properties of basic oxygen furnace slag (BOFS) used in this study.

^a: The rest 26.1% in weight fraction is for those particle size greater than 1190 μm; ^b: Density was analyzed with Micromeritrics Accupyc 1340 by Particulate Technology Laboratory (NTU); ^c: BET Surface Area was analyzed with Micromeritrics ASAP2010 by Particulate Technology Laboratory (NTU); ^d: Analyzed with XRF by CHC Resources Corporation;

Item		Unit	Value	
	рН	-	11.20~11.87	
Water quality	Conductivity	µmho cm ⁻¹	4860	
	TDS	mg L^{-1}	2680	
	Na ⁺	mg L^{-1}	837	
	\mathbf{K}^+	$mg L^{-1}$	268	
	Ca ²⁺	mg L^{-1}	147	
	Mg^{2+}	$mg L^{-1}$	0.28	
Cation	Fe ³⁺	$mg L^{-1}$	1.36	
concentration ^a	Cd^{2+}	$mg L^{-1}$	0.58	
	Zn^{2+}	mg L^{-1}	75	
	Al^{3+}	$mg L^{-1}$	2.1	
	Cr ³⁺	$mg L^{-1}$	0.31	
	Ni ²⁺	$mg L^{-1}$	1.53	
Anion	Cl ^{-b}	$mg L^{-1}$	1400	
AIIIOII	SO_4^{2-c}	$mg L^{-1}$	232	
concentration	NO_3^{-d}	$mg L^{-1}$	8.74	

Table S2. Physicochemical properties of cold-rolling wastewater (CRW) used in this study.

^a: Analyzed with ICP-AES (JOBIN YVON, JY24); ^b: Measured by precipitation titrimetry (i.e., Mohr method); ^c: Measured by Nephelometer method; ^d: Analyzed with IC (DIONEX DX-100).

1 1	C				
Diffractiometer	Bruker D8 Advance				
Goniometer	θ -2 θ , radius 217.5 mm				
Source	Cu K α , (λ = 1.54 Å), line focus				
Generator	40 kV, 40 mA				
Sample					
Sample Surface diameter	20 mm				
Preparation	Drying at 105 °C for 3 hr				
Incident optics					
Monochromator	Vario1 Johansson focusing				
Programmable divergence slit	0.5° (fixed)				
Incident anti-scatter slit	0.5°				
Receiving optics					
Programmable anti-scatter slit	1.5° (fixed)				
Soller slit	0.02×0.02 radians				
Detector	Vantec				
Scan information					
Angular range (20)	20-80°				
Increment (20/step)	0.01				
Time per step (s)	7.8				
Measurement time (min)	780				

Table S3. Specification of XRD operation for Rietveld refinement in this investigation.

Dp of	Model		Metal ions									
BOFS	Parameter	Unit	Са	Na	K	Zn	Pb	Al	Ni	Fe	Cr	Mg
< 125	C _{max}	ppm	2690.2	1177.4	232.4	79.0	43.0	22.6	10.37	9.89	3.25	2.96
μm	k	ppm/s	0.0188	0.0158	0.0618	0.1181	0.0685	0.0921	0.1469	0.1231	0.1995	0.0417
	n	-	1.14	1.42	1.12	1.0	1.0	1.0	1.0	1.24	1.0	1.0
	r^2	-	0.999	0.997	0.996	0.999	0.984	0.990	0.999	0.999	0.999	0.977
125-350	C _{max}	ppm	2115.6	1071.7	229.6	77.1	37.9	20.8	8.34	9.82	3.11	2.85
μm	k	ppm/s	0.0146	0.0194	0.0429	0.1282	0.1044	0.0880	1.0121	0.1322	0.1127	0.0502
	n	-	1.26	1.53	1.12	1.0	1.0	1.0	1.0	1.18	1.0	1.0
	r^2	-	0.996	0.986	0.997	0.999	0.998	0.992	0.997	0.999	0.998	0.999
350-500	C _{max}	ppm	1310.4	1045.2	218.0	70.5	25.7	19.1	7.51	9.89	2.56	2.61
μm	k	ppm/s	0.0114	0.0192	0.0411	0.0947	0.0612	0.1149	0.2091	0.1240	0.0559	0.0600
	n	-	1.26	1.44	1.21	1.0	1.0	1.0	1.0	1.26	1.0	1.0
	r^2	-	0.973	0.955	0.995	0.998	0.981	0.996	0.999	0.998	0.997	0.999
500-840	C _{max}	ppm	1256.3	867.1	208.0	67.0	21.7	16.6	7.31	9.76	2.14	1.99
μm	k	ppm/s	0.0116	0.0188	0.0379	0.1246	0.0835	0.0848	0.1419	0.1162	0.0680	0.0899
	n	-	1.28	1.48	1.18	1.0	1.0	1.0	1.0	1.24	1.0	1.0
	r^2	-	0.973	0.962	0.990	0.999	0.993	0.996	0.999	0.998	0.976	0.982
840-1190	C _{max}	ppm	876.0	826.9	201.4	63.2	19.0	14.1	7.05	9.25	2.02	1.67
μm	k	ppm/s	0.0118	0.0184	0.0341	0.1420	0.0805	0.0833	0.1107	0.1091	0.0744	0.0826
	n	-	1.39	1.50	1.19	1.0	1.0	1.0	1.0	1.32	1.0	1.0
	r^2	-	0.983	0.950	0.998	0.999	0.987	0.990	0.998	0.999	0.986	0.986

Table S4. Variations of $C_{max,i}$, k_i and n_i values for various metal ions leaching into CRW for 90 min.

Table S5. Comparisons of CO_2 capture capacity estimated by Rietveld refinement results (in this study) with those calculated by TG techniquein the literature.³⁶ (operating condition: direct carbonation using BOFS/CRW system in RPB, 20 min).

Mineral phases	Abbre.	Molecular	Rietveld refinement		Degree of carbo	onation	Capture capacity (t CO ₂ /t BOFS) ^b		
		weight	Weight fraction in Weight fraction i		In terms of Ca	Contribution	Estimation in	TG technique	
		(g/mol)	fresh BOFS (%)	Carbonated BOFS	content (%)	fraction (%) ^a	this study	(Chang et al., 2013) ³⁶	
Ca ₂ Fe _{1.04} Al _{0.986} O ₅	-	244.7	21.85 ± 1.24	0.83 ± 0.21	6.47	25.86	0.071	-	
Ca ₂ (HSiO ₄)(OH)	C2SH	190.1	14.95 ± 0.69	1.04 ± 0.25	5.71	22.82	0.063	-	
Ca(OH) ₂	-	74.0	19.23 ± 0.26	0.02 ± 0.00	9.43	37.69	0.104	-	
FeO	-	71.9	22.67 ± 1.22	5.01 ± 0.73	0.0	0.0	0.0	-	
CaSiO ₃	C1S	116.1	10.92 ± 0.41	0.34 ± 0.02	3.41	13.63	0.037	-	
CaCO ₃	-	100.0	10.39 ± 1.81	92.78 ± 2.59	-	-	-	-	
Total			100.00	100.00	25.02	100.00	0.275	0.277	

^a: Contribution fraction of each mineral phase for achieving the estimation value of CO₂ capture capacity (i.e., 0.275 t CO₂/ t BOFS) in this study.

^b: Relative percent difference (RPD) between the two studies was calculated to be 0.63%.