Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata)

Peng Wang,^{†,*} Neal W. Menzies,[†] Enzo Lombi,[‡] Brigid A. McKenna,[†] Bernt Johannessen,[§] Chris J. Glover,[§] Peter Kappen,[§] and Peter M. Kopittke[†]

[†]School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
[‡]Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
[§]Australian Synchrotron, Clayton, Victoria, 3168, Australia

*To whom correspondence should be addressed. Phone: +61 7 3365 4816, Fax: +61 7 3365 1177, Email: <u>p.wang3@uq.edu.au</u>

7 Pages

5 Tables

1 Figure

Supporting Information

Table S1. Characteristics of the two soils used in this study

Property	Oxisol	Ultisol		
pH (1:5 water)	6.7	5.0		
pH (1:5 CaCl ₂)	6.1	4.1		
Electrical conductivity (dS/m) (1:5 water)	0.15	0.02		
Electrical conductivity (dS/m) (saturation extract)	1.1	0.2		
Chloride (mg/kg)	23	10		
Nitrate N (mg/kg)	24	3.5		
Ammonium N (mg/kg)	4.5	1.7		
Phosphorus - Colwell (mg/kg)	30	<5.0		
Phosphorus - Olsen (mg/kg)	8.85	<2.00		
Phosphorus Buffer Index (mg/kg)	560	66.2		
Calcium (cmol _(c) /kg)	7.5	0.6		
Potassium (cmol _(c) /kg)	0.61	0.21		
Magnesium (cmol _(c) /kg)	4.7	0.3		
Sodium (cmol _(c) /kg)	0.29	< 0.022		
Aluminium (cmol _(c) /kg)	0	1.2		
Effective cation exchange capacity (cmol _(c) /kg)	13.1	2.33		
Exchangeable sodium percentage (%)	2.2	<0.94		
Aluminium saturation (%)		52		
Copper (DTPA-extractable) (mg/kg)	0.66	0.026		
Iron (DTPA-extractable) (mg/kg)	13	73		
Manganese (DTPA-extractable) (mg/kg)	12	1.8		
Zinc (DTPA-extractable) (mg/kg)	12	2.4		
Total Zinc (aqua regia digestion) (mg/kg)	118	9.0		
Boron (Hot CaCl ₂) (mg/kg)	1.3	0.41		
Sulfate Sulfur (KCl-extractable) (mg/kg)	52	2.3		
Organic Carbon (%)	1.9	0.62		
Color	Red-brown	Red-brown		
Texture	Sandy Clay	Sandy Loam		
BET Surface area (m^2/g)	8.1	12.0		
XRD (Mineralogy)	55% Kaolinite 15% Quartz 12% Hematite 5% Maghemite	86% Quartz 12% Kaolinite 1% Hematite		

Table S2. Biomass of various tissues of cowpea harvested after growth for 4 weeks in either soils or solutions containing no added Zn, or Zn added as ZnO-NPs or soluble ZnCl₂

Biomass of various tissues of cowpea (g/per plant, dry mass)								
Treatment	Solution culture			Soil culture				
	Root	Stem	leaf	Root	Stem	leaf		
Control	0.11	0.25	0.11	0.15	0.21	0.11		
ZnO-NPs	0.08*	0.21	0.08*	0.14	0.24	0.12		
ZnCl ₂	0.04*	0.13*	0.04*	0.14	0.22	0.11		

Asterisks (*) denote statistically significant (p < 0.05) biomasses of each tissue compared to control (one-way analysis of variance, ANOVA).

The second se	Zno	concentration	Transfer coefficient				
Ireatment	Root	Root stem leaf seed		seed	Zn concentration ratio of leaf/root		
Solution culture							
ZnO-NPs	44740	583.9	118.6		0.003		
ZnCl ₂	9653*	487.6	139.3		0.014		
Soil culture							
ZnO-NPs	1003	118.1	155.0	43.3	0.155		
ZnCl ₂	1175	108.4	180.8	55.7	0.154		

Table S3. Concentrations of Zn in various tissues of cowpea grown in either solution culture or soilculture and exposed to Zn added as either ZnO-NPs or soluble $ZnCl_2$

Asterisks (*) denote statistically significant (p < 0.05) Zn concentrations between ZnO-NPs or

ZnCl₂ treatment (one-way analysis of variance, ANOVA).

Table S4. Results of principle component analysis (PCA) performed for the 18 bulk-XANES and 18 EXAFS spectra of Zn in soils. The PCA was applied to the whole experimental spectra set of soil samples in order to evaluate the number of relevant components indicated by the indicator function (IND) reaching a minimum. The first four components accounted for 99% of the total variance of the XANES spectra and 79% of the total variance of the EXAFS spectra, and therefore, a maximum of four reference components were permitted for each fit.

Component	Eigen value		Variance		Cumulative Variance		IND* Value	
-	XANES	EXAFS	XANES	EXAFS	XANES	EXAFS	XANES	EXAFS
1	129.3	129.1	0.962	0.598	0.962	0.598	0.00308	0.03363
2	2.355	20.87	0.017	0.096	0.979	0.695	0.00176	0.02805
3	1.116	11.07	0.008	0.051	0.988	0.746	0.00108	0.02846
4	0.512	9.872	0.003	0.045	0.992	0.792	0.00083	0.02858
5	0.317	7.449	0.002	0.034	0.994	0.826	0.00066	0.03030
6	0.164	5.852	0.001	0.027	0.995	0.853	0.00066	0.03371
7	0.123	5.338	0.000	0.024	0.996	0.878	0.00069	0.03797
8	0.090	4.741	0.000	0.021	0.997	0.900	0.00078	0.04327
9	0.077	3.881	0.000	0.017	0.997	0.918	0.00091	0.05321
10	0.066	3.427	0.000	0.015	0.998	0.934	0.00111	0.06789
11	0.061	3.244	0.000	0.015	0.998	0.949	0.00137	0.09000
12	0.047	2.865	0.000	0.013	0.999	0.962	0.00189	0.12926
13	0.034	2.878	0.000	0.012	0.999	0.975	0.00320	0.19603
14	0.033	1.903	0.000	0.008	0.999	0.984	0.00662	0.42260
15	0.030	1.766	0.000	0.008	0.999	0.992	0.02153	1.61092
16	0.021	1.610	0.000	0.007	1.000	1.000	NA	NA

*: Indicator value.

Table S5. Target Transformation SPOIL values of selected reference spectra obtained by PCA analysis. Reference spectra are classified as excellent (SPOIL < 1.5), good (1.5-3.0), acceptable (3.0-4.5), poor (4.5-6.0), or unacceptable (> 6.0). The standard compounds with SPOIL values < 3 in EXAFS TT and < 2.5 in XANES TT were included in the subsequent LCF analyses.

	SPOIL VALUES				
References	EXAFS	XANES			
ZnAl-LDH nitrate	1.5593	0.7806			
Hemimorphite, Zn ₄ Si ₂ O ₇ (OH) ₂ ·H ₂ O	2.1569	0.7555			
ZnAl-LDH silicate	1.7620	0.8604			
Hopeite, $Zn_3(PO4)_2$	2.8074	2.2065			
Zn substituted ferrihydrite	2.7260	1.1561			
Zn humic acid	2.7731	1.5084			
ZnAl silicate	2.9285	0.8604			
ZnO-NPs	2.4423	0.8727			
Zn-phosphate	3.0880	0.7580			
Zn silicate	3.3604	0.1627			
Zn cysteine	2.2959	2.1743			
Willemite, Zn ₂ SiO ₄	3.4338	1.4766			
Zn citrate	2.6828	2.8783			
Zn sorbed on ferrihydrite	2.8109	1.1072			
Zn sulfide	2.6996	5.0716			
Smithsonite, ZnCO ₃	2.9246	2.2551			
Zincite, ZnS	2.9582	1.8191			
Zn sulfate	2.9616	2.1288			
Franklinite	2.7568	1.1339			
Wurzite, (Zn,Fe)S	3.4168	3.0510			
Sphalerite (Zn,Fe)S	2.9307	6.4164			
Zn aqueous	4.5651	1.2864			
Gahnite, ZnAl ₂ O ₂	4.7398	2.4615			
Zn acetate	5.1442	3.0652			

Figure S1. Comparison between the Fourier Transform for EXAFS spectra of Zn standards (ZnO-NPs, ZnAl-LDH nitrate, hemimorphite, and ZnSO₄) and soil samples amended with 500 μ g kg⁻¹ ZnO-NPs or ZnCl₂ followed by incubating for 1 h, 1 d, 5 d, 15 d.

The LCF results for EXAFS spectra were also reinforced by the Fourier Transform EXAFS spectra, in which similarities were observed for both soils amended with ZnCl₂ and ZnO-NPs. This suggests that the local molecular environments of Zn in both soils were similar and the added ZnO-NPs were transformed to the same species as found in the ZnCl₂ treatment. The main shells present in all experimental spectra are similar to the shells for ZnAl-LDH and hemimorphite, but substantially different from the shells for ZnO-NPs.