Selective $\mathbf{H g}^{\mathbf{2 +}}$ sensing behaviors of rhodamine derivatives with extended conjugation based on two successive ring-opening processes

Chunyan Wang ${ }^{a, b}$ and Keith Man-Chung Wong ${ }^{a, b *}$
${ }^{a}$ Department of Chemistry, South University of Science and Technology of China, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen, Guangdong, P.R. China
${ }^{b}$ Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China

Email: keithwongmc@sustc.edu.cn

Supporting Information

X-Ray Diffraction Measurement

Single crystals of cis-1 and trans-1, cis-2 and trans-2 suitable for X-ray crystallographic studies were obtained by the slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of the corresponding compounds. The X-ray diffraction data were collected on a Bruker Smart CCD 1000 using graphite-monochromatized MoKa radiation ($\lambda=0.71073 \AA$). Raw frame data were integrated using the SAINT program. ${ }^{\text {S1 }}$ Semiempirical absorption corrections with SADABS $^{\mathrm{S} 2}$ were applied. The structures were solved by direct methods employing the SHELXS-97 program ${ }^{\text {S3 }}$ and refined by full-matrix least-squares on F^{2} using the SHELXL-97 program. ${ }^{\text {S3 }}$ All non-H atoms were refined anisotropically. The positions of H atoms were calculated on the basis of the riding mode with thermal parameters equal to 1.2 times that of the associated C atoms and participated in the calculation of final R-indices. CCDC-831119 (cis-1), CCDC-925954 (trans-1), CCDC-831120 (cis-2), and CCDC-831122 (trans-2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S1 Crystal and structure determination data of cis-1 and trans-1, cis-2 and trans-2

Table S2 Selected singlet excited states of cis-1-p, cis-1-f, 4 and Rhodamine 6G_oxadiazole computed by TD-DFT at B3LYP/6-31G(d) at the optimized ground state geometries

Compound	Electron transition	Main transition configuration (CI coeff)	Excitation energy	Calculated wavelength (nm)	Oscillator strength f
$\begin{gathered} \text { cis-1-p } \\ \text { (partial ring- } \\ \text { opened form) } \end{gathered}$	$\mathrm{S}_{0}-\mathrm{S}_{1}$	HOMO \rightarrow LUMO (1.00)	1.79	693.26	0.0133
	$\mathrm{S}_{0}-\mathrm{S}_{2}$	HOMO-1 \rightarrow LUMO (0.97)	2.63	471.03	1.0346
	$\mathrm{S}_{0}-\mathrm{S}_{3}$	HOMO-2 \rightarrow LUMO (0.90)	2.93	423.72	0.0045
	$\mathrm{S}_{0}-\mathrm{S}_{4}$	HOMO-3 \rightarrow LUMO (0.85)	3.33	372.01	0.1028
	$\mathrm{S}_{0}-\mathrm{S}_{5}$	$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$ (0.53)	3.38	366.90	0.0022
		HOMO \rightarrow LUMO+1 (0.46)			
$\begin{aligned} & \text { cis-1-f } \\ & \text { (full ring- } \\ & \text { Opened form) } \end{aligned}$	$\mathrm{S}_{0}-\mathrm{S}_{1}$	HOMO \rightarrow LUMO (0.98)	2.32	534.63	1.3279
	$\mathrm{S}_{0}-\mathrm{S}_{2}$	HOMO \rightarrow LUMO+1 (0.64)	2.74	452.01	0.0205
		HOMO-1 \rightarrow LUMO (0.32)			
	$\mathrm{S}_{0}-\mathrm{S}_{3}$	HOMO-2 \rightarrow LUMO (0.94)	2.82	440.23	0.0192
	$\mathrm{S}_{0}-\mathrm{S}_{4}$	$\text { HOMO-1 } \rightarrow \text { LUMO (0.55) }$	2.94	421.84	0.2522
		HOMO \rightarrow LUMO+1 (0.32)			
	$\mathrm{S}_{0}-\mathrm{S}_{5}$	HOMO-3 \rightarrow LUMO (0.90)	3.05	405.85	0.0122
4	$\mathrm{S}_{0}-\mathrm{S}_{1}$	HOMO \rightarrow LUMO (0.98)	1.52	814.42	0.0010
	$\mathrm{S}_{0}-\mathrm{S}_{2}$	HOMO-1 \rightarrow LUMO (0.99)	1.73	717.50	0.0002
	$\mathrm{S}_{0}-\mathrm{S}_{3}$	HOMO \rightarrow LUMO+1 (0.98)	2.11	586.42	0.0010
	$\mathrm{S}_{0}-\mathrm{S}_{4}$	HOMO-2 \rightarrow LUMO (0.66)	2.30	538.07	0.8495
		HOMO-1 \rightarrow LUMO+1 (0.32)			
	$\mathrm{S}_{0}-\mathrm{S}_{5}$	HOMO-2 \rightarrow LUMO (0.31)	2.31	536.99	0.4180
		$\text { HOMO-1 } \rightarrow \text { LUMO+1 (0.67) }$			
Rhodamine 6G_oxadiazole	$\mathrm{S}_{0}-\mathrm{S}_{1}$	HOMO \rightarrow LUMO (0.94)	2.63	470.69	0.7001
	$\mathrm{S}_{0}-\mathrm{S}_{2}$	HOMO \rightarrow LUMO+1 (0.97)	2.99	415.13	0.0667
	$\mathrm{S}_{0}-\mathrm{S}_{3}$	HOMO-1 \rightarrow LUMO (0.98)	3.12	396.91	0.0068
	$\mathrm{S}_{0}-\mathrm{S}_{4}$	HOMO-3 \rightarrow LUMO (0.96)	3.23	383.86	0.0010
	$\mathrm{S}_{0}-\mathrm{S}_{5}$	HOMO-2 \rightarrow LUMO (0.91)	3.39	365.27	0.1671

Figure S1 Perspective views of (a) trans-1, (b) cis-1, (c) trans-2 and (d) cis-2 were shown at 50% (30% for trans-1) probability thermal ellipsoids with the atom numbering scheme. Solvent molecules were omitted for the clarity.

Figure S2 Photographs of trans-1 in MeOH showing the color changes (left) and emission enhancement (right) in the absence of $\mathrm{Hg}(\mathrm{II})$ ion (a), and in the presence of small amount of $\mathrm{Hg}(\mathrm{II})$ ion (b) and excess amount of $\mathrm{Hg}(\mathrm{II})$ ion (c).

Figure S3 Electronic absorption spectral changes of trans-1 (conc. $\left.=1.79 \times 10^{-5} \mathrm{M}\right)$ in MeOH in the presence of low concentrations of $\mathrm{Hg}(\mathrm{II})$ ion (top); electronic absorption (middle) and emission (bottom) spectral changes of trans $\mathbf{- 1}$ (conc. $=1.25 \times 10^{-5} \mathrm{M}$) in the presence of high concentrations of $\mathrm{Hg}(\mathrm{II})$ ion. Insets show the plot of absorbance or emission intensity as a function of the concentration of $\mathrm{Hg}(\mathrm{II})$ ion.

Figure S4 Electronic absorption and emission spectra of cis-1 upon addition of excess Hg (II) ion in MeOH .

Figure S5 Electronic absorption spectral changes of cis-1 (conc. $=1.7 \times 10^{-5} \mathrm{M}$) in MeOH in the presence of low concentrations of acid (top, left); electronic absorption (middle, left) and emission (bottom, left) spectral changes of cis-1 (conc. $=1.19 \times 10^{-5} \mathrm{M}$) in the presence of high concentrations of acid. The right column shows the plot of absorbance or emission intensity as a function of the concentration of acid.

Figure S6 Electronic absorption spectral changes of trans-1 (conc. $\left.=1.79 \times 10^{-5} \mathrm{M}\right)$ in MeOH in the presence of low concentrations of acid (top); electronic absorption (middle) and emission (bottom) spectral changes of trans $\mathbf{- 1}$ (conc. $=1.25 \times 10^{-5} \mathrm{M}$) in the presence of high concentrations of acid. Insets show the plot of absorbance or emission intensity as a function of the concentration of acid.

Figure S7 Photographs showing the color changes of $\mathbf{3}$ in acetonitrile-buffer ($1: 1, \mathrm{v} / \mathrm{v}$) solution upon addition of various ions. From left to right: $\mathrm{Hg}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}, \mathrm{Cd}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Li}^{+}, \mathrm{F}^{-}, \mathrm{I}^{-}$, blank. (buffer $=$ HEPES buffer solution $(\mathrm{pH}=7.0,10 \mathrm{mmol})$ in water $)$

Figure S8 Electronic absorption spectrum of compound $\mathbf{4}$ in acetonitrile-buffer (1:1, v/v) solution. (buffer $=$ HEPES buffer solution $(\mathrm{pH}=7.0,10 \mathrm{mmol})$ in water $)$

Figure S9 Measurement of selectivity of $\mathbf{3}$ (conc. $=12 \times 10^{-6} \mathrm{M}, 2$ equivalents of Hg^{2+} or 10 equivalents of other ions) and interference of $\mathbf{3}$ (column ions, conc. $=12 \times 10^{-6} \mathrm{M}, 2$ equivalent of Hg^{2+} and all 10 equivalents of other ions in acetonitrile-buffer ($1: 1, \mathrm{v} / \mathrm{v}$) solution. $($ buffer $=$ HEPES buffer solution $(\mathrm{pH}=7.0,10 \mathrm{mmol})$ in water $)$

trans-1-p

trans-1-f

Figure S10 The optimized ground state geometries, frontier molecular orbital energies and electron density distributions of trans-1-p (left) and trans-1-f (right).

Figure S11 The simulated absorption spectra of the partial (left) or full (right) ring-opened cis-1 (The carboxylic acid form was adopted in order to simplify the calculation) in methanol, $\mathbf{4}$ and rhodamine 6G_oxadiazole in acetonitrile.

Reference

S1 Bruker AXS Inc. (2006). SAINT, version 7.34A, Madison, Wisconsin, USA.

S2 Sheldrick, G. M. (2004). SADABS, Göttingen University, Göttingen, Germany.

S3 Sheldrick, G. M. (2008). SHELX programs:SHELXL97, SHELXS97. Acta Cryst. E68, 112-122.

