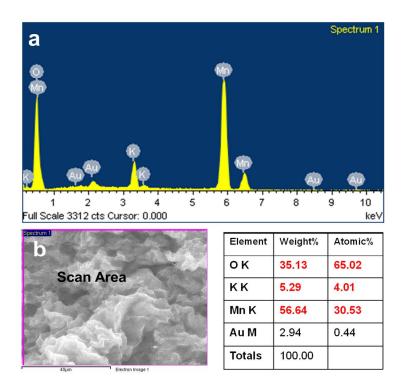
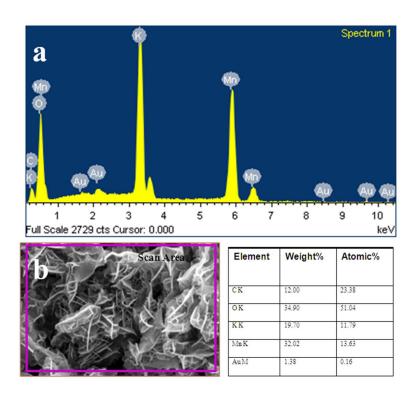
Supporting Information

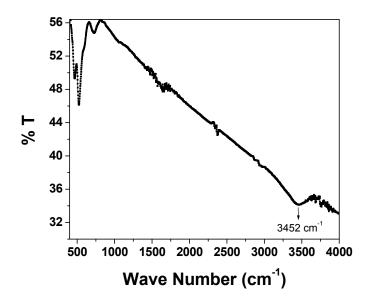

Morphological evolution of 2D MnO₂ nanosheets and their shape transformation to 1D ultra long MnO₂ nanowires for robust catalytic activity

Arun Kumar Sinha, Mukul Pradhan and Tarasankar Pal*

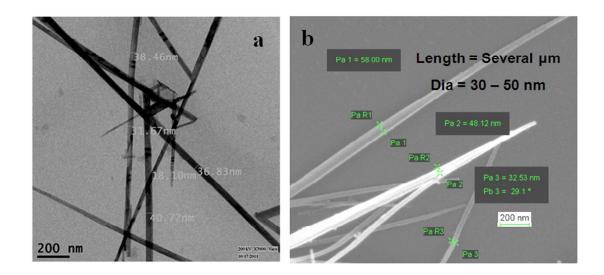
Department of Chemistry, Indian Institute of Technology, Kharagpur Kharagpur 721302, West Bengal, India Fax: (+)03222-255303 E-mail: tpal@chem.iitkgp.ernet.in Supporting Information Figure S1. Digital Picture of Gram level α -MnO₂ Nanowires synthesis by Wet Chemical Route and Images a and b represents 25 g of α -MnO₂ nanowires.



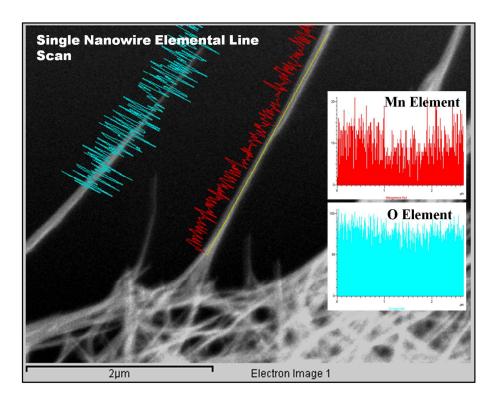
Supporting Information Figure S2. EDS pattern of α-MnO₂ nanowires (a), scan area and elemental composition (b)

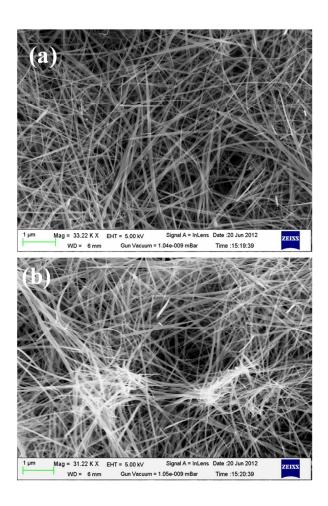

The EDS pattern shows the presence of Mn, O and K elements in α -MnO₂ nanowires. The element Au comes from conductive gold coating.

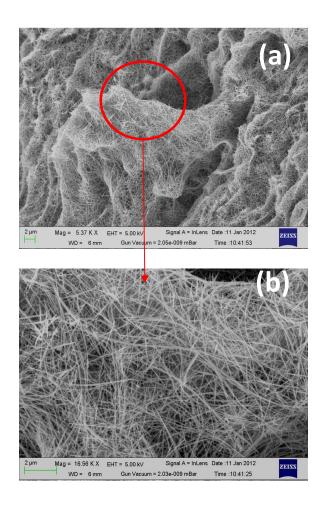
Supporting Information Figure S3. EDS pattern of δ -MnO₂ nanosheets (a), scan area and elemental composition (b).

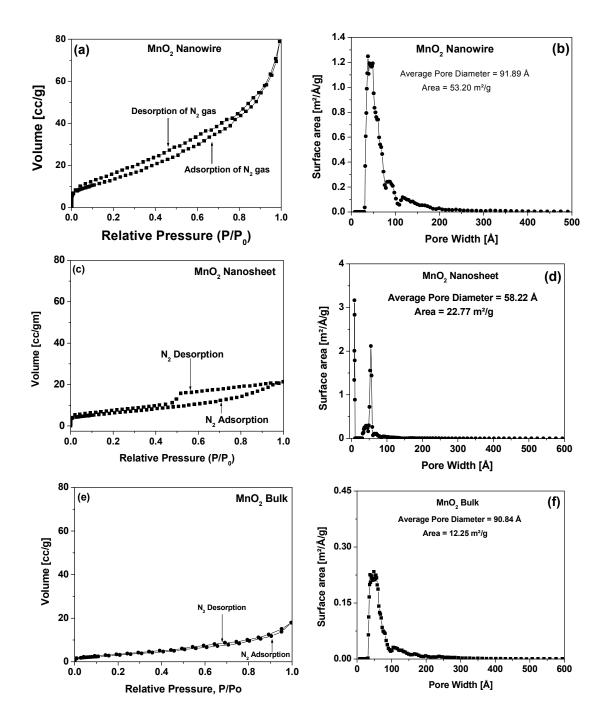


The EDS pattern shows the presence of Mn, O and K elements in δ -MnO₂ nanosheets. The element Au comes from conductive gold coating and Carbon comes from capping CH₃COO⁻ ion.

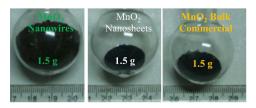

Supporting Information Figure S4. FTIR spectra of α-MnO₂ nanowires.


Supporting Information Figure S5. Diameter and length of the α-MnO₂ nanowires from TEM (a) and FESEM analysis (b).

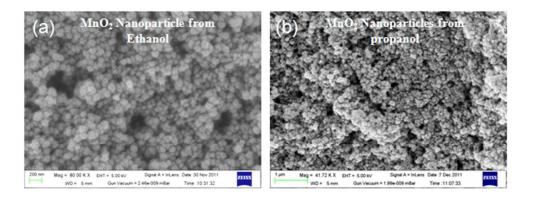

Supporting Information Figure S6. Elemental mapping on the surface of single α -MnO₂ nanowire.


Supporting Information Figure S7. Dry heat treatment or annealing of as prepared α -MnO₂ nanowires at 200°C (a) and 400°C (b) in presence O₂ atmosphere for 4 hrs.

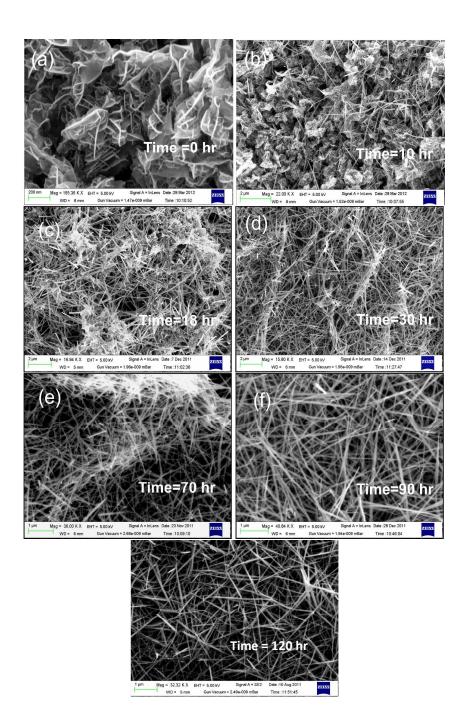
Supporting Information Figure S8. Surface morphology of α-MnO₂ nanowires sheet of membrane formation which is appeared as pallet after dring on water bath at 70-90°C.


Supporting Information Figure S9. Comparison *of* Nitrogen adsorptiondesorption isotherm (*a*, *c* and *e*) and the BJH pore size distribution (*b*, *d* and *f*) between MnO₂ nanowire, nanosheet and commercial bulk MnO₂.

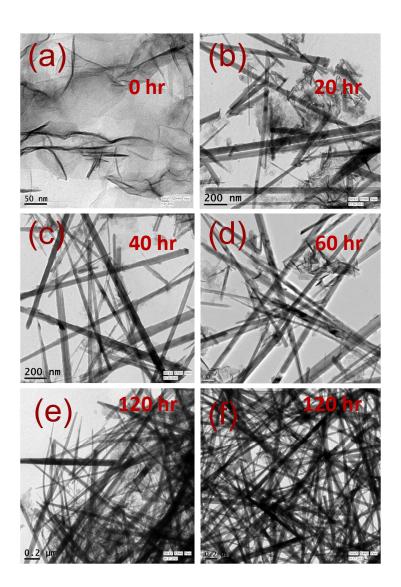
The sumerized results of total surface area and average pore diameter of different type of MnO_2 are given bellow.

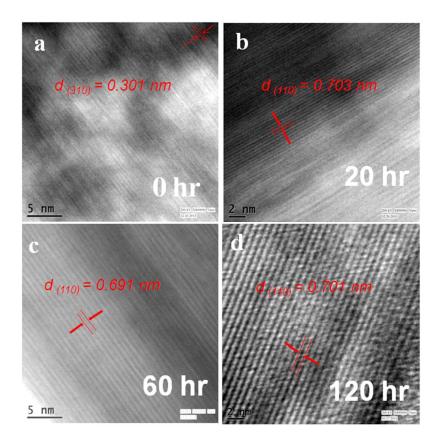

Type of MnO ₂	Total Surface Area (m²/g)	Average Pore Diameter (Å)
Nanowire	53.20	91.89
Nanosheet	22.77	58.22
Commercial Bulk MnO2	12.25	90.84

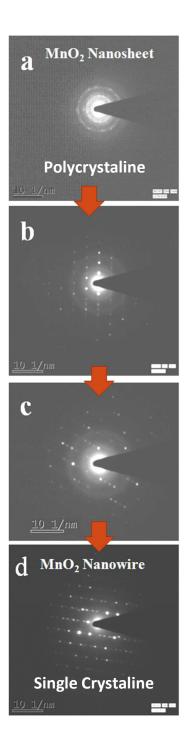
The three type MnO_2 materials with fixed weight (1.5 g) have different volume which is given in bellow by digital images.



The image indicates that MnO₂ nanowire have a high surface area than other two.


Supporting Information Figure S10. Spherical MnO₂ nanoparticle formation from the reaction between KMnO₄ and ethanol (a) or propanol (b).


Supporting Information Figure S11. Step wise growth mechanism of α -MnO₂ nanowires formation from δ -MnO₂ nanosheets at different time gaps.


Supporting Information Figure S12. Step wise growth mechanism of α -MnO₂ nanowires from δ -MnO₂ nanosheets at different times.

Supporting Information Figure S13. Development of lattice gap during shape transformation from δ -MnO₂ nanosheets (a) to α -MnO₂ nanowires (d) via intermediates (b and c).

Supporting Information Figure S14. Development of SAED pattern of MnO₂ nanosheet (a), intermediates (b and c) and nanowire (d).

Supporting Information Figure S15. Details procedure of MnO₂ catalyst bed preparation

We have prepared MnO_2 membrane and wheel under suction using porcelain buchner funnel and vacuum pump set up. The set up is shown in below in figure S14a.

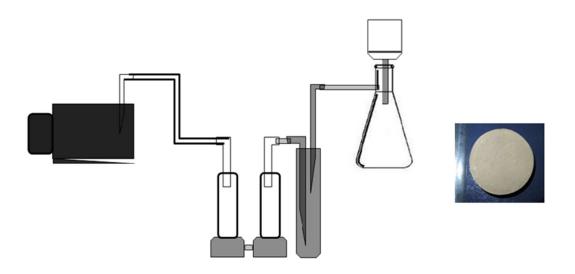


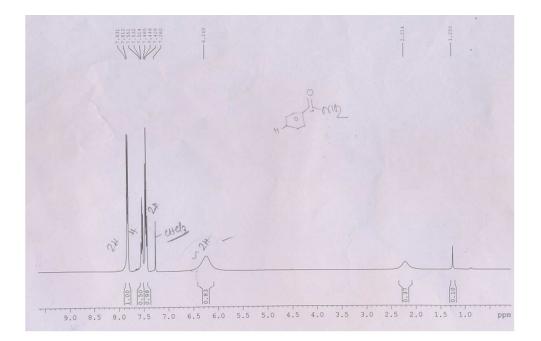
Figure S14a. Instrumental set up for the fabrication of MnO₂ wheel and membrane.

The water suspension of α -MnO₂ nanowire as colloidal solution was poured into a porcelain buchner funnel with a whatmann whatman no. 1 filter paper. By using a vacuum pump, the filtration was carried out and α -MnO₂ nanowires are deposited as an interlaced membrane on the filter bed. The deposited α -MnO₂ nanowires look like a membrane or wheel. Then it was heated at 180°-200°C and the dried membrane or wheel was used as catalysis bed for hydrolysis reaction.

 α -MnO₂ nanowires have high surface area and the individual nanowires have length several micrometers and diameter in few nanometer regions. When the as-obtained nanowires suspension is filtered by using vacuum filtration technique through a Whatman filter paper (NO. 1), a sheet of membrane like cake is formed. The nanowires are interlaced, closely packed on the filter paper during vacuum filtration and dried at room temperature (26°-30 °C) and then at 200 °C in dry oven. We have also prepared a porous cylindrical wheel that also composed of α -MnO₂ nanowires which is shown in figure S14b. The cylindrical wheel has a diameter in the range of centimeters (the height is 0.6 cm and diameter is 5 cm). The total volume and weight of the cylindrical wheel are 58.92 cm^3 and 6.605 gm respectively.

Figure S14b. Digital image of MnO₂ wheel with dimension.

Weight of the cylindrical wheel is 6.605 gm.


The density of MnO_2 material is reported and it's value 5.026 gm/cm³.

So according to literature value of density, the net volume of the cylindrical wheel is $(6.605/5.026 \text{ cm}^3)$ i.e. 1.31 cm³ (if there are no nanogap in the cylindrical wheel)

But the total volume of the cylindrical wheel is 58.92 cm^3 .

Therefore total nanogap volume in the cylindrical wheel is (58.92-1.31) cm³ i.e. 57.61 cm³. So the cylindrical wheel is with highly porous architecture.

We have used this MnO_2 cake like bed as a reusable catalyst for hydrolysis reaction. If we used MnO_2 spherical particle or MnO_2 nanosheet for the preparation of membrane or wheel, it is impossible to make a cake like assembly by vacuum filtration. Only nanowire morphology is responsible for the fabrication of membrane/wheel with interlaced but long nanowires. Supporting Information Figure S16. ¹H NMR spectra of benzamide compound.

