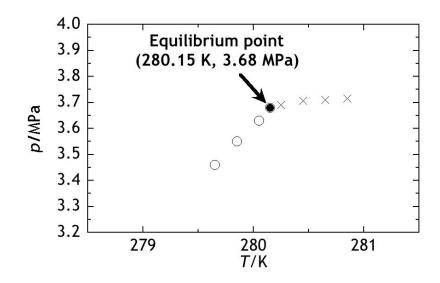
Supporting Information for

Structure-H (sH) Clathrate Hydrate with New Large Molecule Guest

Substances

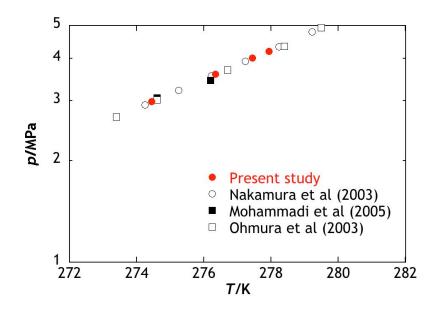

Yusuke Jin, * Masato Kida and Jiro Nagao*

Production Technology Team, Methane Hydrate Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Toyohira-Ku, Sapporo,

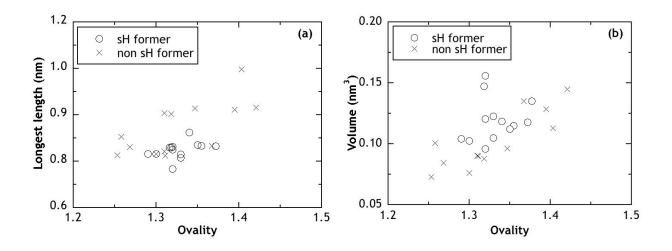
062-8517, Japan

*Corresponding authors

AUTHOR EMAIL ADDRESS: u-jin@aist.go.jp (Y. J.) and jiro.nagao@aist.go.jp (J. N.)



Supporting Figure S1. Scheme of determining equilibrium pressure–temperature point in a CH₄–BrCP–water system. ●, Equilibrium point (280.15 K, 3.68 MPa).


Supporting Table S1. Equilibrium pressure–temperature conditions for methane clathrate hydrates in our experimental setup.

T^{a}/\mathbf{K}	<i>p^b</i> /MPa
274.5	2.98
276.4	3.59
277.5	4.01
277.9	4.20

a: Uncertainty of dissociation temperature was estimated to be ± 0.1 K with a confidence level of approximately 95 %. *b*: Uncertainties of pressure measurements were estimated to be ± 0.05 MPa with a confidence level of approximately 95 %.

Supporting Figure S2. Equilibrium pressure–temperature conditions of methane clathrate hydrates. •, present study; \circ , Nakamura *et al.*;¹ •, Mohammadi *et al.*;² \Box , Ohmura *et al.*;³

Supporting Figure S3. Relationships between geometric properties of large guest with/without sH hydrate formation. sH former: MCH, MCP, NH, isopentane, cycloheptane, adamantine, cis-1,2-dimethyl hexane, pinacolone, cycloheptanone, pinacoly alcohol, tetramethylsilane, TBME, BrCP, BrCH. non sH former: toluene, n-hexane, n-pentane, isoprane, trans-1,2-dimethylhexane, 2,4-dimethylpentane, 3-methyl-1-butene, 2-methyl-2-butene, 2-methyl-1-butene, trans-2-butene, diethyl ether, 2,2,4-trimethylpentane, methyl acetate.

Reference.

1) Nakamura, T.; Makino, T.; Saguaro, T.; Ohgaki, K. Stability boundaries of gas hydrates helped by methane—structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane. *Chem. Eng. Sci.* **2003**, 58, 269–273.

2) Mohammadi, A. H.; Anderson, R.; Tohidi, B. Carbon Monoxide Clathrate Hydrates: Equilibrium Data and Thermodynamic Modeling. *AIChE J.* **2005**, 51, 2825–2833.

3) Ohmura, R.; Uchida, T.; Takeya, S.; Nagao, J.; Managua, H.; Ebinuma, T.; Narita, H. Clathrate hydrate formation in (methane + water + methylcyclohexanone) systems: the first phase equilibrium data. *J. Chem. Thermodyn.* **2003**, 35, 2045–2054.