
Conjugating S-nitrosothiols with glutathiose stabilized silver sulfide quantum dots for controlled nitric oxide release and near-infrared fluorescence imaging

Lianjiang Tan ^a, Ajun Wan ^{*a}, Huili Li ^b

Supplementary Information

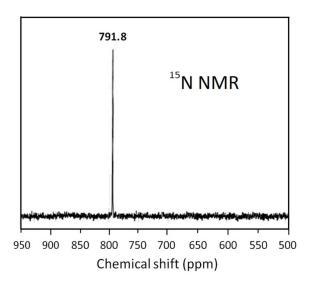


Fig. 1s. Evolution of the fluorescence spectra of GSH stabilized Ag₂S QDs synthesized for varied reaction times.

^a School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

^b School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.

^{*}Corresponding author. Email:wanajun@sjtu.edu.cn. Fax: 86-21-34201245; Tel: 86-21-34201245.

 $\textbf{Fig. 2s.}~^{15} N~NMR~spectrum~of~Ag_2S\text{-}GSH\text{-}SNO~nanoparticles}.$

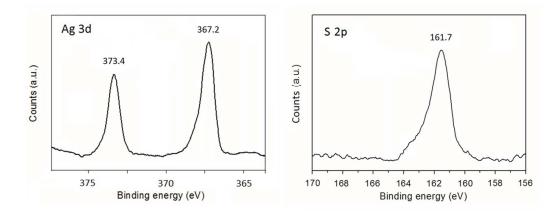
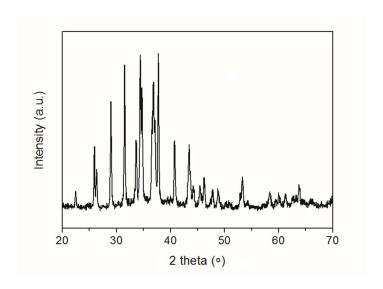



Fig. 3s. High-resolution XPS spectra of Ag_2S -GSH-SNO nanoparticles: $Ag\ 3d$ signals (left) and S 2p signals (right).

 $\textbf{Fig. 4s} \ XRD \ pattern \ of \ bulk \ monoclinic \ Ag_2S \ crystals.$

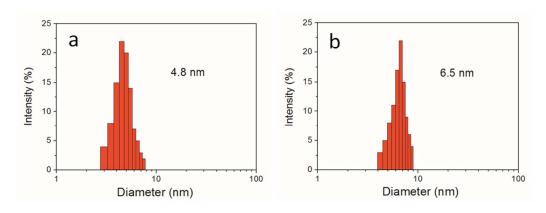
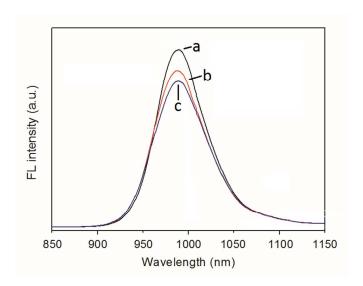



Fig. 5s. Size distribution of Ag_2S -GSH-SNO nanoparticles fabricated at the molar ratio of $AgNO_3$ to GSH equal to (a) 2 : 1 and (b) 1 : 2.

Fig. 6s. (a) Fluorescence emission of Ag_2S -GSH-SNO nanoparticles in PBS buffer (pH = 7.4) without pre-irradiation of 488 nm laser. Fluorescence emission of Ag_2S -GSH nanoparticles (b) and Ag_2S -GSH-SNO nanoparticles (c) in PBS buffer after 488 nm irradiation for 20 min. The excitation wavelength for the emission spectra was 808 nm.