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Abstract

Monosynaptically restricted rabies viruses have been used for more than a decade for syn-

aptic connectivity tracing. However, the verisimilitude of quantitative conclusions drawn

from these experiments is largely unknown. The primary reason is the simple metrics com-

monly used, which generally disregard the effect of starter cell numbers. Here we present

an experimental dataset with a broad range of starter cell numbers and explore their rela-

tionship with the number of input cells across the brain using descriptive statistics and

modelling. We show that starter cell numbers strongly affect input fraction and convergence

index measures, making quantitative comparisons unreliable. Furthermore, we suggest a

principled way to analyse rabies derived connectivity data by taking advantage of the starter

vs input cell relationship that we describe and validate across independent datasets.

1 Introduction

Understanding synaptic connectivity is important to unravel the workings of the nervous sys-

tem. Recently developed variants of modified rabies virus provide a powerful tool to determine

the upstream connectivity of neuronal populations or even single neurons [1–4] at the level of

the whole brain, a feat currently unattainable by other means. Monosynaptically restricted

connectivity tracing [5, 6] can be initiated in neuronal populations defined in various ways, for

example genetically [7], functionally [8] or by projection targets [9]. This method offers a

highly quantifiable measure with single-cell resolution, i.e. individual rabies infected neurons.

When combined with whole-brain imaging and segmentation, this approach can reveal high-

fidelity input connectivity maps. It is hard however to precisely control the number of starter

cells labelled by initial virus injection. This source of variability is usually ignored, as it is often

assumed that the brain-wide number of input cells (ni) scales linearly with increasing number

of labelled starter cells (ns) [10–15]. Although it is a reasonable assumption that ni increases

monotonically with ns, a linear relationship between ni and ns would require that labelled

starter cells do not share any presynaptic input cell, and that the pool of input cells is infinite.

These assumptions are biologically implausible, and the exact relationship between ni and ns
remains largely unexplored. This is in part because most rabies tracing studies are performed

on small numbers of brains, starter cells are not quantified, or input cells may have been
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counted only in selected parts of the brain. Indeed, the advent of automated pipelines for regis-

tration and cell counting in whole-brain images is relatively recent [14, 16, 17], and without

these pipelines, whole-brain cell counting for large datasets was an extremely time- and

labour-intensive process. In addition, various methods are used to analyze rabies tracing

experiments. Metrics used in previous studies include input fraction (the inputs count per area

relative to either the total number of input cells in the brain, sometimes referred to as total

input fraction [15, 18–21], or relative to the number of input cells in a given area [15, 22] or

layer [23]), and the convergence index, also called input connection strength index or input

magnitude (area inputs count normalized by number of starter cells [18, 20, 24–26]). The dis-

parity in methods and terminology used to report the properties of connectivity maps compli-

cates direct comparisons across various studies.

Here we set out to explore the relationship between the number of starter and input cells.

We generated a comparatively large dataset with a broad range of starter cell numbers in layer

5 of mouse visual cortex. We then used descriptive statistics, model selection and numerical

modelling of connectivity to explore the data, and compare various analysis approaches. We

find that the relationship between number of the starter cells and number of the labelled input

cells is non-linear, and that the range of starter cells differently affects some of the metrics

commonly used to analyze connectivity maps. Using these results we suggest principles for

experiment design and appropriate analysis methodologies to use depending on the data avail-

able and on the desired information to be extracted.

2 Results

We carried out rabies tracing experiments initiated in layer 5 pyramidal neurons (L5PN) in

mouse primary and secondary visual cortex. We followed previously described protocols [3]

using the G-protein deleted, EnvA pseudotyped version of CVS-N2c rabies virus [6]. To

achieve a wide range of starter cell numbers, we used different labeling strategies. We took

advantage of varied cell densities in Cre driver lines labeling L5PNs, or through retrogradely

labeling L5PNs by injecting retrograde AAV viruses to their projection targets. In addition, we

also varied the volume of the injected helper viruses. Our dataset is thus uniform in terms of

cell-type (L5PN), yet contains sufficient heterogeneity in terms of sub-types and starter areas

to test comparative approaches. Whole brains were imaged using 2-photon tomography, then

registered, segmented and annotated according to the Allen Common Coordinate Framework

(CCFv3, [27]) using the open source brainreg software [17]. Starter and input cells were

detected and classified using the open source software cellfinder [28]. Area-wise cell counts for

individual experiments are reported in S1 Text.

We use the following nomenclature throughout. Starter cells (also called postsynaptic, host

or target cells in the literature) are neurons for which rabies tracing was initiated, and their

count is denoted by ns. Neurons labelled after the transsynaptic jump, and thus considered

first-order presynaptic to starter cells, are called input cells and their count in the entire brain

is denoted by ni. Starter and input areas are brain areas defined according to the CCFv3 con-

taining starter or input cells, respectively. Brain area names and abbreviations are from the

Allen Common Coordinate Framework (CCFv3, [27]).

2.1 The relationship between input and starter cells is non-linear and is

best described in log scale

We took advantage of the broad range of starter cell numbers and the large number of experi-

ments in our dataset to investigate the nature of the ni vs ns relationship. First, we fitted whole-

brain ni vs ns data with linear, quadratic, exponential and power-law functions as well as a
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growth model that describes the labeling of input cells at a given rate, and considering a maxi-

mum number of input cells that can be labeled (Fig 1A). We then performed model selection

using the Akaike Information Criterion corrected for small sample sizes (AICc) [29]. From the

model selection procedure, the power-law model and growth models are the best candidates

(Table 1). However, residuals showed strong heteroscedasticity when standardized residuals

were plotted against the fitted values (Fig 1B). In such cases, logarithmic transformation may

allow to adjust the data distribution to a less skewed, more Gaussian-like distribution [30].

Model selection was next performed on log-transformed data and gave support for the fitting

of a linear model, as the addition of a quadratic term did not improve the model fit (Fig 1C,

Table 2). The plots of standardized residuals vs fitted values suggest a better normality of resid-

uals in the case of log-transformed data (Fig 1B and 1D). There are thus two possible error

models: log-normal distributed errors based on untransformed data, or normally distributed

errors based on fitting log-transformed data. We tested these possibilities by fitting two models

in which the likelihood form explicitly includes the error structures [31]. The two resulting

Fig 1. Model comparison for whole-brain data. (A) Number of input cells vs starter cells. Colours indicate different fitted models (blue—linear; yellow

—quadratic; grey—power law; green—exponential; purple—growth). (B) Distribution of standardized residuals for the power-law fit. (C) Same as in A,

but on log-transformed data. (D) Same as in B, but for the linear fit on log-transformed data.

https://doi.org/10.1371/journal.pone.0278053.g001
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models were then compared using the AICc and confirmed support for the log-normal error

model (Table 3). Consequently, we used log-transformed ni and ns data for further analysis.

To test the generality of our conclusions, we performed model selection and error model

analysis on datasets from published studies performed on a range of cell types and starter

brain areas, using different imaging and cell counting approaches as well as employing various

rabies virus strains and G-proteins [13–15, 18, 19, 22, 25, 32–36]. The analysis revealed statisti-

cal support for the power-law and growth models for untransformed ni vs ns data, a linear

model for the log-transformed data, and for the log-normal error model (S1 Fig, Tables 1–3)

Table 1. ΔAICc for untransformed data. External datasets are from [13–15, 18, 19, 21, 22, 25, 32–36]. For easier comparison, we show the ΔAICc values, calculated as the

difference between the AICc value for each model and the lowest AICc value per dataset. Lower AIC values indicate a better-fit model, and a model with a ΔAIC (the differ-

ence between the two AIC values being compared) of more than -2 is considered significantly better than the model it is being compared to.

dataset rabies linear power-law exponential quadratic growth

this dataset CVS-N2c 10.75 1.24 17.60 20.44 0.00

Beier [19] SAD-B19 23.66 10.00 30.93 19.97 0.00

Brown [22] SAD-B19 4.26 2.20 4.26 12.02 0.00

Fu [32] SAD-B19 1.08 0.00 18.17 14.42 1.29

Gehrlach [33] SAD-B19 2.31 1.04 2.63 16.54 0.00

Graham interneuron [21] CVS-N2c 1.15 0.55 14.79 15.74 0.00

Graham projection [21] CVS-N2c 0.29 0.00 13.08 16.52 0.91

Hafner [18] SAD-B19 0.00 0.00 9.13 17.94 0.01

Kim [25] SAD-B19 4.00 1.94 4.75 11.53 0.00

Pouchelon P30-P42 [13] CVS-N2c 2.75 1.20 5.93 14.15 0.00

Pouchelon P5-P10 [13] CVS-N2c 0.47 0.00 28.94 15.85 0.94

Sun [14] SAD-B19 32.32 14.48 0.00 23.80 36.58

Takatoh [36] SAD-B19 0.00 0.73 4.00 15.58 1.87

Vinograd [34] SAD-B19 1.55 0.82 1.63 17.19 0.00

Wee [15] SAD-B19 2.72 0.00 5.62 17.55 1.99

Allen Institute [35] CVS-N2c 7.16 0.00 17.17 14.32 3.58

https://doi.org/10.1371/journal.pone.0278053.t001

Table 2. ΔAICc for log-transformed data.

dataset rabies linear quadratic

this dataset CVS-N2c 0.00 15.99

Beier SAD-B19 0.00 13.47

Brown SAD-B19 0.00 11.97

Fu SAD-B19 0.00 14.18

Gehrlach SAD-B19 0.00 15.93

Graham interneuron CVS-N2c 0.00 15.25

Graham projection CVS-N2c 0.00 16.23

Hafner SAD-B19 0.00 17.55

Kim SAD-B19 0.00 13.43

Pouchelon—P30-P42 CVS-N2c 0.00 16.03

Pouchelon—P5-P10 CVS-N2c 0.00 16.15

Sun SAD-B19 0.00 12.90

Takatoh SAD-B19 0.00 16.34

Vinograd SAD-B19 0.00 16.28

Wee SAD-B19 0.00 15.70

Allen Institute CVS-N2c 0.00 16.15

https://doi.org/10.1371/journal.pone.0278053.t002
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across most datasets. Therefore, the growth of labelled inputs with the number of starter cells

follows broadly the same statistical rules independently of experimental conditions and is not

specific to our dataset. Furthermore, this generality allowed us to investigate whether rabies

strains may affect the parameters of the ni vs ns relationship. We used a linear classifier to

determine whether the rabies strain used could be identified using the log(ns), log(ni) and the

broad class of starter cells (pyramidal or interneuron) as features. The classifier could predict

the rabies strain with 82% accuracy (S2 Fig) and revealed a general trend where brains labelled

using the CVS-N2c rabies strains displayed higher input cell counts for a similar number of

starter cells, consistent with a higher trans-synaptic yield of the CVS-N2c strain [6].

We next built a probabilistic connectivity model (S3 Fig) and explored the influence of vari-

ous model parameters on the structure of the data. This model assumes that for a given input

area I containing NI cells, each input neuron connects with a given starter neuron with proba-

bility p. This model allows us to simulate a rabies tracing experiment, by selecting a number ns
of starter neurons, and building a simulated connectome of all their connections with area I.
From each modeled connectome, we can then calculate ni, the total number of unique neurons

in I connected to the ns starter neurons. In order to represent variability across brains, the

model parameters (connection probability p and input pool size Ni) were sampled from Gauss-

ian distributions for each simulated connectome (S4A Fig). The resulting ni vs ns curve dis-

plays a strong skewness of residuals, similar to the experimental data (S4B Fig). This process

was repeated 100 times with random sampling, and we performed the error model analysis for

each resulting ni vs ns curve. The distribution of resulting AICc values shows a consistent,

strong support for the log-normal error model (S4C Fig). Therefore, the probabilistic model,

built with minimal assumptions and small number of parameters, is sufficient to generate ni vs

ns relationships with a log-normal error distribution, similar to that of the experimental data.

2.2 Input vs. starter relationships parameters differ across input areas

For further analysis, we have selected 19 functionally diverse input areas (Table 4). To deter-

mine whether the number of input cells from individual brain areas displayed similar form

and error structure as the whole-brain data, we applied the same model selection procedure

Table 3. ΔAICc for residuals distribution.

dataset rabies log-normal normal

this dataset CVS-N2c 0.00 25.20

Beier SAD-B19 0.00 189.86

Brown SAD-B19 0.00 9.84

Fu SAD-B19 0.00 7.81

Gehrlach SAD-B19 0.00 7.52

Graham interneuron CVS-N2c 6.33 0.00

Graham projection CVS-N2c 0.00 2.39

Hafner SAD-B19 0.42 0.00

Kim SAD-B19 0.00 8.17

Pouchelon P30-P42 CVS-N2c 0.00 4.36

Pouchelon P5-P10 CVS-N2c 0.00 15.08

Sun SAD-B19 0.00 24.50

Takatoh SAD-B19 0.00 2.46

Vinograd SAD-B19 0.00 4.66

Wee SAD-B19 0.00 1.02

Allen Institute CVS-N2c 6.59 0.00

https://doi.org/10.1371/journal.pone.0278053.t003
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and error model analysis to a selection of functionally diverse input areas (Table 4). The AICc
analysis showed that the ni vs ns relationship is better fitted by the power-law and growth mod-

els using the untransformed data for all areas (Table 4), and by a linear model using the log-

transformed data (Table 5). In addition, the error model analysis supported a log-normal

Table 4. ΔAICc for untransformed data for individual brain areas.

dataset Linear Power-law Exponential Quadratic growth

VISp 5.91 0.00 16.33 16.35 0.39

VISpm 9.10 2.98 10.92 12.26 0.00

VISl 9.17 0.61 14.60 19.52 0.00

VISam 10.99 3.11 13.30 17.15 0.00

VISal 2.36 0.00 5.41 18.25 3.14

RSPagl 10.52 3.45 13.26 18.03 0.00

RSPd 8.90 2.07 12.44 17.95 0.00

RSPv 11.14 3.13 13.91 18.23 0.00

AM 11.57 3.96 13.27 21.18 0.00

LD 13.67 0.00 18.15 20.51 0.48

LP 7.68 0.15 12.03 17.53 0.00

LGd 0.00 1.28 1.49 16.08 6.12

ORB 7.32 1.64 9.80 19.40 0.00

ACA 7.41 2.03 10.75 19.83 0.00

MOs 0.39 0.99 0.00 15.40 1.40

CLA 5.80 0.81 9.43 19.91 0.00

PTLp 1.00 0.00 2.71 17.08 3.02

TEa 7.32 0.85 15.18 19.16 0.00

AUD 5.83 0.00 17.33 18.38 1.30

https://doi.org/10.1371/journal.pone.0278053.t004

Table 5. ΔAICc for log-transformed data for individual brain areas.

dataset Linear Quadratic

VISp 0.0 12.66

VISpm 0.0 16.08

VISl 0.0 14.44

VISam 0.0 14.18

VISal 0.0 16.03

RSPagl 0.0 16.06

RSPd 0.0 15.48

RSPv 0.0 15.79

AM 0.0 15.61

LD 0.0 15.13

LP 0.0 12.13

LGd 0.0 12.35

ORB 0.0 14.71

ACA 0.0 15.89

MOs 0.0 12.31

CLA 0.0 12.24

PTLp 0.0 15.88

TEa 0.0 15.79

AUD 0.0 16.05

https://doi.org/10.1371/journal.pone.0278053.t005
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distribution of residuals (Table 6). We thus fitted the log-transformed ni vs ns relationship per

input area with a linear model and observed that the resulting fit parameters, y-intercept and

slope were correlated and covered a broad range of values (Fig 2A, S5 Fig).

Next we performed simulations using the probabilistic model to try to capture the diversity

of input areas by varying systematically the model parameters across a large range. Results

from these simulations were log-transformed and fitted with a linear model. The slope vs y-

intercept relationship showed similar interaction and range to our data-set (Fig 2B). Further-

more, larger values of Ni produced on average higher y-intercept values, while higher values of

p were associated with lower slope values (S6 Fig). Varying the width of the input parameter

distributions did not affect the mean slope and y-intercept values (S7 Fig).

The connectomes generated by the probabilistic model are unidirectional bipartite net-

works and can be analyzed for their network properties, such as their node degree distribution.

The in-degree of starter cells (degs) corresponds to the number of input cells a single starter

cell is contacted by, while the out-degree of input cells (degi) corresponds to the number of

starter cells a single input cell contacts (S3 Fig). We decided to investigate how starter and

input cell degrees were affected by model parameters, as ni and ns varied broadly. Analysis of

the degree distributions of both starter and input pools revealed them to vary with both model

parameters to various extents (S8 Fig). Next we tried to assess whether manipulating specifi-

cally the degree distributions of starter or input cells would affect y-intercept and slope values

of the resulting networks. To this end we used a bipartite network configuration model where

average degree distributions of both starter and input cells can be declared explicitly (S9 Fig).

The resulting log(ni) vs log(ns) relationship were fitted with a linear model as previously.

Changing degs affected primarily the y-intercept values, which increased with the mean in-

degree of the starter pool, but had little effect on the slope. In contrast, varying degi affected

primarily the slope, with increasing mean out-degree of the input pool corresponding to lower

slope values (Fig 3, S10 Fig). This suggests that the intercept of the Log(ni) vs Log(ns) is mainly

Table 6. ΔAICc for residuals distribution for individual brain areas.

dataset log-Normal Normal

VISp 0.00 5.42

VISpm 0.00 28.54

VISl 0.00 6.05

VISam 0.00 12.88

VISal 0.00 17.31

RSPagl 0.00 31.49

RSPd 0.00 26.24

RSPv 0.00 23.66

AM 0.00 9.54

LD 0.00 12.59

LP 0.82 0.00

LGd 0.00 1.16

ORB 0.00 26.22

ACA 0.00 44.72

MOs 0.00 35.05

CLA 0.00 40.35

PTLp 0.00 18.47

TEa 0.00 32.55

AUD 0.00 14.39

https://doi.org/10.1371/journal.pone.0278053.t006
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Fig 2. Distribution of slope and y-intercept values for different input areas. (A) Slope vs y-intercept relationship for

individual input areas. Colors indicate functional grouping of brain areas (VIS (dark blue): VISp, VISpm, VISam, VISl,

VISal; RSP (blue): RSPv, RSPd, RSPagl; Thal. (cyan): LP, LD, AM, LGd; Distal cortex (green): ORB, ACA, AUD, PTLp,

TEa, MOs, CLA). Whole-brain data is shown in gray. Black line is a linear fit through all data points except the whole-

brain data. Error bars are 95% confidence intervals calculated using residuals resampling. (B) Data from simulations

using the probabilistic model over a range of parameters (Ni, represented by the different colours, and p, indicated by

different markers).

https://doi.org/10.1371/journal.pone.0278053.g002

PLOS ONE Quantitative analysis of rabies virus-based synaptic connectivity tracing

PLOS ONE | https://doi.org/10.1371/journal.pone.0278053 March 30, 2023 8 / 29

https://doi.org/10.1371/journal.pone.0278053.g002
https://doi.org/10.1371/journal.pone.0278053


affected by the convergence of presynaptic inputs onto single starter neurons, thus the mea-

sured y-intercept translates into the number of input cells to a single starter cell. The slope, on

the other hand, is mostly determined by the amount of divergence of input cells with respect

to the starter cells.

2.3 Area input fractions depend on the number of starter cells

Area input fraction (often called “input proportion” or “input fraction” in the literature) is a

measure commonly used in rabies tracing studies to reveal input patterns and compare them

across experimental conditions such as genetic identity or the location of starter cells popula-

tions [14, 15, 19, 22, 25]. It is defined as the number of labelled input cells in a given brain area

normalized by ni. This calculation however disregards the range of starter cell numbers and

thus implicitly assumes that area input fractions scale with ns in a uniform fashion across all

input areas, an assumption which remains to be tested directly. When ns is known, another

measure called convergence index (also called connectivity ratio or connectivity strength

index) is also often reported in the literature. This is calculated by normalising area-wise input

cell numbers by ns and thus it can only provide an ns independent measure if individual start-

ers cells do not share any of their input cells, a biologically highly unlikely scenario.

Multiple previous studies used multivariate linear regression to evaluate the relative contri-

bution of various experimental parameters on input fraction patterns [15, 19]. We thus used

Fig 3. Effect of degree distribution of input and starter sets on slope and y-intercept values. Average degree distribution of either the starter

(orange) or the input (green) pools were specified using a configuration model and varied separately. log(ni) vs log(ns) relationships of the resulting

networks were fit with a linear model to extract y-intercept and slope values.

https://doi.org/10.1371/journal.pone.0278053.g003
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linear regression analysis on area input fractions and included starter cell number as one of the

parameters, either as a single predictor or in combination with other regression variables (the

genotype or the location of starter cells). We found that the best predictor of area input frac-

tion variations was the starter cell number for many input areas (Fig 4A, S11 Fig).

Given the prominence of the number of starter cells as a predictor of area input fractions,

we next explored its interaction across the range of starter cells in our dataset. We plotted the

area input fraction as a function of starter cell numbers for each input area (Fig 4B, S12A Fig).

These plots reveal that area input fractions scale with ns in a highly diverse fashion across

areas, with area input fraction vs ns relationships being either increasing or decreasing for low

ns values, and become asymptotically horizontal for high ns values. Furthermore, the area

input fraction vs ns relationships have a wider spread for low ns values(Fig 4B and 4C, S12A

Fig). Input areas where ns was a weak predictor of area input fraction in the regression model

(e.g. VISl, RSPd, AM) display an accordingly steady area input fraction vs ns relationship

across the full range of starter cells (Fig 4A, S12A Fig).

We aimed to estimate the number of starter cells beyond which one can consider the hori-

zontal asymptote of the area input fraction vs ns relationship to have been reached, and thus

resulting in ns invariant area input fraction values. To determine this threshold, we looked for

a structural break in the area input fraction vs ns curves, which would manifest itself as linear

regressions on each side of the breakpoint having significantly different slopes [37]. We tested

multiple break point values and found that 200 starter cells was the lowest value beyond which

the number of areas showing a statistically significant difference for slopes reached its mini-

mum (S12B Fig). Furthermore, the distributions of area-wise slopes from the linear regressions

below or above the 200 starter cell cut-off were significantly different (p = 0.03, paired t-test).

Importantly, slope values were close to zero for starter cell numbers above 200 (Fig 4C), con-

firming that in this range, the input fraction does not depend on ns.

Fig 4. Effect of starter number on area input fraction. (A) Multivariate linear regression between the area input fraction and starter cell number,

location or genotype of starter cells. (B) Area input fraction vs starter relationship for four example areas. Dashed lines are linear fits through the data,

for the full dataset (grey line), starters< 200 (blue line) or starters> 200 (orange line) (C) Slope of the area input fraction vs ns relationship for low

(blue) or high starter numbers (orange).

https://doi.org/10.1371/journal.pone.0278053.g004
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We have also examined the relationship of the convergence index to ns. It displayed higher

variability for low ns values and asymptotic convergence at high ns values (S13 Fig), similarly

to area input fraction values. In addition, although all area convergence index vs ns curves are

initially decreasing, the absolute convergence index values for low ns have more apparent

inter-area variability (S14B Fig). This is because the absolute convergence index value is

dependent on the area size and not influenced by the relative growth of other brain areas.

To further illustrate how the range of sampled ns can hinder comparisons of input maps by

affecting input patterns and variability, we compared area input fractions calculated for a low

and a high ns group with equal number of observations. Statistical differences in area input

fractions between the low- and high starter groups were found in 5 out of the 19 input areas

analyzed (S14A Fig). In addition, data from the low starter group showed a much larger vari-

ability than the high starter group. Therefore, comparisons using the area input fraction mea-

sure should only be used for data sets where starter cell numbers are above the breakpoint

value for which the area input fraction vs ns relationship reaches its horizontal asymptote.

Convergence index suffers even more drastically from larger variability in the low-starter

group (S14B Fig) and using it to compare datasets with different ns is inappropriate by

construction.

2.4 Estimating the number of inputs for a single starter cell

It follows from the analysis above that area input fractions calculated from experiments using

a population of starter cells cannot be interpreted at the level of individual starter neurons.

However, the y-intercept of the log(ni) vs log(ns) relationship (Table 7) represents, once con-

verted to linear scale, the number of input cells per starter cell. Using this procedure for

Table 7. Intercept values from linear fits of log(ni) vs log(ns) relationships.

area all targets VISp VISpm

mean CI95 mean CI95 mean CI95

whole-brain 3.27 (3.09, 3.45) 3.28 (3.06, 3.49) 3.23 (2.75, 3.70)

VISp 2.62 (2.35, 2.85) 2.66 (2.36, 2.91) 2.32 (1.60, 2.93)

VISpm 1.96 (1.60, 2.28) 1.88 (1.53, 2.23) 2.28 (1.25, 3.03)

VISl 1.60 (1.27, 1.90) 1.37 (0.85, 1.83) 2.00 (1.62, 2.36)

VISam 1.55 (1.14, 1.90) 1.38 (0.83, 1.93) 2.01 (1.42, 2.49)

VISal 1.58 (1.31, 1.83) 1.47 (1.07, 1.85) 1.49 (1.10, 1.94)

RSPagl 1.75 (1.42, 2.04) 1.71 (1.32, 2.10) 1.86 (1.16, 2.50)

RSPd 1.98 (1.68, 2.27) 1.99 (1.63, 2.38) 2.20 (1.54, 2.77)

RSPv 2.22 (1.94, 2.47) 2.24 (1.92, 2.57) 2.40 (1.81, 2.94)

AM 1.10 (0.60, 1.50) 0.90 (0.21, 1.52) 1.71 (1.28, 2.14)

LD 2.01 (1.87, 2.17) 2.07 (1.89, 2.28) 2.16 (1.88, 2.43)

LP 1.73 (1.31, 2.11) 1.96 (1.50, 2.40) 2.47 (1.85, 2.93)

LGd 2.05 (1.71, 2.35) 2.10 (1.88, 2.32) 1.46 (0.60, 2.22)

ORB 1.55 (1.16, 1.90) 1.46 (1.03, 1.89) 1.81 (0.65, 2.62)

ACA 1.25 (0.95, 1.55) 1.12 (0.76, 1.52) 1.15 (0.54, 1.76)

MOs 0.88 (0.54, 1.20) 0.80 (0.34, 1.20) 0.37 (-0.34, 1.08)

CLA 0.55 (0.24, 0.86) 0.70 (0.34, 1.08) 0.71 (0.04, 1.30)

PTLp 1.32 (0.95, 1.63) 1.13 (0.61, 1.61) 1.47 (0.65, 2.14)

TEa 0.85 (0.54, 1.16) 0.80 (0.37, 1.25) 0.61 (0.05, 1.26)

AUD 1.35 (1.05, 1.64) 1.30 (0.76, 1.65) 1.28 (0.80, 1.86)

https://doi.org/10.1371/journal.pone.0278053.t007
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individual input areas, we can then calculate the area input fractions for a single starter cell

(S15 Fig). The difference between the two measures is further highlighted by ranking the input

areas according to their input fraction (S15C Fig).

Furthermore, as the y-intercept of the log(ni) vs log(ns) relationship is independent of the

starter cell number range, it provides an adequate measure to compare different starter cell

populations. To illustrate this, we calculated area input fractions for starter areas VISp and

VISpm using the whole range of starter cells (S16A Fig) or using only experiments with starter

numbers above 200 (S16B Fig). These measures then can be compared to the y-intercept

method (S16C Fig). Differences apparent in the whole starter range comparison (S16A Fig)

are driven by unequal slopes across input areas and as such are likely to be misleading. Conse-

quently, a comparison using high starter numbers shows no area to be statistically different

between VISp and VISpm (S16A Fig), whereas when using all starters area AM shows a statisti-

cally significant difference between VISp and VISpm. Comparisons using y-intercept values

however revealed 2 significantly different areas (AM, VISl). The three methods thus provide

markedly different results and we argue that only the y-intercept based approach can be inter-

preted at the level of single starter cells.

2.5 Relative connection probability determines the behaviour of area input

fractions at low starter numbers

In order to directly assess how connectivity parameters affect the behaviour of the area input

fraction vs ns relationship, we simulated a network with 5 input areas using the probabilistic

model introduced in S3 Fig. Across the input areas, we either varied only the connection prob-

ability p (Fig 5), only the input pool size Ni (S17 Fig), or both (S18 Fig).

When only p was varied between input areas, the area input fraction varied with ns, as in

the experimental dataset (Fig 5A–5D). The influence of p on area input fractions vs ns is more

apparent for low starter cell numbers: areas with the highest connection probability are over-

represented in terms of their relative input proportion, while areas with lowest connection

probabilities are under-represented (Fig 5D and 5E). For high ns, there is little dependence of

area input fractions on p, since the area input fraction vs ns relationship has reached its hori-

zontal asymptote (Fig 5D and 5F). This can be summarized by the decline of the relative input

fraction between high and low ns as a function of normalized p (Fig 5G). In contrast, when

only Ni was varied across input areas, the area input fraction for each area was constant across

the starter cell range (S17 Fig). Consequently there was no difference in area input fractions

between low and high ns datasets (S17C and S17F Fig). When both Ni and p were varied, the

interaction remained essentially the same (S18 Fig), i.e. p drove the difference between low

and high ns datasets.

Finally, in order to obtain an estimate of Ni and p for input areas in our dataset, we fit the

data using the likelihood function of the probabilistic model used for simulations. The fitting

procedure was performed using maximum likelihood estimation, and returns fitted parameter

values for Ni and p (Table 8). Using these values, we can then perform simulations using the

same range of starter cells as the experimental data, and observe a good correspondence

between experimental and simulated values (Fig 6A, S19 Fig). The plot of area input fractions

according to starter cell numbers (low or high starters, respectively Fig 6B top and bottom)

reveals very similar trends in fitted and experimental datasets. Given the strong link between

relative p and relative area input fraction between high and low ns (Fig 5E and 5F), the results

of this simulation show that the relative value of p per area gets well captured by the multi-area

fit of the model (Figs 6B cf. 5G).
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Fig 5. Effect on relative connection probability on area input fraction vs starter relationship. Using the probabilistic model, we simulated 5 input

areas, all with Ni = 100. 100 independent simulations were repeated to assess the effect of p. For each simulation, the connection probability pi for each

input area was randomly drawn between 10−4 and 8*10−3. (A) Heatmap showing the combination of connection probabilities used for each simulation.

The simulation shown in plots B-D is indicated by a red arrow. (B) ni vs. ns relationship for all input areas for one example simulation. (C) Area input

fraction for low starter numbers (lowest 10%) or for high starter numbers (highest 10%). (D) Area input fraction vs ns relationship for each area. Black

line is a polynomial fit. (E-F) Area input fraction vs rank of connection probability for low starters (E) or high starters (F). Data from the simulation

plotted in B-D are shown in grey. (G) Relationship between the ratio of the area input fraction for high vs low starters, and the normalized connection

probability per area. Data from the simulation plotted in B-E are shown in grey.

https://doi.org/10.1371/journal.pone.0278053.g005
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Table 8. Parameters obtained from fitting the probabilistic model to experimental data (from Fig 6).

area Ni p
mean s.d. mean s.d.

VISp 3.63e+04 3.75e+04 5.83e-04 9.39e-05

VISpm 1.01e+05 1.28e+04 2.99e-05 7.73e-06

VISl 2.17e+04 2.37e+04 3.51e-04 2.41e-04

VISam 4.80e+04 2.09e+04 5.46e-05 3.30e-05

VISal 1.32e+04 1.56e+04 3.56e-04 2.13e-04

RSPagl 1.22e+05 3.09e+04 2.90e-05 1.13e-05

RSPd 1.40e+05 5.32e+04 4.05e-05 1.66e-05

RSPv 1.98e+05 6.24e+04 3.40e-05 1.57e-05

AM 1.26e+04 3.27e+03 7.48e-05 2.91e-05

LD 8.54e+03 1.20e+04 4.86e-04 2.02e-04

LP 1.51e+04 1.30e+04 4.91e-04 1.81e-04

LGd 6.07e+03 5.57e+03 4.72e-04 1.92e-04

ORB 1.13e+05 4.44e+04 3.13e-05 1.37e-05

ACA 1.50e+05 6.80e+04 2.37e-05 1.53e-05

MOs 2.68e+05 2.16e+05 8.26e-06 5.26e-06

CLA 1.45e+04 8.05e+03 7.61e-05 4.43e-05

PTLp 3.15e+04 2.25e+04 1.13e-04 5.44e-05

TEa 4.05e+04 3.39e+04 9.20e-05 6.43e-05

AUD 5.23e+04 6.54e+04 1.87e-04 1.09e-04

rest 6.90e+06 7.09e+06 7.41e-06 7.18e-06

https://doi.org/10.1371/journal.pone.0278053.t008

Fig 6. Estimation of Ni and p per area in experimental dataset. (A) Four example areas with input vs starters relationships for the data (black) or

simulations with parameters obtained from the model fit of the data (red), for one iteration of the fit. (B) Plot of experimental input fraction ratio

between high and low starters vs relative p across areas obtained from fitting values.

https://doi.org/10.1371/journal.pone.0278053.g006
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3 Discussion

3.1 Experimental caveats

There are several technical caveats concerning the labelling and detection of neurons. Regard-

ing labelling, we have used two helper viruses: one expressing the TVA-receptor and EGFP,

and one expressing the G-protein but no fluorophore. The modified rabies virus was express-

ing mCherry. Neurons co-expressing EGFP and mCherry were thus defined as starter cells.

However, this may result in neurons counted as starter cells but deficient in G protein, thus

leading to an over-estimation of starter cells. Conversely, G protein only expressing neurons

could become retrogradely infected through local connections and propagate rabies labelling

to a second layer of monosynaptically connected neurons, thus leading to an overestimation of

local input cells. We attempted to mitigate these confounds by injecting a mixture of high titre

(*1014 genome-copies/ml) helper viruses thus optimising for co-infection [38]. Regarding

labelling by rabies virus, it is unknown if all connections have the same probability of propaga-

tion or not and our method is unable to distinguish between connection and propagation

probability. Trans-synaptic spread depends on the presence of rabies virus receptors [39], is

modulated by activity [40] and likely by the number and size of synaptic contacts between

given input and starter cells. Future work is required on virus strains with enhanced neuro-

tropism, on the identity of rabies receptors and on quantitative evaluation using orthogonal

methods such as dense anatomical reconstruction allowing unequivocal identification of syn-

aptic connections.

3.2 Cell counting

Some of the external datasets analysed in S1 Fig were quantified by counting labelled cells in

separate brain slices. This approach can introduce bias and be a further source of variability.

While advances in design-based stereological methods have improved cell number estimations

from tissue slices [41], they typically rely on uniform cell densities and are rarely applied when

quantifying rabies tracing data. To illustrate the problem, we have run numerical simulations

using a range of biologically relevant cell densities (see methods). Counting cells in every slice

or every 2nd, 3rd or 4th slice consistently resulted in varying degrees of systematic overestima-

tion (S20 Fig). Furthermore, the variance between individual experiments was considerable,

especially toward low cell densities. To further illustrate the problem using real data, we have

virtually sectioned two brains from our dataset and counted cells in every 4th slice. The esti-

mated whole brain cell counts varied considerably depending on slice sampling. Importantly,

estimates greatly differed from the cell counts obtained by whole-tissue 3D cell counting

(Table 9). These results argue against estimating cell numbers by counting cells in sectioned

tissue, especially when only sampling some slices. The imprecision introduced may underlie

some of the model selection uncertainties in S1 Fig. To achieve unbiased, accurate cell counts,

cell counting in the whole 3D volume of interest is essential.

While automated 3D cell counting can deal with very large datasets and offers consistent

results, systematic cell detection biases which scale with the label density cannot be excluded

(e.g. under-detection at input areas with extremely high cell densities). However, this is

Table 9. 2D detection artefacts. Number of inputs from 2 brains using 3D detection or for simulated 2D detection

from consecutive 50 μm wide slices, keeping every 4th slice, assuming cell radii of 10 μm.

true number of inputs slice 1 of 4 slice 2 of 4 slice 3 of 4 slice 4 of 4

49479 45068 66880 96336 64680

7785 5500 16480 15060 6576

https://doi.org/10.1371/journal.pone.0278053.t009
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unlikely to manifest in our results as model selection analysis is consistent across input areas

with different label densities. In addition, datasets from multiple laboratories and acquired

through different imaging and cell counting methods show the same relationship. Interest-

ingly, a dataset generated with no explicit cell counting, but rather quantifying projection vol-

ume by counting pixels reaching a certain fluorescence threshold (Allen Institute), shows a

different residuals distribution (normal). Yet the ni vs ns relationship is still best described by a

power-law relationship. The difference in residuals distribution analysis for this dataset may

be expected through a presumably sub-linear increase and saturation in the projection volume

with high cell densities. Additionally, an over-estimation for areas of low cell density is simi-

larly expected, as the inclusion of neuropil has a disproportional effect at low cell densities.

Our results generalize well across external datasets, but it is important to note that the

starter areas in all datasets explored here are cortical (except [32, 34], which are from the olfac-

tory bulb and amygdala, respectively). It remains to be determined how the ni vs ns relation-

ship generalises to profoundly different neuronal structures, such as the cerebellum, striatum

or the spinal cord.

3.3 Model selection and error structure

Metrics used in previous studies implicitly assumed linear scaling between the number of

input and starter cells. We performed model selection analysis on our data (on whole brain

inputs or area-defined inputs) and a range of external datasets, to compare the linear relation-

ship with a range of candidate models that could describe the increase in number of inputs

cells with increasing number of starter cells. For most datasets, the models with the lowest

AICc values were the power-law and growth models (Table 1). This model selection analysis is

limited by the data (both the number of observations, and the range of starter cells) and by the

list of candidate models provided. For instance, although our dataset does not present any

obvious saturation of the number of labelled inputs, one would expect a saturating regime to

be reached if enough starter cells were labeled. Therefore this analysis does not aim at identify-

ing a “true” underlying model, but at defining how to fit the data for consistent descriptive

analysis. However, it does show that the linear model is consistently outperformed by compet-

ing non-linear models.

In addition, it is apparent that the ni vs ns relationships show a large variance in the data,

and a skewed residuals distribution. The error structure analysis supports log-transformation

of the data, which results in more normally distributed residuals (Fig 1B and 1D). We thus per-

formed further analysis after log-transformation.

Model selection on log-transformed data shows that a linear model provides a good

description of the datasets. Although this doesn’t represent the underlying model in log scale,

it appears the range of ns sampled corresponds to a linear part of the log-transformed dataset.

We thus used a linear model for descriptive fitting.

3.4 Do rabies strains impact extracted parameters?

In recent years, viral tracing tools have considerably improved, thanks to the introduction of

engineered glycoproteins [42] and more efficient rabies strains [6] that increased efficiency of

synaptic transfer and reduced neuronal toxicity. One concern would be that using different

rabies strains could lead to different ni vs ns relationship models. We analysed a large number

of datasets comprising data from two different rabies strains (SAD-B19 or CVS-N2c), a large

range of starter cell types and various starter areas. For the overwhelming majority of the data-

sets, our model selection analysis returned the same qualitative distribution (Tables 1–3 and

S1 Fig). We however did observe quantitative differences in log(ni) vs log(ns) relationships
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depending on the rabies strain used, with a higher intercept in the fit of the log(ni) vs log(ns)
relationships for CVS-N2c. This is unsurprising given the improved retrograde transfer

observed with this virus strain [6]. If the analysis introduced here is used to deduce connectiv-

ity parameters, or to compare them across different datasets, one should be mindful of the

potential influence of the rabies strains used.

3.5 Effect of starter cell range on area input maps

In order to describe input maps obtained from rabies tracing experiments, inputs are typically

either normalized to the total number of input cells in the same brain (area input fraction) or

the number of starter cells (convergence index). We show directly that neither of these mea-

sures are independent of ns (S12 and S13 Figs), and make comparisons between starter popula-

tions unreliable (S14 Fig). The large and systematic biases are driven by two factors: first, the

large variability of both measures at low starter cell numbers; and second, the different slopes

of ns vs area input fraction or convergence index for low and high ns. Thus averaging either

measure across the full range of ns results in averaging across different behaviours. These biases

are not surprising since neighbouring starter cells are likely to have some shared input cells.

The steepest non-linearity between area input fraction and number of starter cells is

observed for small numbers of starter cells, before becoming close to constant for large num-

bers (Fig 4, S12A Fig). Using data from experiments with ns over which area input fractions

are stable does mitigate this problem, yet the biological meaning of such derived area input

fractions are far from trivial. As area input fractions are driven by the ensemble of different

input areas, quantitative comparisons between populations with different input areas cannot

be interpreted. However, these experiments do offer descriptive power and valuable qualitative

insight of the census of input areas. For populations that share input areas to a large extent

(e.g. starter populations with largely overlapping dendritic fields), quantitative comparison can

be valid. In this case, area input fractions in a range independent of ns show the relative pro-

pensity of a given input area to contact starter cells in the target region. This can be particularly

useful not only to compare different but intermingled starter populations, but especially to

compare the connectivity of the same starter population across e.g. treatments or time [40, 43,

44].

If the high ns data can be averaged to lead to meaningful area input fractions values under

certain conditions, what can be inferred from low ns experiments? We observe that while con-

vergence index vs ns relationships are always decreasing before reaching their constant value,

input fraction vs ns relationships depend on the relative growth of the area inputs with respect

to total brain input, and can be therefore either increasing or decreasing in the low range of ns
values (Fig 4C). This behaviour of area input fraction vs ns relationships for low ns informs on

the growth of input area fraction and thus the connectivity probability (p) of input areas rela-

tive to each other (Fig 5).

3.6 Biological meaning of parameters

Systematic exploration of the parameter space of the probabilistic model, followed by fitting

the resulting log(ni) vs log(ns) relationships, revealed the relationships between y-intercept,

slope, and the connectivity parameters of the model. First, we observed that for a given value

of p, the mean intercept increases with Ni, while the slope varies little. In contrast, varying p for

a given value of Ni affects both the slope and intercept. Furthermore, increasing the average

degree of the starter set (i.e. the number of connections received by individual starter cells)

leads to a shift of the mean intercept towards higher values, with no effect on the slope.

Increasing the average degree of the input set (i.e. the number of connections given by an
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individual input cell) on the other hand leads to a decrease in the mean slope value. This is

consistent with the shifts in distributions of both starter and input degrees observed when

varying Ni and p using the probabilistic model (S8 Fig). Using these observations we can attach

a biological meaning to some of these parameters.

The measured y-intercept translates into the number of input cells to a single starter cell—a

measure otherwise only obtainable by single-cell initiated rabies tracing [1, 2]. Fitting our data-

set yields a y-intercept of 3.2, thus we estimate *1860 rabies labelled input neurons per starter

cell. While the efficacy and specificity of transsynaptic rabies transmission present significant

unknowns discussed elsewhere [43], this is not a wholly unreasonable estimate given a recent

study reporting 7500 synapses for L2/3 pyramidal cells [45] and assuming multiple synapses

per connection. The proportional contribution of different input areas to a single starter cell

can be derived from the area-wise y-intercept measures, but it is important to keep in mind

that there is no trivial mapping between rabies labelling and functional input strength [43, 46].

The fit values for input pool size (Ni) represent the size of the population of presynaptic

cells which can be connected to the starter cell population. Assuming individual input neurons

to carry somewhat independent information, Ni informs about the possible input diversity

arriving from a given area. Based on this analysis, MOs, ACA, RSPv and RSPd give the most

diverse inputs to L5PNs across VISp and VISpm. Conversely, as the input pools of e.g. VISal,

AM and LGd are small, these connections are likely to have less information capacity.

3.7 Conclusion and recommendations

When planning rabies tracing experiments, one should first consider the required conclusions

to be drawn. In general, starter cells should always be counted and a significantly larger num-

ber of samples, in the order of tens, should be planned. Starter cell numbers should ideally

cover a broad range (from single digits to thousands), with denser sampling in the low ns. In

addition, the starter cell population should be as homogeneous as possible. Experimental data

thus obtained can be subjected to model selection, and used to estimate biologically pertinent

parameters, such as y-intercept and Ni. If only a small number of experiments are feasible, one

should aim for a large number of starter cells where area input fractions have less variability

across experiments and are close to a steady state. Area input fractions can in this case be used

to compare similar starter cell populations e.g. before and after treatment. However, this

approach requires estimating the starter cell number range where area input fractions are sta-

ble, which is likely to be dependent on multiple factors, including starter cell type and rabies

strain used.

Tracing synaptic connectivity using modified rabies viruses is a powerful method in the

toolkit of neuronal cartography, especially so when interpreted correctly. Just like with any

other experimental method, methodically different approaches are essential to validate the

conclusions and results should not be taken as ground truth. On top of these general concerns,

the number of starter cells needs to be considered carefully both when planning experiments

and when analysing rabies-obtained input maps.

4 Methods

4.1 Animals and viruses

All animal experiments were prospectively approved by the local ethics panel of the Francis

Crick Institute (previously National Institute for Medical Research) and the UK Home Office

under the Animals (Scientific Procedures) Act 1986 (PPL: 70/8935). The following transgenic

mice on a C57BL/6 background were used: Tg(Colgalt2-Cre)NF107Gsat (RRID:

MMRRC_036504-UCD, also known as Glt25d2-Cre); Tg(Rbp4-Cre)KL100Gsat/Mmucd
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(RRID: MMRRC_031125-UCD); Tg(Tlx3-cre)PL56Gsat (RRID: MMRRC_041158-UCD).

Animals were housed in individually ventilated cages under a 12 hr light/dark cycle.

EnvA-CVS-N2cΔG-mCherry rabies virus, and adeno-associated viruses expressing TVA

and EGFP (AAV8-EF1a-flex-GT) or CVS-N2c glycoprotein (AAV1-Syn-flex-H2B-N2CG)

were a generous gift from Molly Strom and Troy Margrie. The AAV-EF1a-Cre plasmid (Plas-

mid #55636) and retrograde AAV2-retro helper vector (Plasmid #81070) were purchased from

Addgene and generously packaged by Raquel Yustos and Prof. Bill Wisden at Imperial College

London.

4.2 Surgical procedures

Surgeries were performed on mice aged 5–12 weeks using aseptic technique under isoflurane

(2–3%) anaesthesia, and analgesia (meloxicam 2 mg/kg and buprenorphine 0.1 mg/kg). The

animals were head-fixed in a stereotaxic frame and a small hole (0.5–0.7 mm in diameter) was

drilled in the skull above the injection site. The virus solution was loaded into a glass microin-

jection pipette (pulled to a tip diameter of 20 μm) and pressure injected into the target region

at a rate of 0.4 nl/s using a Nanoject III delivery system (Drummond Scientific). To reduce

backflow, the pipette was left in the brain for approximately 5 min after completion of each

injection.

For rabies virus tracing experiments using cre driver lines a 1:2 mixture of TVA and

CVS-N2c glycoprotein expressing cre-dependent AAVs (5–20 nL) was injected at stereotaxic

coordinates (VISpm: lambda point—0.8 mm, ML 1.6 mm, DV 0.6 mm; VISp: lambda point—

1.0 mm, ML 2.5 mm, DV 0.6 mm). For the TRIO experiments, 50 nL AAVretro-Ef1a-Cre was

injected into LP (lambda point—1.7 mm, ML 1.5 mm, DV 2.4 mm) followed in 3–8 weeks by

the injection of helper AAVs as described above. Rabies virus (50–100 nL) was injected 5–7

days later at the same site. Ten to twelve days later, animals were transcardially perfused under

terminal anaesthesia with cold phosphate-buffer (PB, 0.1 M) followed by 4% paraformalde-

hyde (PFA) in PB (0.1 M).

4.3 Data acquisition and analysis

Brain samples were embedded in 4–5% agarose (Sigma-Aldrich: 9012–36-6) in 0.1M PB and

imaged using serial two-photon tomography [47, 48]. Eight optical sections were imaged every

5 μm with 1.2 μm x 1.2 μm lateral resolution, after which a 40 μm physical section was removed

using a vibrating blade. Excitation was provided by a pulsed femto-second laser at 800 or 930

nm wavelength (MaiTai eHP, Spectraphysics). Images were acquired through a 16X, 0.8 NA

objective (Nikon MRP07220) in three channels (green, red, blue) using photomultiplier tubes.

Image tiles for each channel and optical plane were stitched together using the open-source

MATLAB package StitchIt (https://github.com/SainsburyWellcomeCentre/StitchIt). For 3D

cell detection the open-source package cellfinder [28] was used. Registration to the Allen

CCFv3 [27])and segmentation was done using the brainreg package [17]. Cell coordinates

were downsampled to 10 μm to match the resolution of the Allen CCFv3 space and the num-

ber of cells was counted for each segmented area. To reduce the occurrence of false positives,

the hindbrain areas (HB) were removed from the whole brain cell counts, as these areas are

known not to project directly to the neocortex.

Area-wise cell count data were imported into Python 3.6 and all further analysis performed

using custom scripts. In the following Methods sections, we refer to ns as the number of starter

cells, and ni as the number of input cells, or ni, A for the number of input cells in area A. For fit-

ting relationships, the explanatory variable x can refer to ns or log(ns), and the dependent vari-

able y can refer to ni or log(ni).
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Cell counts for all experiments and the code used for analysis and generating figures can be

found at https://github.com/ranczlab/Tran_Van_Minh_et_al_2023.

4.4 Descriptive statistics and model selection

The relationship between number of input cells and number of starter cells was fitted with

multiple models using the lmfit package. The of candidate models used for model selection

are: linear model, quadratic model, power-law model, exponential model, and a growth model

defined by the equation:

y ¼
ymax∗x
kþ x

For each model the Akaike Information Coefficient corected for small sample size (AICc) can

be calculated as:

AICc ¼ 2kþ n log
RSS
n

� �

þ
2kðkþ 1Þ

n � k � 1

where n is the sample size, k is the number of parameters of the model. The AICc for different

models were compared, and if the difference in AICc values for two models is larger than 2, the

model with the lowest AICc is considered to have better support [49].

4.5 Analysis of residuals distribution

If the residuals from a fit of the untransformed dataset follow a normal distribution, further

analysis should be performed the untransformed dataset. If residuals follow a log-normal dis-

tribution, it is more appropriate to perform further analysis on log-transformed data. We used

the method described in [31] to determine the error structure of the dataset. Briefly, we calcu-

lated the likelihood that the data is generated from a normal distribution with additive error:

Lnorm ¼
Yn

i¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

NLR

p exp
� ðyi � aNLRx

bNLR
i Þ

2

2s2
NLR

 !" #

and the likelihood that the data is generated from a lognormal distribution with multiplicative

error:

Llognorm ¼
Yn

i¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

LR

p exp
� ðlogðyiÞ � logðaLRx

bLR
i ÞÞ

2

2s2
LR

 !" #

where n is the sample size. The AICc for each error model was then calculated as:

AICc ¼ 2kþ n logðLÞ þ
2kðkþ 1Þ

n � k � 1

and the two models with the lowest AICc value considered as having better statistical support if

the difference in AICc values is larger than 2.

4.6 Estimation of fit parameters

In order to estimate the distribution of fit parameters for the log(ni) (y) vs log(ns) (x) relation-

ships, we used residuals resampling. Briefly, for each bootstrap iteration i, a linear model was

fit to the data to obtain fitted values ŷi and residual values �i. The new values to fit were

obtained by adding to a randomly resampled residual value from the initial fit (yB;i ¼ ŷi þ �i;j).
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The linear model was fit to this iteration. This step was repeated 5000 times and the resulting

fits analyzed to obtain the confidence intervals of the fit parameters.

4.7 Probabilistic model

We modeled unidirectional connections between input areas Ia of size Nia
and a starter area S

of unspecified size. pIa is the probability that a neuron in area I is connected to a neuron in

area S. For each observation, we sample Ns cells from the starter area, and build for each input

area the adjacency matrix of size (Nia
, Ns) that represents the connections between all Nia

neu-

rons and all Ns neurons. Each element mi, j of the adjacency matrix can take as values 0, if the

i-th neuron of area Ia is not connected to the j-th neuron of area S, or 1 if the neurons of this

pairs are connected, with P(mi, j = 1) = pI. Rabies tracing experiments were simulated by build-

ing an adjacency matrix per observation of the inputs vs starter graph, and repeating these

observations over a similar range of starter numbers as a typical rabies experiment. Brain-to-

brain variability was represented by sampling, for each observation, the model parameters

from discretized normal distributions, truncated to keep only positive numbers, with specified

mean and standard deviation.

4.8 Effect of the number of starter cells on area input fraction

Area input fractions were defined as the ratio between the number of cells in each input area

in ipsilateral side, and the total inputs counted in the same brain. We use a Chow test [37] to

test for structural breaks in the slope of the area input fraction vs starters relationships.

Multivariate linear regression analysis was used to compare the relative effect of starter cell

numbers, starter cell locations, and starter cell genotype, on area input fractions for all regions

of interest. The regression models were defined using the ols function from the statsmodel
Python package. Models with different combinations of the predictors were also assessed. Sta-

tistical significance of the models were assessed by an F test and all p values corrected for mul-

tiple comparisons using the Benjamini-Hochberg method. The predictors used were the

starter cells number, genotype, and their location, represented by the target frac parameter.

Because of the close proximity of the targeted injection locations (VISp and VISpm) for infec-

tion of starter cells, some brains had starter cells in both targeted areas. We scaled the ratio of

starter cells in either area to represent the continuum between brains for which all starter cells

are in VISp (corresponding to a target frac value of 1) and brains where all starter cells are in

VISpm (target frac value of -1).

4.9 Bipartite configuration model

The adjacency matrices generated by the simulations define bipartite graphs, made of two sets

of respectively Ni and Ns nodes. The degree of a node n corresponds to the number of edges

connecting this node to the rest of the network. In order to assess the effect of the degree of

each set on the fit parameters of the Ni vs Ns relationship, we built graphs of specified degrees

distributions using the bipartite_configuration_model generative model function from the net-
workx package.

The degree distribution of the starter set was sampled from a normal distribution centered

around its chosen average degree. Degrees of the corresponding input set are then picked itera-

tively from a normal distribution centered around its chosen average s degree, so that the sum

of starter and input degrees are equal.
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4.10 Analysis of the relative effects of connection probability and input

pool sizes on area input fraction

In order to assess the effect of each model parameter on area input fractions, we used the prob-

abilistic model to simulate 5 input areas and varied parameters independently. To assess the

effect of connection probability, pIa for each area was randomly drawn between 10−4 and

8*10−3, and Nia
set to 100. To assess the effect of input area size, Nia

was a discrete value ran-

domly picked between 100 and 500, and all pIa were set at 5*10−4. We also considered the

effects of varying both pIa and Nia
within the same ranges. Simulations were performed for up

to Ns = 1000 starter cells. We refer to data with Ns in the bottom 10% and top 10% of this range

as low starters group and high starters group, respectively. For each input area, the area input

fraction vs starter relationship was fit with a second degree polynomial equation.

4.11 Derivation of the probabilistic model and fit of experimental data

For the probabilistic model for a single input area of size NI and connection probability pI, the

likelihood of observing ni inputs for Ns sampled starters can be formulated as:

LðNI; pIÞ ¼
NI!

ni!ðNI � niÞ!
ðð1 � ð1 � pIÞ

NsÞ
niÞð1 � pIÞ

NsðNI � niÞÞ

or, for an ensemble of areas:

L ¼
Y

a

NIa
!

ni;a!ðNIa
� ni;aÞ!

ðð1 � ð1 � pIaÞ
NsÞ

ni;aÞð1 � pIaÞ
NsðNIa � ni;aÞÞ

where NIa
and pIa are the area the input pool size and connection probability of area a,

respectively.

This equation was used to fit the experimental data, using the differential_evolution algo-

rithm from the scipy package for global optimization.

Bounds passed to the fitting function were calculated as follows. First, area volumes were

downloaded from the Allen Mouse CCF (volumes at 25 μm isotropic resolution) using the

Allen SDK. Number of neurons per area were deduced using neuronal cells densities per brain

areas from [50, 51]. If the density for a specific area was not specified in [50], we used the den-

sity for the next level up in the Allen hierarchy as a proxy. For Ni, lower and upper bounds

were defined as 1/40 and 1/(1.5) of the number of estimated neurons per area, rounded up to

the nearest thousand, respectively. For p, bounds were 1E-07 and 6.00E-04, respectively, for all

areas expect the “rest of brain” area, for which bounds were 1.00E-08 and 1.00E-04. Bounds

for all areas are listed in Table 10. The fit was performed 100 times with different seed values to

assess the effect of initialization parameters.

The resulting NIa
and pIa values for each area were then used with the probabilistic model to

obtain the values plotted in Fig 6.

4.12 Classification of rabies strains across datasets

We used all datasets with starter cell identified as Pyramidal cells or interneurons and input

cells quantified as cell counts. Classification was performed using the sklearn package. Rabies

strain was used as the target of the classification, and cell type, starter numbers and input num-

bers used as features. Starter and input numbers were normalized using MinMaxScaler. Linear

support vector classification was performed using the LinearSVC classifier. We used stratified

k-fold cross-validation with k = 4. Briefly, the data was randomly divided into k subsets, so
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that the created folds preserve the distribution of classes observed in the complete dataset.

Each subset was iteratively used as the test set while the other k-1 subsets were used for train-

ing. The resulting k classification scores were averaged to obtain a final score.

4.13 Cell counting artefacts in brain sections

First, we created 0.5 x 0.5 x 4 mm tissue blocks and randomly populated them with cells of 20

μm diameter in densities varying from 10 to 40000 cells / mm3. Next, overlapping cells were

removed, resulting in a final density range of 10 to 20000 cells / mm3, the maximum corre-

sponding to roughly 20% of total neuronal densities in mouse cortex [51]. We then simulated

slicing the tissue block into 50 and 100 μm thick slices and counted cells in every slice, or every

2nd, 3rd or 4th slice and multiplied the counts accordingly. We repeated these experiments 100

times and calculated the average ratio between the real cell numbers in the tissue block and the

estimates.

Supporting information

S1 Fig. Model comparison for whole-brain data for other datasets. Colours indicate differ-

ent fitted models, with the same colour-code as in Fig 1. Datasets are from [13–15, 18, 19, 21,

22, 25, 32, 36]. Please note that input quantification is done by counting labelled pixels instead

of individual neurons in the Allen Institute dataset (panel O).

(TIF)

S2 Fig. Classification of rabies strain in pooled datasets. (A) Classification of the rabies

strain used based on log(ns), log(ni) and starter cell type, for all pooled datasets where starter

Table 10. Bounds per area for fitting the probabilistic model to experimental data (from Fig 6).

area Ni p
min max min max

VISp 2.70E+04 7.33E+05 1.00E-07 6.00E-04

VISpm 4.00E+03 1.08E+05 1.00E-07 6.00E-04

VISl 5.00E+03 1.27E+05 1.00E-07 6.00E-04

VISam 3.00E+03 8.20E+04 1.00E-07 6.00E-04

VISal 3.00E+03 7.80E+04 1.00E-07 6.00E-04

RSPagl 6.00E+03 1.54E+05 1.00E-07 6.00E-04

RSPd 9.00E+03 2.48E+05 1.00E-07 6.00E-04

RSPv 1.10E+04 2.85E+05 1.00E-07 6.00E-04

AM 1.00E+03 1.60E+04 1.00E-07 6.00E-04

LD 3.00E+03 6.80E+04 1.00E-07 6.00E-04

LP 3.00E+03 8.00E+04 1.00E-07 6.00E-04

LGd 1.00E+03 3.50E+04 1.00E-07 6.00E-04

ORB 7.00E+03 1.89E+05 1.00E-07 6.00E-04

ACA 1.10E+04 2.83E+05 1.00E-07 6.00E-04

MOs 4.40E+04 1.19E+06 1.00E-07 6.00E-04

CLA 1.00E+03 3.70E+04 1.050E-07 6.00E-04

PTLp 5.00E+03 1.25E+05 1.00E-07 6.00E-04

TEa 7.00E+03 1.91E+05 1.00E-07 6.00E-04

AUD 1.60E+04 4.24E+05 1.00E-07 6.00E-04

rest 5.00E+05 1.00E+08 1.00E-08 1.00E-04

https://doi.org/10.1371/journal.pone.0278053.t010
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cell type was clearly identified as either pyramidal cells or interneurons and inputs quantified

as cell counts. The model was a linear support vector classifier, and we used stratified 4-fold

cross-validation to preserve the percentage of samples for each class. The plot corresponds to a

single cross-validation fold. (B), Cross-validation scores show consistent accuracy across folds.

(TIF)

S3 Fig. Probabilistic model. Illustration of input parameters, iteration steps and output mea-

sures for the probabilistic model.

(TIF)

S4 Fig. Variability in connectivity parameters leads to skewness of residuals. (A) Distribu-

tions of connectivity parameters (p, average 5*10−4, and Ni, average 50000 cells; both distribu-

tions have a s.d. of 0.2 * their average value). (B) Simulation of inter area connectivity with the

probabilistic model plotted as in Fig 1. Connectivity parameters are randomly drawn from the

distributions in A for each observation. (C) Simulations as in B were performed 100 times and

residual analysis was performed for each resulting curve. Dotted line represents dAICc of -2.

(TIF)

S5 Fig. Linear fits per input area. Linear fits of log-transformed ni vs ns relationship for indi-

vidual brain areas.

(TIF)

S6 Fig. Distributions of fit parameters for log(ni) vs log(ns) relationships with varying Ni

and p. Distributions of slope (A) and y-intercept (B) values obtained across simulations with

various model parameters (colours for Ni and shading for p), as plotted in Fig 2. Both Ni and p
were drawn from distributions with a width of 0.2 * average.

(TIF)

S7 Fig. Varying the width of model parameter distributions has little effect on fit parame-

ters of log(ni) vs log(ns) relationship. (A) Distributions of fit parameters of log(ni) vs log(ns)
relationship for an average Ni = 10000, varying connection probabilities as in Fig 2 and param-

eters drawn from distribution of varying widths (S.D. = 0.1, 0.2 or 0.4 * average). (B) Slope vs

y-intercept plot for an average Ni = 10000 with both model parameters drawn from distribu-

tion of varying widths.

(TIF)

S8 Fig. Degree distributions from simulations with the probabilistic model. (Top) Distribu-

tions of starter cell degrees for varying Ni and p parameters. Both parameters were drawn from

distributions of with 0.2 * average value of parameter. (Bottom) Distributions of input cell

degrees for varying Ni and p parameters. Both parameters were drawn from distributions of

with 0.2 * average value of parameter.

(TIF)

S9 Fig. Configuration model. Illustration of a single step of the simulations for the configura-

tion model.

(TIF)

S10 Fig. Intercept vs slope relationships in simulations using the configuration model.

(Top) Influence of starter degree on intercept vs slope relationships (each panel is a specified

mean input degree). (Bottom) Influence of input degree on intercept vs slope relationships

(each panel is a specified mean starter degree).

(TIF)
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S11 Fig. Multivariate linear regression of the area input fraction across areas using com-

bined predictors.

(TIF)

S12 Fig. Relationship between area input maps and ns for individual brain areas. (A) Input

fraction vs ns. Dashed lines represent linear fit through all data (grey), for ns< 200 (blue)

or> 200 (orange). (B) p-value for Chow-test for varying break point values (x-axis), for indi-

vidual brain areas.

(TIF)

S13 Fig. Relationship between area convergence index and ns for individual brain areas.

Convergence index vs ns, for ns< 200 (blue) or > 200 (orange).

(TIF)

S14 Fig. Input maps for low or high starter cell number. (A) Area input fractions averaged

across the low starter range (<125 starters, n = 10, blue) or across the high starter range (>600

starters, n = 10, orange). Statistical differences between area input fraction for low and high ns
are indicated by *. Significance was calculated using multiple t-tests corrected for multiple

comparisons using the Benjamini-Hochberg method with a false discovery rate of 10%. (B)

Same as A, using convergence index per area.

(TIF)

S15 Fig. Area input fraction vs input fraction per cell for input areas. (A) Area input frac-

tion calculated over the full range of starter cells (error bars are s.d.) or (B) calculated from the

y-intercept of log(ni) vs log(ns) relationship converted to linear scale (error bars are 95% confi-

dence intervals from residuals bootstrap). (C) Areas ranks obtained via both methods are

showed as a heatmap (lowest rank correspond to smallest fraction, lighter colors).

(TIF)

S16 Fig. Using area input fraction or y-intercept to compare experimental parameters.

(A) Area input fraction calculated over the full range of starter cells, for experiments with tar-

get area in VISp (dark blue) or VISpm (light blue). Asterisks indicate significant difference.

Significance is calculated using multiple t-tests and is corrected for multiple comparisons

using the Benjamini-Hochberg method with a false discovery rate of 10%. (B) Same as A, but

for ns>200. (C) Y-intercept of log-transformed ni vs ns relationship. Significance is assessed

by subtracting bootstrapped values of the y-intercepts between target areas. If the resulting

distribution does not contain 0, the intercepts are considered significantly different. NB: areas

VISp and VISpm act either as local or distal input areas, depending on the starter cells’ loca-

tion.

(TIF)

S17 Fig. Varying relative size of input pools has no effect on area input fraction vs starter

relationship. Simulations performed using the probabilistic model with 5 input areas (100

iterations). For each iteration, the connection probability for each input area was p = 5*10−4

and the size of the number of input cells Ni per area was randomly drawn between 100 and

500. (A-F), as in Fig 5.

(TIF)

S18 Fig. Effect of varying relative size of input pools and connection probability on area

input fraction vs starter relationship. Simulations performed using the probabilistic model

with 5 input areas (100 iterations). For each simulation, the connection probability p for each

input area was randomly drawn between 1*10−4 and 8*10−3 and the size of the number of
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input cells Ni per area was randomly drawn between 100 and 500. (A-F), as in Fig 5, (G-H),

same as (E-F) but to compare the effect of relative Ni.

(TIF)

S19 Fig. Simulation of input vs starters relationships using Ni and p obtained from fit of

experimental dataset. Input vs starters relationships for the data (black) or simulations with

parameters obtained from the model fit of the data (red), for one iteration of the fit, for all

areas not shown in Fig 6.

(TIF)

S20 Fig. Simulation of counting cells in physically sliced tissue. Top: the ratio between cell

numbers estimated by counting in sliced tissue and the number of cells in the volume plotted

versus cell density. Colours indicate slice sampling. Simulation data for two slice thicknesses,

50 and 100 μm, are shown. Bottom: variance of cell counts versus cell density for different slice

sampling values and slice thickness.

(TIF)

S1 Text.

(TXT)
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51. Keller D., Erö C. & Markram H. Cell Densities in the Mouse Brain: A Systematic Review. Frontiers In

Neuroanatomy. 12 pp. 83 (2018,10), https://www.frontiersin.org/article/10.3389/fnana.2018.00083/full

https://doi.org/10.3389/fnana.2018.00083 PMID: 30405363

PLOS ONE Quantitative analysis of rabies virus-based synaptic connectivity tracing

PLOS ONE | https://doi.org/10.1371/journal.pone.0278053 March 30, 2023 29 / 29

https://elifesciences.org/articles/67291
https://doi.org/10.7554/eLife.67291
http://www.ncbi.nlm.nih.gov/pubmed/33904410
https://www.jstor.org/stable/1910133?origin=crossref
https://doi.org/10.2307/1910133
http://www.jove.com/video/51863/intracerebroventricular-viral-injection-neonatal-mouse-brain-for
http://www.jove.com/video/51863/intracerebroventricular-viral-injection-neonatal-mouse-brain-for
https://doi.org/10.3791/51863
http://www.ncbi.nlm.nih.gov/pubmed/25286085
https://linkinghub.elsevier.com/retrieve/pii/S0065352719300132
https://doi.org/10.1016/bs.aivir.2019.05.003
http://www.ncbi.nlm.nih.gov/pubmed/31439148
http://www.nature.com/articles/nature23888
http://www.nature.com/articles/nature23888
https://doi.org/10.1038/nature23888
http://www.ncbi.nlm.nih.gov/pubmed/28902833
https://doi.org/10.1007/s00441-015-2143-6
http://www.ncbi.nlm.nih.gov/pubmed/25743692
https://linkinghub.elsevier.com/retrieve/pii/S2211124716303564
https://linkinghub.elsevier.com/retrieve/pii/S2211124716303564
https://doi.org/10.1016/j.celrep.2016.03.067
http://www.ncbi.nlm.nih.gov/pubmed/27149846
https://linkinghub.elsevier.com/retrieve/pii/S0165027020304283
https://linkinghub.elsevier.com/retrieve/pii/S0165027020304283
https://doi.org/10.1016/j.jneumeth.2020.109005
http://www.ncbi.nlm.nih.gov/pubmed/33227339
https://linkinghub.elsevier.com/retrieve/pii/S0896627320301082
https://linkinghub.elsevier.com/retrieve/pii/S0896627320301082
https://doi.org/10.1016/j.neuron.2020.02.009
http://www.ncbi.nlm.nih.gov/pubmed/32145184
https://linkinghub.elsevier.com/retrieve/pii/S0896627320301380
https://doi.org/10.1016/j.neuron.2020.02.015
https://doi.org/10.1016/j.neuron.2020.02.015
http://www.ncbi.nlm.nih.gov/pubmed/32169170
https://doi.org/10.1523/JNEUROSCI.1620-21.2022
http://www.ncbi.nlm.nih.gov/pubmed/35241493
http://www.nature.com/articles/nature26159
https://doi.org/10.1038/nature26159
http://www.ncbi.nlm.nih.gov/pubmed/29590093
http://www.nature.com/articles/nmeth.1854
http://www.nature.com/articles/nmeth.1854
https://doi.org/10.1038/nmeth.1854
http://www.ncbi.nlm.nih.gov/pubmed/22245809
http://link.springer.com/10.1007/b97636
https://doi.org/10.1007/b97636
http://www.pnas.org/cgi/doi/10.1073/pnas.0604911103
http://www.pnas.org/cgi/doi/10.1073/pnas.0604911103
https://doi.org/10.1073/pnas.0604911103
http://www.ncbi.nlm.nih.gov/pubmed/16880386
https://www.frontiersin.org/article/10.3389/fnana.2018.00083/full
https://doi.org/10.3389/fnana.2018.00083
http://www.ncbi.nlm.nih.gov/pubmed/30405363
https://doi.org/10.1371/journal.pone.0278053

