Supporting Information

Chemical Unzipping of WS₂ Nanotubes

C. Nethravathi,^{†,*} A. Anto Jeffery,[‡] Michael Rajamathi,^{‡,*} Naoyuki Kawamoto,[†]Reshef Tenne,[#] Dmitri Golberg,^{†,*} Yoshio Bando[†]

[†]World Premier International (WPI) Center for Materials Nanoarchitectonics (MANA), National

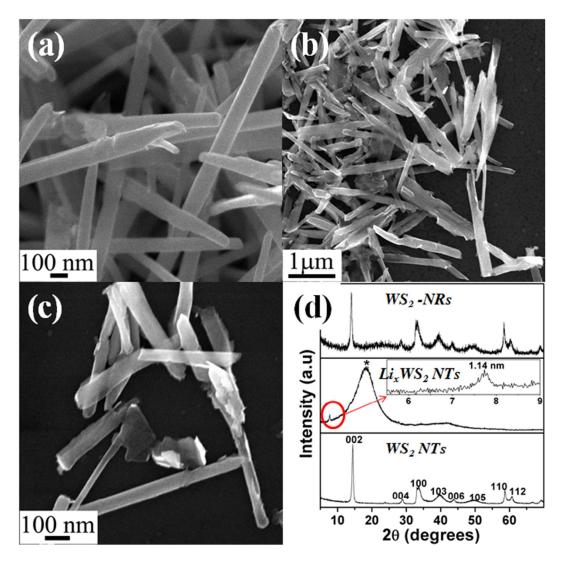
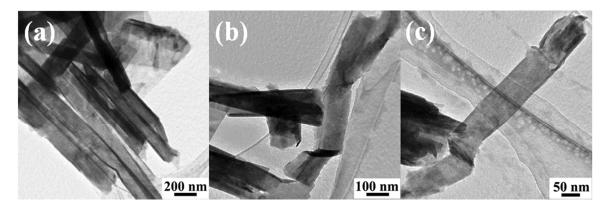
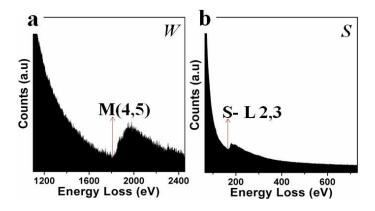
Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

[‡]Materials Research Group, Department of Chemistry, St. Joseph's College, 36 Lalbagh Road,

Bangalore 560 027, India

[#]Department of Materials and Interfaces, Weizmann Institute, Rehovot 76100, Israel

Corresponding authors: <u>nethravathic@gmail.com (C.N.)</u>, mikerajamathi@rediffmail.com (M.R.), golberg.dmitri@nims.go.jp (D.G.)

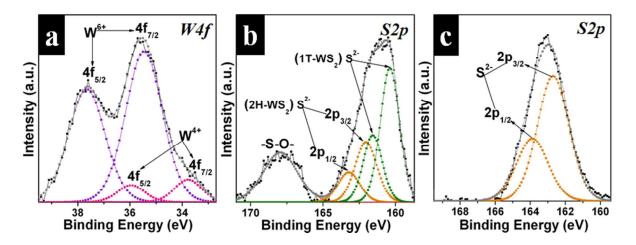

Figure S1 SEM image of WS₂-NTs (a), low– (b) and high– (c) magnification SEM images of WS₂-NRs obtained by unzipping Li_xWS_2 -NT using octanethiol. XRD patterns (d) of WS₂-NRs unzipped using octanethiol compared with Li_xWS_2 -NTs and WS₂-NTs. (*) Represents the peak due to paraffin used as a mask to prevent Li_xWS_2 from reacting with atmospheric moisture.

Figure S2 (a-c) Bright field TEM images of WS_2 -NRs obtained by unzipping Li_xWS_2 -NTs using octanethiol.

Figure S3 Electron energy loss spectra (EELS) of WS₂-NRs obtained by unzipping Li_xWS_2 -NTs using octanethiol. W (a) and S (b) edges are separately shown.

Figure S4 Core level W4f (a) and S2p (b) XPS spectra of $\text{Li}_x WS_2$ -NTs unzipped using water; and S2p (c) XPS spectra of WS₂-NRs obtained by unzipping $\text{Li}_x WS_2$ -NTs using octanethiol.