## Supplemental materials

| TABLE S1: Backbone Resonance Assignments for Hsc70 |       |        |       |         |       |         |       |         |        |  |
|----------------------------------------------------|-------|--------|-------|---------|-------|---------|-------|---------|--------|--|
| res                                                | Nr    | Ν      | Н     | CA(i-1) | CA(i) | CB(i-1) | CB(i) | CO(i-1) | CO(i)  |  |
|                                                    |       | ppm    | ppm   | ppm     | ppm   | ppm     | ppm   | ppm     | ppm    |  |
| ~                                                  | ~     |        |       |         |       |         |       |         |        |  |
| G                                                  | TAG10 |        |       |         |       |         |       |         |        |  |
| V                                                  | TAG11 | 119.25 | 7.789 | 44.97   | 61.63 |         | 32.05 | 173.99  | 175.58 |  |
| D                                                  | TAG12 | 124.16 | 8.296 | 61.59   | 53.73 | 32.03   | 40.55 | 175.60  | 176.19 |  |
| L                                                  | TAG13 | 124.05 | 8.237 | 53.71   | 55.02 | 40.67   | 41.20 | 176.18  | 178.11 |  |
| G                                                  | TAG14 | 109.54 | 8.423 | 55.03   | 45.20 | 41.20   |       | 178.13  | 174.74 |  |
| Т                                                  | TAG15 | 113.39 | 7.887 | 45.20   | 61.75 |         | 69.09 | 174.80  | 174.93 |  |
| E                                                  | TAG16 | 122.97 | 8.421 | 61.80   | 56.70 | 69.16   | 29.17 | 174.95  | 176.27 |  |
| N                                                  | TAG17 | 119.35 | 8.277 | 56.70   | 53.07 | 29.11   | 38.23 | 176.29  | 175.12 |  |
| L                                                  | TAG18 | 122.60 | 7.996 | 53.10   | 55.27 | 38.27   | 41.14 | 175.11  | 177.13 |  |
| Y                                                  | TAG19 | 119.92 | 7.935 | 55.33   | 57.65 |         | 37.84 | 177.20  | 175.66 |  |
| F                                                  | TAG20 | 121.16 | 7.851 | 57.81   | 57.47 |         | 38.81 | 175.69  | 175.52 |  |
| Q                                                  | TAG21 | 121.77 | 8.056 | 57.49   | 55.59 |         | 28.46 | 175.53  | 175.80 |  |
| S                                                  | TAG22 |        |       |         |       |         |       |         |        |  |
| N                                                  | TAG23 |        |       |         |       |         |       |         |        |  |
| A                                                  | TAG24 | 118.28 | 8.031 | 52.91   | 55.49 |         |       | 177.99  |        |  |
| М                                                  | TAG25 | 122.39 | 7.861 | 55.47   | 55.04 |         |       | 176.32  |        |  |
| L                                                  | 391   | 122.38 | 7.896 | 54.95   | 54.62 |         | 41.24 | 176.95  |        |  |
| L                                                  | 392   | 122.95 | 7.958 | 54.68   | 54.44 |         | 41.06 | 176.63  |        |  |
| L                                                  | 393   | 122.66 | 7.914 | 54.36   | 54.36 | 41.13   | 41.67 | 176.62  |        |  |
| L                                                  | 394   |        |       |         |       |         |       |         |        |  |
| D                                                  | 395   | 122.43 | 7.964 | 53.11   | 55.27 |         | 41.12 | 175.13  | 177.15 |  |
| V                                                  | 396   | 119.68 | 7.927 | 55.33   | 57.76 |         | 37.77 | 177.21  |        |  |
| Т                                                  | 397   |        |       |         |       |         |       |         |        |  |
| Р                                                  | 398   |        |       |         |       |         |       |         |        |  |
| ~                                                  | ~     |        |       |         |       |         |       |         |        |  |
| G                                                  | 616   |        |       |         |       |         |       |         |        |  |
| М                                                  | 617   | 121.23 | 8.173 | 44.68   | 52.95 |         | 31.69 | 173.78  | 174.46 |  |
| Р                                                  | 618   |        |       |         |       |         |       |         |        |  |
| G                                                  | 619   | 110.04 | 8.432 | 63.17   | 44.85 |         |       | 177.55  | 174.58 |  |
| G                                                  | 620   | 108.71 | 8.112 | 44.83   | 44.62 |         |       | 174.66  | 173.70 |  |
| М                                                  | 621   | 121.05 | 8.111 | 44.67   | 52.91 |         | 31.74 | 173.71  | 174.44 |  |
| M(2nd)                                             | 621   | 120.74 | 8.046 | 44.63   | 52.86 |         | 31.79 | 173.63  | 174.40 |  |

| Р      | 622 |        |       |       |       |       |       |        |        |
|--------|-----|--------|-------|-------|-------|-------|-------|--------|--------|
| G      | 623 | 109.91 | 8.399 | 63.12 | 44.88 |       |       | 177.47 | 174.56 |
| G      | 624 |        |       |       |       |       |       |        |        |
| F      | 625 | 121.23 | 8.056 | 44.56 | 55.34 |       | 38.64 | 173.35 | 174.35 |
| Р      | 626 |        |       |       |       |       |       |        |        |
| G      | 627 |        |       |       |       |       |       |        |        |
| G      | 628 | 109.17 | 8.186 | 45.01 | 44.94 |       |       | 174.83 | 174.57 |
| G      | 629 | 108.68 | 8.050 | 44.87 | 44.60 |       |       | 174.55 | 173.32 |
| А      | 630 | 121.27 | 8.021 | 44.57 | 55.44 |       |       | 173.32 | 174.36 |
| Р      | 631 |        |       |       |       |       |       |        |        |
| Р      | 632 |        |       |       |       |       |       |        |        |
| S      | 633 | 116.38 | 8.317 | 62.66 | 58.03 |       |       | 177.18 |        |
| G      | 634 |        |       |       |       |       |       |        |        |
| G      | 635 | 109.16 | 8.161 | 44.92 | 44.52 |       |       | 174.59 | 173.26 |
| A      | 636 | 125.06 | 8.017 | 44.41 | 49.88 |       | 17.46 | 173.27 | 175.11 |
| S      | 637 |        |       |       |       |       |       |        |        |
| S      | 638 |        |       |       |       |       |       |        |        |
| G      | 639 | 111.02 | 8.116 | 57.94 | 44.06 |       |       | 174.46 | 171.57 |
| Р      | 640 |        |       |       |       |       |       |        |        |
| Т      | 641 | 115.88 | 8.244 | 62.66 | 61.55 | 31.37 | 69.34 | 177.22 | 174.46 |
| I      | 642 | 124.00 | 8.112 | 61.57 | 60.50 | 69.30 | 37.88 | 174.48 | 175.91 |
| l(2nd) | 642 | 124.48 | 8.252 | 61.76 | 60.44 |       | 37.92 | 174.27 |        |
| E      | 643 | 125.35 | 8.329 | 60.52 | 55.88 | 37.90 | 29.69 | 175.92 | 176.06 |
| E      | 644 | 123.22 | 8.314 | 55.96 | 55.85 |       | 29.57 | 176.09 | 176.07 |
| V      | 645 | 121.20 | 8.067 | 55.89 | 61.44 | 29.52 | 32.42 | 176.12 | 175.00 |
| D      | 646 | 129.16 | 7.882 | 61.43 | 55.60 | 32.38 | 41.69 | 175.00 | 180.82 |



**Fig. S1.** Fluorescence polarization assay for Hsc70 – CHIP binding. (a) The Cterminal peptide tracer (5-FAM-SSGPTIEEVD) binds CHIP with a K<sub>d</sub> of 0.61 ± 0.04  $\mu$ M. Free Hsc70 does not bind the tracer to any appreciable extent. (b) At 20 nM tracer, full length Hsc70 out-competes both the C-terminal peptide from which the tracer was derived and Hsc70 without the EEVD motif for CHIP binding. IC<sub>50</sub> values are 0.45  $\mu$ M, 2  $\mu$ M, and non-determinable, respectively.



**Fig. S2.** Overlay of the 800 MHz TROSY spectrum of <sup>15</sup>N-labeled full length Hsc70 (646 residues, 72 kDa) in blue, with that of the isolated SBD (391-646) (Green). ADP and peptide NR (NRLLLTG) were present in the samples. This figure is a high-level enlargement of Figure 3 in the main text.



**Fig. S3.** Enlargement of the 800 MHz TROSY spectrum of <sup>15</sup>N-labeled full length Hsc70 (646 residues, 72 kDa). In blue, Hsc70; in green Hsc70+CHIP (1:0.5), in red, Hsc70+CHIP (1:1);



**Fig. S4.** 1D 1H NMR spectra of the amide proton region of 15N-labeled Hsc70, acquired with a HSQC-style 15N-R1 relaxation experiment. (a) 40 uM Hsc70 without CHIP with T1 relaxation times of 50, 200, 400, 600, 1000, 1500, 2000ms (top to bottom). (b) 40 uM Hsc70 with 30 uM CHIP with T1 relaxation times of 50, 200, 400, 600, 1250, 1500 and 2000ms (top to bottom)



**Fig. S5.** 1D <sup>1</sup>H NMR spectra of the amide proton region of <sup>15</sup>N-labeled Hsc70, acquired with a HSQC-style <sup>15</sup>N-R<sub>2</sub> relaxation experiment. (a) 40 uM Hsc70 without CHIP with T2 relaxation times of 2, 4, 6, 10, 14, 20, 30, 40, 60, 800 and 100 ms (top to bottom). (b) 40 uM Hsc70 with 30 uM CHIP with T2 relaxation times of 2, 10, 20, 30, 40, 60, 70, 80 and 90 ms (top to bottom)



**Fig. S6.** 1D symmetrical reconversion  $\eta_{xy}$  spectra <sup>1</sup> of 15N-labeled wt-Hsc70 (a) No CHIP (b) with 1:1 CHIP. Blue:  $N_{xy} \rightarrow N_{xy}$ ; red:  $N_{xy} \rightarrow 2N_{xy}H_z$ ; black:  $2N_{xy}H_z \rightarrow N_{xy}$ ; green:  $2N_{xy}H_z \rightarrow 2N_{xy}H_z$ 

1. Pelupessy, P., Espallargas, G. M. & Bodenhausen, G. (2003). Symmetrical reconversion: measuring cross-correlation rates with enhanced accuracy. *J Magn Reson* **161**, 258-64.