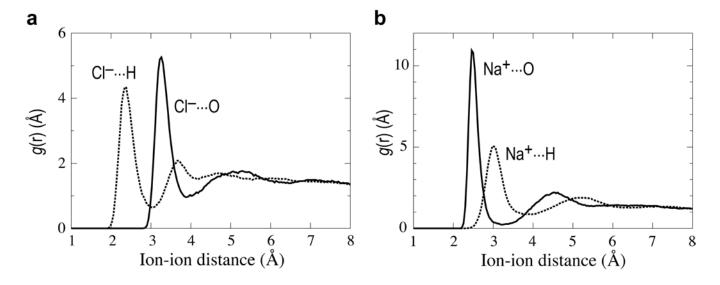
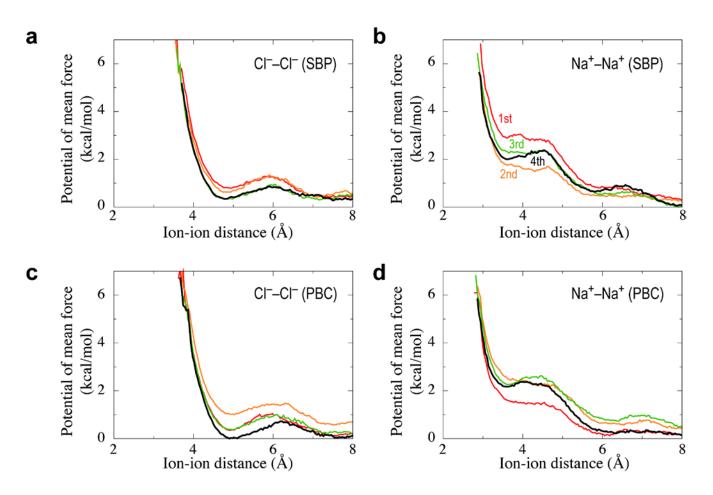
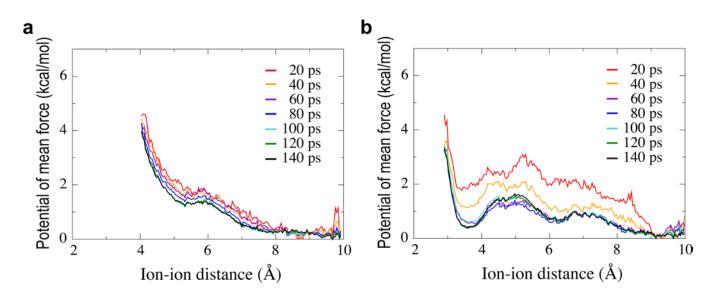
Solvent Electronic Polarization Effects on Na⁺–Na⁺ and

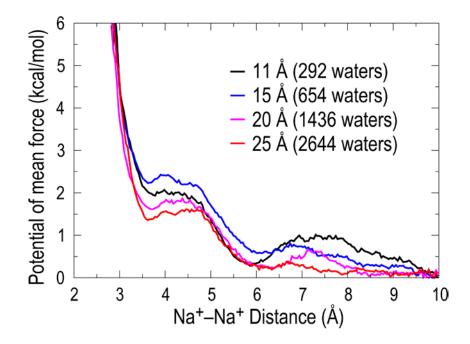

Cl⁻–Cl⁻ Pair Associations in Aqueous Solution

Cheol Ho Choi^{*,†}, Suyong Re[‡], Mohammad H. O. Rashid[†], Hui Li⁺, Michael Feig^{‡,§,⊥}, and Yuji Sugita^{*,‡,⊥}


[†]Department of Chemistry and Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea. [‡]RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. ⁺Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. [§]Chemistry and Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. [⊥]RIKEN Quantitative Biology Center, 7-1-26 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

*To whom correspondence should be addressed. Email: cchoi@knu.ac.kr; sugita@riken.jp.


Supporting Information (SI) Figures S1-S5.


Figure S1. Radial distribution functions, $g(\mathbf{r})$, of ion–water interactions obtained from QM/EFP MD simulations: (a) Cl⁻–water and (b) Na⁺–water interactions. Trajectories from the umbrella sampling windows with the largest ion separation (the window for the ion-ion separation of 9Å) were used to obtain $g(\mathbf{r})$.

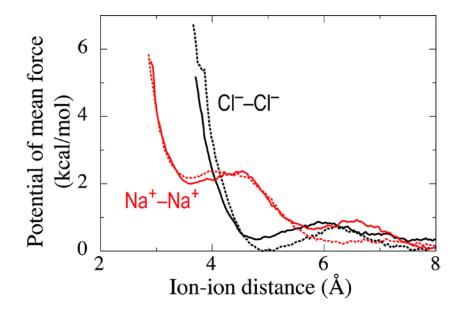

Figure S2. Convergence of the PMFs obtained from the classical MD simulations: (a) Cl^--Cl^- using SBP, (b) Na^+-Na^+ using SBP, (c) Cl^--Cl^- using periodic boundary conditions with PME, and (d) Na^+-Na^+ using periodic boundary conditions with PME. Red, orange, green, and black colors designate forward (1st), backward (2nd), forward (3rd), and backward (4th) umbrella sampling calculations,

Figure S3. PMFs obtained from QM/EFP MD simulations with seven different simulation lengths: (a) $CI^{-}-CI^{-}$ and (b) $Na^{+}-Na^{+}$ pairs.

Figure S4. The Na⁺–Na⁺ PMFs of classical MD simulations as a function of sphere radius. During the simulations, extended electrostatics was not applied to make a fair comparison. The short distance regions between 3 and 5 Å of PMFs show a repulsive potential regardless of the sphere radius, although larger spheres tend to slightly reduce them. The origin of the slight size dependency may be a surface polarization. The changes in PMF due to the sphere size are not as significant as the quantum mechanical effects in QM/EFP MD. Therefore even if a large water sphere is used, a clear local minimum is predicted by QM/EFP MD that is not reproduced by classical MD simulations. Furthermore, sphere size effects change the PMFs of both classical and QM/EFP MD equally. Therefore, any relative differences in the PMFs of classical and QM/EFP MD at the same sphere size, mainly come from the differences between classical force fields and QM/EFP.

Figure S5. PMFs obtained from the classical MD simulations of Cl^--Cl^- (black) and Na^+-Na^+ (red) pairs either using the spherical boundary potential (two ions with 292 water molecules) (solid) or the periodic boundary condition (two ions with 201 water molecules in a cubic box of 19.3 Å³) (dashed). In the former, a cutoff of 50 Å for the non-bonded interactions was used (all interactions were included). In the latter simulation, the long-range electrostatic force was calculated using the particle-mesh Ewald summation (PME) method with a grid size of less than 1 Å.