Quantifying Intrinsic Ion-driven Conformational Changes in Diphenylacetylene Supramolecular Switches with Cryogenic Ion Vibrational Spectroscopy

Arron B. Wolk,[†] Etienne Garand,[‡] Ian M. Jones,[§] Andrew D. Hamilton,[#] and Mark A. Johnson[†]*

[†]Sterling Chemistry Laboratory, Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520

[‡]Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison WI 53706

[§]Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas, 78712

[#]Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA

Supporting Information

Supplemental Table 1. Comparison of Experimental (\pm 4 cm⁻¹) and Calculated (B3LYP/6-31+G(d,p)) Frequencies for NH and CO Fundamentals of the Molecular Switch Complexes Characterized in This Study (cm⁻¹)

complex	NH _a	NHb	NH _c	amide CO ^a	ester CO
$1-TMA^{+}(D_2)_2$					
experimental	3395	3335	3467	1701	1731
calculated ^b	3394	3342	3464	1704, 1694	1731
$1-Na^{+}(D_2)_2$					
experimental	3432	3443	3464	1705, 1695	1747
calculated ^b	3450	3461	3464	1715, 1707	1747
$2-Cl^{-}(D_2)_2$					
experimental	2744	3194 ^c	3357	1725, 1711	1749
calculated ^b	2886	3244	3374	1735, 1717	1750
$1-Cl^{-}(D_2)_2$					
experimental	2867 ^c	3196 ^c	3357	1709	1753
calculated ^b	2982	3260	3376	1726, 1714	1750
$1-Br(D_2)_2$					
experimental	2945 ^c	3208 ^c	3357	1710	1752
calculated ^b	3080	3293	3377	1725, 1717	1751
$1-I^{-}(D_{2})_{2}$					
experimental	3034 ^c	3231 ^c	3357	1712	1748
calculated ^b	3139	3321	3376	1725, 1717	1751

^aWhen the two amide CO functionalities are observed as a doublet, both frequencies are given.

^bThe empirically scaled calculated frequencies are given. Energies above 2000 cm⁻¹ are scaled by .957 (to match the free NH frequency to that observed in $1-Na^+(D_2)_2$) and below 2000 cm⁻¹ by .987 (to match the free CO frequency to that observed in $2-Na^+(D_2)_2$).

^cOccurs in a congested spectral region, approximate assignment given.