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A. General Derivation of the Total Differentials df/dФ 

The overall equilibrium reaction for a homotropic and homonuclear binding system can be 

written in terms cumulative binding constants (βi), as given by 
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then, the binding polynomial for a receptor with n binding sites is given by  
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where by definition β0 = 1 (i.e., β0 = [M]/[M]).  

The binding polynomial describes the distribution of the binding species in solution and it can 

be used to calculate the average number of ligands bound per receptor XN  and the binding 

capacity XB , as given by following the expressions 
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In addition, the binding polynomial can be used to represent the mole fraction ( i ) of a receptor 

bound to i ligand species 
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The term i  corresponds to the normalized probability of finding the complex MXi in solution. 

The partial differential of ln i  with respect to ln[X] for a system at constant temperature and 

pressure is given by  
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The term iF  describes the rate of change in the chemical potential of a receptor bound to i 

ligands with respect to the change in the change in the chemical potential of the free ligand in 

solution. 

The mass balance equations for a homotropic binding system represent the two independent 

variables for the titration (i.e., MT and XT). Each mass balance equation can be expressed in terms 

of the binding polynomial (PM) as  
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and 
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By substituting the term [M] by /T MM P in eq S6, we obtain  
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We can combine the mass-balance expression (eqs S6 and S7) into a single dimensionless 

expression by dividing eq S7b by the term MT as given by  
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where Ф corresponds to the degree of titration, as given by the ratio between the terms XT and MT 

(i.e., /T TX M  ). One important feature of eq S8 is that every term in the sum is 

dimensionless to facilitate the evaluation of the titration curve from a theoretical perspective.1,2 

Therefore, implicit differentiation of a function of the form ([X])f  at constant MT can be 

expressed as: 



S4 

 

 
[X]

[X]
TM

df df

d d

 


 
  

 (S9) 

where f ([X]) is any of the dependent variables related to the binding species in solution that is a 

function of the free ligand concentration, such as (i) the receptor-normalized free ligand 

concentration (i.e., [X]/MT), (ii) the mole fractions i for the receptor species bound to i ligands, 

or (iii) the average number of ligands bound per receptor XN .  

The expression for 1 [X] /TM d d   is derived by implicit partial differentiation of eq S8 with 

respect to Ф as given by  
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therefore, 
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The derivative [X]XdN d  in eq S10 was obtained from S3b as follows: 
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where the last term was obtained using the definition for (ln )d x  (i.e., ln (1/ )d x x dx  ). Then 

by rearrangement of eq S12, we obtain the expression for the differential / [X]XdN d  in terms of 

the binding capacity BX as given by 
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The differential / [X]XdN d  is equivalent to the differential Sd dC  employed by Lapitsky et 

al.3 for the calorimetry titration of a polyelectrolyte with a surfactant molecule, where the term β 

represents the average fractional coverage of the binding sites of polyelectrolyte based on the 

Satake-Yang model, and CS represents the free concentration of surfactant. In addition, 
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Vinnakota et. al. evaluated the differential / [X]XdN d  numerically for the analysis of pH 

dependent enzymatic reactions, such as muscle glycogenolysis.4 

The differential /id d   represents the infinitesimal change in the mole fraction of a receptor 

bound to i ligands with respect to the degree of titration Ф, and is calculated using the chain rule 

as given by 
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where the term / [X]id d  is obtained from S5 as follows 
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thus, 
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The final expression for /id d   is obtained by combining eqs S11 and S16 to give 
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Finally, the differential /XdN d  represents the differential change in average number of 

ligand species bound to a receptor with respect to Ф and is calculated using eqs S8 and S11. 

First, the mass balance equation is rearranged  
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Then, differentiation with respect to Φ at constant MT gives 
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Incidentally, /XdN d is also equivalent to the i weighted sum of the differentials /id d  . 

The relation between /XdN d  and /id d   is obtained using the relation 
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By differentiating of eq S20 with respect to Φ, we obtain 
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After substitution of the explicit form of the mole fraction in terms of the cumulative binding 

constants βi and PM (eq S4), we obtain 
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where the first summation term inside the parenthesis is proportional to the second moment of 

PM and the second summation term is proportional to the square of the first moment of PM. The 

summation terms for the first moment and the second moment of PM are equivalent the binding 

capacity XB  (eq S3b).  
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The general form of the DBM that describes the rate of change in the receptor normalized 

concentrations of the binding species in solution as well as the overall change the binding 

saturation is given by eqs S11, S17, and S19. Thus, the set of model-independent differential 

equations in the general DBM can be written as 
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The differential heat per mole dH is given by the cumulative heat per mole contribution for all 

the binding species in solution. The general expression to evaluate the differential heat per mole 

in terms of the total concentration of ligand injected to the titration cell XT is given by  
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The expression for dH in terms of the degree of titration (Ф) is derived as follows. First, we use 

the chain rule to express [MX ] /i Td dX  in terms of Ф, as given by 
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and after using the relation   T Td dX M  for a titration at constant MT, we obtain 
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Similarly, we can use the relation [MX ]  i T id M d  in eq S24b, which gives 
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Thus, the final expression for dH in terms of Ф is given by  
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The previous expression of dH (eqs S23 and S25) represent an idealized calorimetry titration 

where the concentrations of the binding species are accurately known and where the heat 

contribution due to the dilution of the ligand or its interaction with the buffer is nearly zero (dHdil 

≈ 0). First, it is possible to include an adjustable parameter to account for the enthalpy of dilution 

as given by  
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where Δhdil is a constant value equal to the dH signal of the final 3-5 injection points in the 

titration curve and the term Δhdil has the effect of shifting the fitting curve vertically. This 

approach assumes that the heat values of final injection points are nearly constant and that the 

titration of a ligand solution into the background buffer also gives a constant value. However, if 

the final injection points do not show a constant value, we can derive an expression that takes 

into account the change in the concentration of free ligand in solution as shown below.  

The enthalpy of dilution for a titration where the change in the free ligand concentration 

contributes is represented as 
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which was obtained from the differential d[X]/dXT after following similar derivation steps as 

those used to obtain the differential d[MXi]/dФ (eqs S24a-S24c). The expression of dH that 

accounts for the binding equilibrium reactions as well as the dilution of free ligand is given by  
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and the explicit expression for S28 in terms of the binding potentials is given by 
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Second, we can include a stoichiometry coefficient to adjust for small errors in the 

concentration of the binding species. Typically, the total concentration of receptor MT is the 

parameter that is adjusted during the analysis of a “direct” titration where ligand is injected into a 

receptor solution.5,6 Hence, the MT terms in eq S29 can be replaced by an adjusted receptor 

concentration MT
* = N·MT, where N represents the stoichiometry coefficient. The expression to 

evaluate dH that accounts for both small errors in the concentration of MT as well as the enthalpy 

of dilution for the ligand is given by 
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The total concentration of ligand XT may also be adjusted for a direct titration, but this would 

require that the dH points in the titration curve were recalculated at every minimization step, as 

given by 
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However, the terms XT and MT cannot be both adjusted simultaneously because this over-

parameterizes the binding model. 

B. DBM for a Receptor with One Binding Site (n = 1). 

1. Binding Potentials and General Binding Model  

The binding polynomial for a receptor with one binding site is given by 

 1 [X]MP K   (S32) 

where K is the binding constant for the equilibrium reaction 
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with the mass balance equations  
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The mole fraction for the free ( 0 [M] / TM  ) and bound receptor 1 [MX] / TM  in terms of 

the binding polynomial are given respectively by 
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and the binding potentials XN  and XB  are given by 
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Substitution of the binding potentials XN  and XB , and the mole fractions 0  and 1  into eqs 

S22a-S22c gives 
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We write the term TM  on the left hand side of eq S37a in order to make this expression 

dimensionless. In addition, we can observe that the differential equations in the DBM (eqs S37a-

S37c) have a common denominator given by the term 2
Mc P .  

2. Theoretical Evaluation of the DBM 

The term K[X] can be expressed in terms of the average ligand saturation XN  and the binding 

constant, as given by 
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After substitution of eq S38 into the general expression for the mass balance equation (eq S8), 

we obtain an expression for the degree of titration in terms of XN  and the dimensionless 

parameter c = K·MT 
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Thus, the degree of titration (Φ) can be evaluated as a function of the average number of ligand 

molecules per receptor and the parameter c. The degree of titration Φ required to saturate 10%, 

50%, and 90% can be calculated using XN  values of 1/11, 1/2, and 10/11, respectively, to obtain 
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Similarly, the expression for the differential binding /XdN d  (eq 22) can be evaluated as a 

function of XN . The values for the differential /XdN d  at 10%, 50%, and 90% saturation 

correspond to  
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3. Numerical Evaluation of the DBM 

In order to analyze an ITC experiment with the DBM in eqs S37a-c, we need an expression to 

calculate the concentration of free ligand [X] at every injection step. For this purpose, we derive 

an exact algebraic expression to evaluate [X] as a function of the terms of Ф and c. The mass 

balance expression for a receptor with one binding site in terms of Ф is given by 
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After rearrangement of eq S42, we obtain the quadratic polynomial 
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with a positive root given by 
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and multiplication of both sides by K gives  
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We can use eq S45 to evaluate the binding polynomial PM (eq S32) and the DBM (eqs S37a-c) at 

specific values of Ф and c. For instance, the expression for the binding polynomial PM in terms 

of Ф and c is given by 
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In addition, we can evaluate PM and dα1/dФ at specific points on the titration curve. For example, 

the value of PM at the equivalence point (Ф = 1.0) is  
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and the differential dα1/dФ corresponds to 
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which approaches 0.5 in the limit of c → ∞, as previously shown by Poon.10 

The previous expressions (S44-S48) are based on the assumption that the terms MT and c 

remain constant during the titration. To account the dilution and overflow of the binding species 

during the titration in a calorimeter with an overfill-cell, we evaluate the terms XT, MT, and Ф 

with the expressions. 
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 ·(1 exp( / ))  T S CX X V V  (S49a) 

 0 ·exp( / ) T CM M V V  (S49b) 

 0·(exp( / ) 1) /  S CX V V M  (S49c) 

where XS is the concentration of ligand in the syringe, M0 is the initial concentration of receptor 

in the cell, VC is the cell volume, and V represents the total volume of titrant injected. Finally, to 

analyze an ITC experiment, one can write an algorithm that combines the dilution expressions 

for the binding species (S49a-S49c), the exact algebraic solution for K[X] (eq S45), and the 

DBM (eqs S37a-S37c ) with non-linear regression routine. 

C. DBM for a Receptor with Two Binding Sites (n = 2) 

1. Binding Potentials and General Binding Model 

The binding polynomial for a receptor with two binding sites is given by 

 2
1 21 [X] [X]MP      (S50) 

where β1 and β2 are the binding constants for the equilibrium reactions 
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with the mass balance equations 
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The mole fraction for the free ( 0 [M] / TM  ) and bound receptor species 

( 1 [MX] / TM  , 2 2[MX ] / TM  ) in terms of the binding polynomial are given respectively by 

 
2

2
0 1 2

[X] [X]1
, ,

M M MP P P

       (S53) 

and the binding potentials XN  and XB  are given by 
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N
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We obtain the set of model-independent differential equations (i.e., general DBM) by 

substituting the binding potentials in eqs S22a-S22c as given by 
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where  

 0 1 2 0
d d d

d d d
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


 (S56) 

,and 

 1 22XdN d d

d d d

 
  

  
 (S57) 

The expression to evaluate dH using the differentials 2 /d d   and 2 /d d   (eqs S55c and 

S55d) and the cumulative enthalpies of reaction ΔH1, ΔH2 is given by  
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2 2
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1 2
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d d
dH H H

d d

H HX X
M

P M X X
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   

 

 (S58) 

Similar to the DBM for a receptor with multiple binding sites (S30), the general expression to 

evaluate dH with n = 2 can be extended to account for both the dilution of the free ligand [X], 

and small errors in the concentration of receptor MT as given by 
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The limiting value of dH at the beginning of the titration for eq S58 (i.e., Ф → 0) after evaluation 

with the term [X] = 0, correspond to  

 1
0

[X]
01

0
1 1
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H
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M c
H H
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
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 (S60) 

where the dimensionless parameter 0c  is equal to the product 1·TM  . The term 0c  is similar to 

the parameter c in eqs S37a-S37c, and it can be used to optimize the initial value of dH in a 

titration experiment for a receptor with two binding sites. 

2. Macroscopic Binding Model: Sequential Binding Sites 

The binding polynomial for a receptor with two binding sites and sequential binding is given 

by 

 2
1 1 21 [X] [X]MP K K K    (S61) 

where K1 and K2 are the binding constant for the stepwise equilibrium reactions 

 
[MX]

M X MX ,
[M][X]

K   (S62a) 

 2
2 2

[MX ]
MX X MX ,

[MX][X]
K   (S62b) 

and the enthalpy of binding for each stepwise equilibrium reaction is given by 0
1H  and 1

2H , 

respectively. The mole fractions for the free and bound receptor species are given respectively by 

 
2

2
0 1 2

[X] [X]1
, ,

M M M

K K K

P P P
       (S63) 

and the binding potentials XN  and XB  are given by 
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2

[X](1 2 [X]) [X](1 4 [X] [X] )
,
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After substitution of the binding potentials XN  and XB  into eqs S55c and S55d , we obtain  
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Finally, the differential heat per mole is evaluated with the expression  

 0 0 1 2
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After substitution of eqs S65a and S65b in eq S66, we obtain 
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The limiting value of the term dH (eq S67) at [X] = 0 is equivalent to the expression for one 

binding site (eq 21) evaluated at [X]=0. 

 0
[X] 0 1 1






 

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M
dH

K

M K
H  (S68) 

The term dH for a receptor with sequential binding sites can be also evaluated at concentrations 

of free ligand that simplify some of the terms in eq S67, such as [X] = 1/K1, 1/K2, or 1/(K1 K2)
1/2. 

3. Microscopic Binding Model: Independent Binding Sites  

The binding polynomial for a receptor with two independent binding sites is expressed as the 

product of the partition functions for each microscopic site (i.e., (1)MP , and (2)MP ) as given by  

 (1) (2)M M MP P P   (S69) 

The partition function for each microscopic site is given by 

 
1

( )
0

[X]
j

j
M i ij

j

P k



    (S70) 

where kij is the microscopic binding constant, the sub-index i represents the site number, and the 

sub-index j represents the occupancy of the binding level. The microscopic constants for the 

unbound states are defined as k10 = k20 = 1. The general expression to calculate the mole fraction 

of the bound and free binding states for each microscopic site is 

 1
0 1

( ) ( )

[X]1
, i

i i
M i M i

k

P P
    (S71) 
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The total average number of ligands per receptor species XN is calculated using the differential 

expression in eq S3a as follows 
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 (S72) 

where ( )X iN corresponds to the average saturation for the i-th microscopic site. Using the same 

formalism, we obtain an expression for the total binding capacity in terms of each microscopic 

binding capacity ( ( )X iB ), as given by 
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 (S73) 

The resulting binding potentials XN  and XB  are substituted into eqs S22a-S22c which gives 
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where the differential heat per mole is evaluated with eq 24a 

 1 21
1 2

d d
dH h h

d d
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 

 (S75) 

The additive property of the binding potentials ( )X iN  and ( )X iB  allows for each microscopic 

binding site allow us to expand this model to a receptor with n-independent binding sites (see eqs 

35a and 35b, main text). 

4. Microscopic Binding Model: Equivalent Binding Sites  

If the microscopic binding constants for the same level of occupancy are equivalent (i.e., k10 = 

k20 = 1, and k11 = k21 = k), then the expression for the binding polynomial (eq S69) reduces to  

 2 2( ) (1 [X])  M eqP P k  (S76) 

where k is the intrinsic binding constant for the bound species. Similarly, the differentials shown 

in eqs S74a-S74e reduce to 
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where eqc is the dimensionless binding parameter for the titration of a receptor with equivalent 

binding sites, proportional to the product of the intrinsic binding constant k and total receptor 

concentration MT (i.e., ·Teqc M k ). If the enthalpies of binding of each independent binding site 

are equivalent (i.e., 11 21h h h    ), then the differential heat per mole dH for a receptor with 

two identical binding sites can be evaluated with the expression 
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5. Theoretical Evaluation: DBM with Cooperative Binding Interactions 

We use the concentration of free ligand at 50% fractional binding saturation (i.e., /XN n ) to 

evaluate the DBM for a receptor with two binding sites (n = 2). Here, we follow a similar 

procedure to that used in the case of a receptor with n = 1. The 50% fractional binding saturation 

corresponds to one ligand bound per receptor (i.e., XN  = 1). Using eq S54a, we calculate the free 

ligand concentration at 50% saturation ( 50%[X] ) in terms of the cumulative binding constant(s), 

which corresponds to 50% 1/2[X] ( ) 
 . Thus, we can use the dimensionless variable 1/2

2 [X]  to 

evaluate the binding potentials XN , XB , the degree of titration Φ, and the DBM in eqs S55a-

S55c. 

The general expression to evaluate the degree of titration Φ of a receptor with multiple binding 

sites is given in eq S8. In order to make this expression compatible with the dimensionless 

variable 1/2
2 [X] , we can multiply both the numerator and the denominator in the term [X] / TM  

by 1/2
2 , as given by 
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where 1/2c is a constant dimensionless parameter for the titration  

 1/2
1/2

50%
2 / [X· ]T Tc M M   (S80) 

proportional to the ratio between the total receptor concentration and the concentration of free 

ligand at half-saturation. In addition, the dimensionless variable 1/2
2 [X]  in eq S79 can be 

expressed in terms of XN  using eq S54a and the algebraic solution to a quadratic polynomial, as 

given by 
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Interestingly, the term 1
1

/2
2/ (2 )   is inversely proportional to the square root of the stepwise 

cooperativity parameter ρ. Thus, eqs S79, and S81 can be rewritten to include the term ρ 
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where cρ is the dimensionless variable expressed in terms of ρ and XN , as given by. 
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The cooperativity variable cρ at 10%, 50%, and 90% saturation can be evaluated using the 

values of XN  equal to 2/11, 1.0, and 20/11, respectively as given by  
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Thus, the degrees of titration required to reach 10%, 50%, and 90% saturation are given 

respectively by  
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A similar strategy can be used to evaluate the differentials in the DBM for a receptor with n = 

2 (eqs S55a-S55e). However, we only evaluate the terms 1 /d d  and 2 /d d   because they 

show interesting properties in relation to the fractional saturation /XN n . In addition, the terms 

1 /d d  and 2 /d d   are the main contribution to the differential heat per mole dH (eq S58). 

For example, the limiting values of 1 /d d   and 2 /d d   at the beginning of the titration (i.e., 

1/2
2 [X] 0  ) correspond to  

 
0 0

1 0

1 1


 

 
 

T

T

d M

d M

c

c

 


 (S86a) 

 2

0

0





d

d


  (S86b) 

where 0 1·Tc M  . Similarly, the values of the differentials 1 /d d   and 2 /d d   at 50% 

binding saturation (i.e., 1/2
2 [X] 1  ) correspond to  
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where 1/2c was defined in eq S80, and ρ is the stepwise cooperativity parameter (eq 28). The 

previous differentials can be used to independently evaluate the values of ΔH1 and ΔH2. For 

example, ΔH1 can be evaluated with the expression 

 1 0
0

01

H c
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c

 
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
 (S88) 

since the contribution of 2 /d d   in the limit of Φ → 0 is nearly zero. Similarly, ΔH2 can be 

evaluated with the expression  
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since the heat per mole contribution of 1 /d d   at Φ50% is also nearly zero. 

6. Numerical Evaluation of the DBM 

Similar to section B.3, the analysis of an ITC experiment with the DBM for a receptor with n = 

2 requires an expression to calculate the free ligand concentration [X] as a function of the 

volume injected. First, we use the expressions for XT, MT and Ф (eqs S49a-S49c) to correct the 

concentration of the binding species due to the dilution and overflow of the titration cell. Then, 

we derive an explicit expression for the mass balance equation with the form 

 3 2[X] [X] [X] 0p q r     (S90a) 

where 
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The real root of the polynomial is given by 
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which is similar to the expressions derived by Wang11 for the analysis of a receptor with 

competitive binding interactions for two ligand species. The exact algebraic solution of [X] (Eq 

S92) is valid for receptors with either negative or non-cooperative binding interactions (i.e., β1
2 ≤ 

4 β2). Receptors with positive cooperative interactions cannot be analyzed with eq S92. Thus, 

approximate methods such as the Secant6 and Newton’s method12 are a more general approach to 

calculate the real root of the mass-balance polynomial. We use the FindRoots command in IGOR 

Pro (WaveMetrics Inc., Lake Oswego, OR, USA), which uses the Jenkins-Traub algorithm,13 to 

calculate the concentration of free ligand from eq 17d (main text). Finally, we use the value of 

[X] to evaluate the appropriate DBM for a receptor with n = 2 and the binding parameters are 

optimized using a non-linear regression routine. For the preliminary analyses, we prefer eq S59, 

where the DBM is expressed in terms of the cumulative binding constants βi and the cumulative 

enthalpies of binding ΔHi, and which also includes the terms N and Δhdil. 

D. Comparison of the DBMs with the Built-In Models in Origin. 

Table S1 shows the fitting results of the non-linear regression analysis with the general binding 

model and a DBM that accounts for cooperative binding interactions between the two sites. 

Interestingly, the value of 2
  = 1.92 is the same for all the DBMs analyzed (see Table 2, main 

text and Table S2). This implies that the all the DBMs are mathematically equivalent. The major 

difference between the different DBMs, besides the binding parameters obtained, is the 

correlation matrix for each model. A large correlation value (e.g. -1.0 or 1.0) also shows that the 

binding parameters are multiplication factors in the explicit expression of the DBM. For 

example, we observe a large correlation between the cumulative binding constants β1 and β2 

(Corr(β1, β2) = 0.99) since the parameters β2 and β1 are multiplied eq S58. However, the binding 

constants k11 and k21 in Table S2 show almost no correlation (Corr(k11, k21)= 0.14), since these 

binding parameters are added in eqs S74a-S74e. 

The non-linear regression analyses of the averaged dH titration curves performed in Origin 

with the sequential-sites and the two-sites built-in models are shown in Figure S5. In comparison 
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with our DBM constrained for sequential binding interactions (eq S67), the built-in model in 

Origin (Figure S5A) does not contain an adjustable parameter to correct for small errors in the 

concentration of the binding species (e.g. N, where MT
* = N·MT) or for the enthalpy of dilution 

for the free ligand species (Δhdil). In Origin, we adjust the heat of dilution manually by adding or 

subtracting small heat values (ca. 0.02 kJ·mol−1) from the experimental data, which shifts the 

titration curve vertically. This process is repeated until we obtain a minimum value for the 

reduced chi-square parameter ( 2
 ). Although the concentration of receptor could be adjusted in 

a similar way, we believe this is a time consuming process that would be better handled with a 

computer algorithm.  

Table S1. Thermodynamic and statistical parameters for the titration of Gd(III) with sodium citrate in MES Buffer 
(100 mM, pH 5.5) obtained with the general DBM and a DBM constrained for cooperative binding sites. 

    General Binding Modela 

Binding Parameters  
Best Fit 
Value +/-  Correlation Matrix 

N  1.01 0.001  1 0.24 0.30 -0.13 0.89 -0.26
log β1 (−log M)  7.07 0.03   1 0.99 -0.38 0.22 -0.13
log β2 (−2·log M)  11.21 0.03    1 -0.38 0.31 -0.22
ΔH1 (kJ mol-1)  -1.84 0.01     1.00 0.02 0.04
ΔH2 (kJ mol-1)  -18.41 0.06      1.00 -0.58
Δhdil (kJ mol-1)  0.19 0.01       1.00

2
   1.92         

  Cooperative Binding Model 

Binding Parameters  
Best Fit 
Value +/-  Correlation Matrix 

N  1.01 0.001  1 0.24 -0.18 -0.13 0.89 -0.26
log k (−log M)  6.77 0.03   1 -0.99 -0.38 0.33 -0.13
log κ  -2.34 0.03    1 0.38 -0.24 0.04
Δh (kJ mol-1)  -1.84 0.01     1 -0.28 0.04

Δη(kJ mol-1)  -14.73 0.07      1 -0.57
Δhdil (kJ mol-1)  0.19 0.01       1

2
    1.92                

a. The general DMB in terms of the cumulative binding parameters for a receptor with n = 2 is shown in eq 
S59. 
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In the bottom panel of Figure S5A, we observe a large deviation between the experimental and 

the fitted values for titration points near Φ = 1.0. This large discrepancy is due to the absence of 

the fitting parameter N, which shifts the inflection point of the dH titration curve. As a result, we 

obtained a large value for the reduced chi-square parameter ( 2
  = 5.45) with the sequential 

binding sites model. As shown in the section 5.4 of the main text, our DBM gives a much lower 

2
  value by including the fitting parameters N and Δhdil in the algorithm. 

In Figure S5B, the titration curve was analyzed using the two-sites model included in Origin, 

which is based on the assumption of independent binding sites. This binding model contains two 

stoichiometry coefficients (N1, N2), one for each site, and it is similar to a DBM with 

independent interactions between the two sites (eq S75). The DBM for a receptor with two sites 

and two stoichiometry coefficients, as the one included in Origin, is represented with the binding 

polynomial 

 1 2
11 21(1 [X]) (1 [X])N N

MP k k    (S93) 

After following the steps described in section B.3, we obtain the following expression to 

evaluate the calorimetry titration curves 
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 (S94b) 

If the DBM contains a single stoichiometry parameter (N), the terms N1 and N2 in eqs S93 and 

S94 are equivalent (i.e., N = N1 = N2) and the dimensionless parameters c(1) and c(2) are evaluated 

with the expressions  

 11 2) 1(1 (2)· ·,T Tanc N M k c N M kd     (S95) 
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As in the case of data fitted to the sequential sites model in Origin, the heat of dilution was 

adjusted manually until we obtained a minimum value of 2
 . The residuals obtained with the 

two-sites model show a random distribution of the difference between the experimental and the 

fitting points (bottom panel, Figure S5B). Thus, this model would seem as a better choice for the 

experimental data in comparison to the sequential sites model included in Origin. However, as 

described below, the two-sites model is over-parameterized since only one stoichiometry 

coefficient is required. 

We summarize the fitting results of the non-linear regression analysis with the binding models 

that account for independent binding sites in Table S2. There is good agreement between the 

fitting values obtained with the DBM constrained for two independent sites with one 

stoichiometry coefficient and the model for two-sites in Origin. As noted in the main text, one 

would expect a lower 2
  with a nested model that contains an additional stoichiometry 

parameter. However, the 2
  values for the DBM and the two-sites model in Origin are nearly 

equal. Both models contain the same number of fitting parameters; hence, it is not possible to 

Table S2. Thermodynamic and statistical parameters for the titration of Gd(III) with sodium citrate in MES Buffer 
(100 mM, pH 5.5) obtained with the DBM constrained for two independent binding sites. 

Binding 
Parameters  DBM Origin Correlation Matrix 

  
Best Fit 
Value 

+/- 
Best Fit 
Value 

+/- 
       

N or N1   1.01 0.001  0.97 0.003  1 0.24 0.53 -0.15 0.90 -0.26
N2    1.02 0.004    
log k11 (−log M)  7.07 0.03  7.19 0.10   1 0.14 -0.48 0.30 -0.13
log k21 (−log M)  4.13 0.004  4.14 0.01    1 -0.05 0.76 -0.78
Δh1 (kJ mol−1)  -1.83 0.01  -2.03 0.01     1 -0.16 0.05
Δh2 (kJ mol−1)  -16.59 0.07  -16.72 0.07      1 -0.58
Δhdil (kJ mol−1)  0.19 0.01  0.21a        1

2
   1.92b   1.96         

a. In Origin, the heat of dilution was adjusted manually by adding or subtracting small heat values (ca. 0.02 
kJ·mol−1) until we obtain a minimum value for 2

 . 

b. We also performed non-linear regression analysis with the DBM where the heat of dilution Δhdil  was held 
constant. This analysis gave a similar 2

  value of 1.91. 
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directly perform an F-test14 to evaluate the validity of the additional stoichiometry parameter. In 

order to make a meaningful comparison with the F-test, we performed an additional non-linear 

regression analysis of the titration where the heat of dilution in the DBM was held constant. The 

resulting reduced chi-square value for this regression analysis was 2
 = 1.91, which gives an Fχ 

= 0.67 and FCrit,0.05 = 4.03 for a model with an additional binding parameter. Since Fχ < FCrit, 

there is at least 95% probability that the additional binding parameter is not statistically valid. 
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F. Figures 

Figure S1. Titration representation of the average ligand binding XN  and differential binding 

satuation /XdN d for a receptor with one binding site (n = 1) for a titration range 0 ≥ Ф ≥ 2.0 with three 

ranges of c-values defined as follows: c ≥ 4 is considered high, gives initial values for /XdN d  ≥ 0.8, and 

is represented by ( ); c in the range 4> c > 0.25 is considered medium gives initial values for /XdN d  in 

the range 0.8 > /XdN d  > 0.2, and is represented by( ); and c ≤ 0.5 is considered low, gives initial 

values for /XdN d  ≤ 0.2, and is represented by ( ).  

 

2.01.00.0

Φ (neq)

1.0

0.8

0.6

0.4

0.2

0.0

N
X

High

Medium

Low

A

 

2.01.00.0

Φ (neq)

1.0

0.8

0.6

0.4

0.2

0.0

dN
X

/d
Φ

High

Medium

Low

B

 



S30 

 

Figure S2. Titration representation of XN  and /XdN d for a receptor with one binding site (n = 1) 

and three ranges of c-values defined as follows: c ≥ 4 is considered high, gives initial values for /XdN d  ≥ 

0.8, and is represented by ( ); c in the range 4 > c > 0.25 is considered medium, gives initial values for 

/XdN d  in the range 0.8 > /XdN d  > 0.2, and is represented by( ); and c ≤ 0.25 is considered low, 

gives initial values for /XdN d  ≤ 0.2, and represented by ( ). By increasing the end value of the degree 

of titration from 2.0 to 5.0 (A) and from 2.0 to 25.0 (B), we can the observe the hyperbolic shape of XN for a 

titration with a medium and low c value, respectively. C) The differential binding curve /XdN d  has a 

nearly sigmoidal shape for a titration with medium c values in the titration range from Φ = 0 to Φ = 5.0. C) 
By increasing the end value of the degree of titration from 2 to 25, we observe the hyperbolic shape of a 

titration with low c values. D) The plot of /XdN d over the titration range from Φ = 0 to Φ = 25 shows that 

a titration with either a medium or a low c value appears to have a decaying exponential shape. The values of 

differential binding seem to be clustered in the degree of titration Φ < 10. The value of /XdN d  changes at 

a slow rate for titration points Φ > 10. 
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Figure S3. Semi-logarithmic representation of XN  and /XdN d for a receptor with one binding site (n 

= 1) and three ranges of c-values defined as follows: c ≥ 4 is considered high and gives initial values 

/XdN d  ≥ 0.8. and is represented by ( ); c in the range 4> c > 0.25 is medium and is represented 

by( ); and c ≤ 0.25 is low and is represented by ( ). 
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Figure S4. Titration representation of differential binding curves /XdN d for a receptor with one 

binding site (n = 1) in each titration range: A) Differential binding curves with a high c value (c ≥ 4) have a 

sigmoidal shape when plotted with respect to the degree of titration Φ. B) The sigmoidal shape of /XdN d  

for titrations with medium c values (4 > c > 0.25) is shown by using a semi-logarithmic representation of the 

degree of titration (i.e., log Φ). C) Titration experiments with a weak c value (c ≤ 0.25) also have a sigmoidal 

shape when plotted with respect to log Φ and the differential binding curve is divided by c. The term pc is the 

negative log base 10 for c as given by pc = –log c. 
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Figure S5. Titration curves for the averaged the differential heat per mole values from three titrations. 

The error bars in each titration curve indicate the standard deviation (σk) from the averaged dH values. The 

solid lines indicate the fitting curves obtained with the sequential binding sites (A) and the two-sites (B) 

models in Origin 7.0. The residuals obtained from the weighted non-linear least-squares regression analysis 

for each model are shown at the bottom of each panel. The reduced chi-square values ( 2
 ) for the sequential 

and independent bindings sites are 5.45 and 1.96, respectively. 
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