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Abstract

Our defenses against infection rely on the ability of the immune system to
distinguish invading pathogens from self. This task is exceptionally chal-
lenging, if not seemingly impossible, in the case of retroviruses that have
integrated almost seamlessly into the host.This review examines the limits of
innate and adaptive immune responses elicited by endogenous retroviruses
and other retroelements, the targets of immune recognition, and the con-
sequences for host health and disease. Contrary to theoretical expectation,
endogenous retroelements retain substantial immunogenicity, which man-
ifests most profoundly when their epigenetic repression is compromised,
contributing to autoinflammatory and autoimmune disease and age-related
inflammation. Nevertheless, recent evidence suggests that regulated im-
mune reactivity to endogenous retroelements is integral to immune system
development and function, underpinning cancer immunosurveillance, re-
sistance to infection, and responses to the microbiota. Elucidation of the
interaction points with endogenous retroelements will therefore deepen our
understanding of immune system function and contribution to disease.
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INTRODUCTION

To mount an appropriate response against infectious pathogens, the immune system must gauge
the threat each pathogen poses, by analyzing its molecular components and their dissimilarity
to the host. This task is hindered by enormous variability in pathogen persistence and immuno-
genicity (1). These two properties are intricately linked, as pathogen persistence in the host
requires evasion of host immunity. Consequently, many pathogens have evolved mechanisms
for stealth or active suppression of the immune response (1). Thereby, life-long infection can
be achieved, in spite of or at an equilibrium with host immunity. An example of this strategy is
mimicry, whereby pathogen components molecularly or functionally resemble the host.1 With
all their components made by the host cell, viruses are particularly successful at mimicry, which
they use at multiple levels.

Molecular mimicry has long been proposed as a strategy that allows persistence of pathogens
whose antigens are similar to host antigens by exploiting self-tolerance (2). However, as self-
tolerance may be incomplete, molecular mimicry of T cell and B cell antigens is also a potential
trigger of autoimmunity (3). Viral mimicry of key host immune mediators also allows viruses to
suppress or subvert host immunity, and several viruses express functional host protein mimics,
such as cytokines, chemokines, and their receptors (4), or antagonists of antiviral host signaling
cascades, such as the interferon response (5, 6).

Blurring the boundaries between virus and host is an evolutionary strategy of many virus fam-
ilies establishing chronic infection, but none has taken it to the extreme form that retroviruses
have.By virtue of their ability to integrate functional copies of their genome into the host germline
DNA, they can become a true part of the host. Indeed, our DNA is host to hundreds of thousands
of retrovirus integrations, acquired over successive waves of retrovirus infection and further am-
plification in the germline. It is also host to numerous other types of retrotransposable elements,
collectively referred to here as endogenous retroelements (EREs): genomic parasites that also rely
on reverse transcription and integration of their genomes into the host DNA.

Although the vast majority of ERE integrations are mutated, incomplete, or defective genomic
copies, many have retained the ability to complete some or all of the steps in the retroelement
replication cycle, including transcription, translation or reverse transcription, and reintegration.
Retention of this ability, combined with the sheer number of EREs in the genome, provides an
extensive interface of interaction with host physiology and pathology. The influence of regulatory
sequences provided by EREs on host gene function has long been recognized (7, 8), and immune
genes are no exception.The full extent to which EREs shape immune gene function and evolution
is likely underestimated owing to the incomplete annotation of ERE transcripts, but appreciation
is growing and comprehensive efforts are underway; these are not the focus of this review.

This extreme form of parasitism—where EREs become part of self—may be considered the
endgame for host immunity against them. Nevertheless, both innate and adaptive host immune
responses against EREs are observed, and the supporting evidence is reviewed here. Also reviewed
is the potential association of retained ERE immunogenicity not only with the control of EREs
themselves, but also with overall immune reactivity to foreign or other self-targets, whereby they

1The term viral mimicry is used here to describe a virus strategy whereby virus components molecularly or
functionally resemble respective host components. In its simplest form, this strategy is analogous to those
employed by many organisms that avoid detection by blending into the background, such as the octopus
mimicking the seabed, as Aristotle noted. The term is also used elsewhere in the literature to describe the
reverse phenomenon, whereby the host produces molecular patterns that resemble those usually produced
during virus infection and that induce an antiviral state, characterized by a type I interferon response.Where
interferon responses are triggered by endogenous retroviruses—which are, rather than mimic, viruses—we
refer to this phenomenon simply as induction of interferon responses.
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might tune resistance to infection, equilibrium with commensals, immunosurveillance of cancer,
or development of autoimmunity.

ENDOGENOUS RETROELEMENT LIFE CYCLE AND EVOLUTION

With nucleic acids being the cornerstone of all life, it is perhaps expected that genetic material
will be exchanged between exogenous viruses, EREs, and their hosts, providing the substrate for
coevolution. The focus in this review is on EREs (class I transposable elements), defined as trans-
posable elements with reverse transcription and host germline integration of their genomes as
obligatory steps in their replication cycle (9). This definition excludes DNA (class II) transposable
elements, which lack an RNA intermediate (9). It also excludes endogenous Borna-like N (EBLN)
elements that are fixed in the human population (10) and human herpesvirus 6 copies, which are
found in the germline of ∼1% of humans, the integration of which was likely accidental.

EREs in the human genome comprise phylogenetically diverse families, but a major distinc-
tion relates to their genomic structure and presumed origin (Figure 1). Deriving from germline
infection by exogenous retroviruses, endogenous retroviruses (ERVs) exhibit the typical structure
of retroviral genomes with gag, pro-pol, and env open reading frames (ORFs) flanked by directly
repeated long terminal repeats (LTRs). Whereas gag, encoding capsid proteins, and pro-pol, en-
coding enzymatic activities, are necessary for autonomous replication of ERVs, env, encoding the
envelope glycoprotein that mediates entry, is necessary only for infection of new target cells. Con-
sequently, once in the germline, evenERVs that have lost the envORF can still amplify their copies,
sometimes more successfully, by retrotransposition (11).

The ability of ERVs to complete the replication cycle is ultimately disrupted by accumulated
mutation or loss of ORFs or LTR sequences over evolutionary time. Indeed, the vast majority
of ERVs in mammalian genomes are replication defective, with only the most recently acquired
copies retaining functional ORFs or replication capacity, which varies between species. This
also varies within species, as recent ERV integrations may also exhibit insertional polymorphism
between individuals.

Likely owing to selection of phenotypic traits, such as cancer susceptibility, caused by ERV
insertional mutagenesis during their establishment, laboratory mouse strains carry an unusually
high burden of complete or near-complete ERVs (12). Germline integrations of replication-
competent mouse mammary tumor viruses (MMTVs) and murine leukemia viruses (MLVs) are
present in several laboratory mouse strains, able to transmit as both endogenous and exogenous
retroviruses (13). This duality confounded early investigations into the genetics of cancer but ul-
timately led to the discovery of ERVs (12). Laboratory mouse strains lacking endogenous MLVs
that are able to replicate inmurine cells still carry multiple related defective integrations withmost
ORFs still intact. When expressed in the same cell, these defective copies collectively produce all
the components required to form a transducing retrovirus particle, with each functional com-
ponent donated by a different provirus. Such trans-complementation permits the mobilization
of individually defective endogenous MLVs, generating new integrations. Moreover, recombina-
tion between defective endogenous MLV genomes during such mobilization can also restore the
replication defects, giving rise to fully infectious MLVs, transmitted as exogenous retroviruses.
This process is exemplified by the restoration of infectivity, through recombination, of Emv2, a
single-copy defective endogenous MLV with an ecotropic env in commonly used C57BL/6 mice
(14–18). Infectious Emv2 recombinant MLVs have been discovered in murine cancer cell lines, as
well as in immunodeficient mouse strains, highlighting the relatively high frequency of infectivity
restoration (14–18).

Human ERVs (HERVs) are thought to be generally older and, therefore, more defective than
murine ERVs. Consequently, no HERV is thought to have retained full replication capacity.
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Nevertheless, proviruses with seemingly intact ORFs are found within the HERV-K(HML-2)
family (19).The humanMMTV-like (HML) families ofHERV-K share similarities withMMTVs,
as the name suggests, but represent diverse groups of proviruses that entered our ancestors’
germlines at different times during evolution (19). The HERV-K(HML-2) family in particular
includes the most recently acquired integrations, several of which are human specific and inser-
tionally polymorphic (19). It also includes the most complete proviruses compared to any other
family, leading to speculation of a naturally infectious HERV-K(HML-2) provirus. However, ev-
idence for replication of a HERV-K(HML-2) virus in humans is still lacking. HERV-K(HML-2)
proviruses appear unable to complete the replication cycle in humans and chimpanzees, but
recent analysis of the gorilla genome identified HERV-K(HML-2) viruses that bear the hallmarks
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Figure 1 (Figure appears on preceding page)

Genome structure and replication cycles of LTR (left) and non-LTR retroelements (right). Genomes of canonical LTR retroelements,
including ERV and MaLR (green), and of non-LTR retroelements, including LINE-1 (orange), SINE, and SVA (red). SVAs are
composite repetitive elements comprising a CCCTCT repeat section (first gray rectangle), two Alu-like sequences in reverse orientation,
a VNTR section (second gray rectangle), and a region derived from ERV env and 5′ LTR. Also depicted are the env (envelope), gag
(group-specific antigen), and pro-pol (protease-polymerase) ORFs of the complete ERV and the orf1 and orf2 ORFs of the complete
LINE-1. Also depicted are the poly-A regions (An) at the 3′ end of non-LTR elements. Not depicted are accessory ORFs in more
complex ERVs [e.g., rec and np9 in certain HERV-K(HML2) proviruses] or the orf0 present in reverse orientation in the 5′ UTR of
LINE-1. Transcribed ERV RNA is exported to the cytoplasm, where it serves as mRNA for translation of functional proteins or as
genomic RNA. Assembly of ERV particles typically takes place at the plasma membrane, with budding into the extracellular space, but
ERVs lacking env and MaLR elements have adopted intracellular budding, such as into the ER or other subcellular locations. Reverse
transcription of ERV genomic RNA is primed by host tRNA in the uncoated virus particle core and the pre-integration complex is then
imported into the nucleus for integration of the virus DNA into the host DNA. Transcribed LINE-1 RNA is also exported to the
cytoplasm acting as mRNA and genomic RNA, with the translated proteins, particularly ORF2p, which is made in limited amounts,
exhibiting cis preference for the LINE-1 mRNA that has produced it. Nevertheless, SINE or SVA RNA, and, in principle, any
polyadenylated host RNA (self-RNA), may also bind ORF2p. The complexes are imported into the nucleus, where ORF2p attacks host
DNA, which is used to prime reverse transcription of associated RNA and integration of the complementary DNA (cDNA) copy.
Abbreviations: ER, endoplasmic reticulum; ERV, endogenous retrovirus; LINE-1, long interspersed nuclear elements 1; LTR, long
terminal repeat; MaLR, mammalian apparent LTR retrotransposon; ORF, open reading frame; SINE, short interspersed nuclear
element; SVA, SINE-VNTR-Alu; UTR, untranslated region; VNTR, variable-number tandem repeat.

of very recent integration, raising the possibility of an infectious HERV-K(HML-2) virus still
present in gorillas (20). Moreover, retrotransposition of a HERV-K(HML-2)-based reporter
construct and mobilization of endogenous HERV-K(HML-2) have recently been reported in
cells expressing the pluripotency transcription factor SOX2 in vitro (21). Thus, depending on
the mouse strain, murine ERVs are able to complete the replication cycle in part or in full, and
HERVs may be able to complete at least some of the steps.

Grouped with ERVs are also the mammalian apparent LTR retrotransposons (MaLRs), whose
genomes are also flanked by LTRs (Figure 1). These, however, are nonautonomous ancient retro-
transposons that lack the canonical retrovirus ORFs and have relied on ERVs for transposition
(22). In addition to these LTR retroelements (ERVs and MaLRs), a larger proportion of the
genome comprises EREs lacking LTRs (Figure 1). Phylogenetic analyses of the reverse tran-
scriptase (RT) suggest common ancestry of LTR and non-LTR retroelements (9, 23). However,
the replication cycles of these two types of ERE do exhibit notable differences. Long interspersed
nuclear elements 1 (LINE-1) are a group of abundant non-LTR retroelements that contain au-
tonomous retrotransposition-competent copies (24). These carry two functional ORFs, encoding
an RNA-binding protein (ORF1p) and an enzyme with endonuclease and RT activities (ORF2p).
Importantly, reverse transcription of LINE-1 RNA is primed by the integration target site and,
therefore, takes place in the nucleus. Although ORF2p exhibits cis preference for LINE-1 mRNA
binding, it is able to bind unrelated RNA transcribed from other EREs or cellular genes. Indeed,
nonautonomous retrotransposition of other groups of non-LTR retroelements, including the pro-
lific primate-specific Alu elements and other short interspersed nuclear elements (SINEs), and the
hominid-specific composite SINE-VNTR-Alu (SVA) elements, relies on LINE-1 ORF2p (24).

The distinct life styles of LTR and non-LTR retroelements (Figure 1), together with their
relative copy number and transcriptional patterns, can greatly influence the creation of ligands
for innate and adaptive immune sensors and receptors and, hence, ERE immunogenicity.

ENDOGENOUS RETROELEMENTS AND INNATE IMMUNITY

All cellular organisms possess cell-intrinsic defenses against parasitism, but the evolution of multi-
cellular organisms provided the opportunity to couple such cell-intrinsic immunity to organismal
immunity through cellular communication. One prime example is the evolution of the interferon
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response system, initiated in some cells to warn other cells of infection (5, 6). Given the vast array
of viruses and other parasites the immune system has to recognize and defend against, numer-
ous sensors or receptors for different molecular patterns have evolved and are strategically placed
in different subcellular locations (25–27). While some sensors have specificity for molecular pat-
terns that are exclusively expressed by microbes, others recognize patterns that are also produced
by the host but are usually shielded under physiological conditions (25–29). Consequently, dis-
crimination between self-expressed and non-self-expressed ligands by the latter groups of sensors
is not always absolute. Such discrimination may be particularly challenging for ligands expressed
by EREs, which straddle host and virus.

Immune homeostasis would require the establishment of equilibrium between physiologically
present ligands, including those potentially produced by EREs and tonic or regulated innate im-
mune signaling. Disruption of this equilibrium by the introduction of foreign molecular patterns
or dysregulation of self-expressed ligands would then trigger an innate immune response. As in-
nate immune signaling cascades generally converge, particularly when type I interferon responses
(referred to here as interferon responses) are elicited, it is often challenging to identify a single
source or trigger for the response. Indeed, ligands from diverse sources can trigger the same sensor,
and diverse sensors can elicit overlapping immune responses, such as transcription of interferon-
stimulated genes (ISGs). Cases where specific ERE-expressed ligands uniquely initiate a signaling
cascade, leading to a specific outcome, are the focus of intense investigation and are beginning
to emerge (30, 31). However, much of the existing evidence points to a contribution of EREs to
innate immune responses that may also be triggered by alternative self or foreign ligands, with the
relative contribution of each source depending on the context (28, 29).

Innate Immune Stimulation by Long Terminal Repeat Elements

Similarly to exogenous retroviruses, individual steps in the typical replication cycle of ERVs cre-
ate nucleic acid replication intermediates with the potential to engage multiple innate sensors
(Figure 2). Single-stranded RNA (ssRNA) produced by ERV transcription is not inherently more
immunogenic than other cytosolic RNA transcribed from cellular genes, but it may gain better
access to the endosomal ssRNA sensors Toll-like receptor 7 (TLR7) and TLR8. The formation
of transducing particles by complementation of defective ERVs provides the opportunity for such
endosomal sensors to detect incoming ERV particles the same way incoming infectious viruses are
detected. Moreover, for ERVs that have lost env and have adopted an intracellular life style, virus
budding into the endoplasmic reticulum (ER) or endosomal vesicles may provide more direct ac-
cess to endosomal sensors. More broadly, TLR7 is also accessible to cytoplasmic RNA through
autophagy (32). Studies of genetic deficiencies in TLR7 or associated molecules in mice uncov-
ered their critical role in the control of infectious recombinants derived from endogenous MLV
(17, 33). However, ssRNA recognition likely targeted rescued recombinants more than defective
endogenous MLV precursors in this context. Extracellular HERV-K(HML2) RNA has also been
proposed as an endogenous ligand for TLR7 and TLR8 (34).

Reverse transcription of ERV genomes may also trigger innate sensors. Cytosolic DNA sen-
sors lack sequence specificity and can be activated by multiple sources of DNA (26). Evidence
supporting a role for reverse-transcribed DNA comes from studies of RT inhibitors in humans
and animal models (30, 35–37), although the use of such inhibitors does not discriminate between
ERV and LINE-1 RT, and it is more likely that these effects are mediated by LINE-1 RT, which,
in principle, can reverse transcribe any polyadenylated RNA. Nevertheless, ERV RT has been
specifically implicated in innate immune activation in some settings (38).

Unrelated to the typical retrovirus replication cycle, bidirectional expression of ERVs can gen-
erate complementary RNA that forms long double-stranded RNA (dsRNA), particularly in the
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context of natural or epigenetic drug-induced hypomethylation of cancer cells, which has been
the subject of excellent reviews (31). Bidirectional ERV transcription may result from the bidi-
rectional promoter activity of the proviral LTRs or from alternative adjacent promoters. Of note,
dsRNA can form from certain IFN-γ-inducible loci carrying antisense ERV integrations in the
3′ untranslated region (UTR), pairing sense transcripts initiated by the STAT1-activated gene
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Figure 2 (Figure appears on preceding page)

Immunogenicity of canonical and aberrant ERE nucleic acid replication intermediates. (a) Endosomal sensors of ssRNA, TLR7, and
TLR8 may be triggered by ERV genomic RNA. This can derive from incoming extracellular virus particles accessing the endosome
after cell entry or from intracellularly formed particles gaining access to the endosome through alternative routes, including autophagy
(not depicted). Not depicted is the signaling cascade initiated by TLR7 and TLR8 ligation, which ultimately leads to the transcriptional
induction of ISGs. (b) Cytoplasmic DNA sensors such as cGAS may be triggered by cDNA produced by ERVs, as part of the typical
ERV replication cycle, or by non-LTR retroelements through aberrant cytoplasmic reverse transcription. The latter can be self-primed
(as in the case of Alu) or primed by an as yet unknown mechanism. Triggering of cGAS and its downstream adaptor STING (not
depicted) then leads to an ISG response. Separately, the endonuclease activities of ERV polymerase and LINE-1 ORF2p catalyze DNA
breaks during the replication cycle, and the ensuing DNA damage may indirectly trigger an ISG response. (c) Potentially immunogenic
dsRNA is also aberrantly produced by LTR and non-LTR retroelements through distinct mechanisms. Bidirectional transcription of
EREs generates intermolecular complementary RNA, forming dsRNA. Transcription of inverted SINE/Alu repeats generates regions
of intramolecular complementarity leading to the formation of hairpin loops. More enigmatic is the formation of Z-form dsRNA, also
enriched for SINE/Alu sequences. The immunogenicity of hairpin loop and Z-form dsRNA may be reduced by ADAR-mediated
editing and sequestration, respectively, but increased dsRNA formation or insufficient ADAR activity permits the triggering of several
dsRNA sensors, including MDA5, RIG-I, PKR, and TLR3, initiating signaling cascades that converge to an ISG response. The Z-form
dsRNA-binding protein ZPB1, which typically induces necroptosis or apoptosis, also contributes to the ISG response triggered when
ADAR activity is reduced. Abbreviations: cDNA, complementary DNA; dsRNA, double-stranded RNA; ERE, endogenous
retroelement; ERV, endogenous retrovirus; ISG, interferon-stimulated gene; LINE-1, long interspersed nuclear elements 1; LTR, long
terminal repeat; SINE, short interspersed nuclear element; ssRNA, single-stranded RNA; SVA, SINE-VNTR-Alu; TLR, Toll-like
receptor; VNTR, variable-number tandem repeat.

promoter and antisense transcripts initiated by the ERV LTR (39). ERV-derived dsRNA has been
reported to activate TLR3 or MDA5 and downstream MAVS (40, 41). ERV-derived dsRNA pro-
duced by cancer cells has also been suggested to activate TLR3 in endothelial cells inmouse cancer
models (42).

In addition to immunogenic nucleic acid replication intermediates, expression of canonical
ERV proteins has also been associated with triggering of immune signaling or inflammation. Such
activity may arise from the biological function of a particular ERV protein. For example, the Rec
accessory protein of HERV-K(HML2) is a functional homolog of the Rev and Rex proteins of
HIV-1 and human T cell leukemia virus I (HTLV-I), respectively, necessary for nuclear export
of unspliced or partially spliced virus RNA (43). Rec-mediated export of potentially immuno-
genic RNA has been implicated in the transient innate immune activation during human embryo
development, where ERVs are expressed as part of global epigenetic reprogramming (44).

The envelope glycoproteins of certain ERVs, including Emv2 in mice and HERV-K(HML2)
in humans, have recently been suggested to initiate signaling cascades in immune and cancer cells,
when ligated with anti-envelope antibodies (45–48). Further dissection of the signaling pathways
and their potential role in virus replication will help determine whether such activity is part of
the physiological function of envelope glycoproteins. Similarly, overexpression of Syncytin-1, an
exapted envelope glycoprotein (49), triggers inflammatory responses in human astrocytes in vitro
and in transgenic mice in vivo (50), and overexpression of HERV-K(HML2) envelope glycopro-
tein triggers death in human neurons in vitro and in transgenic mice in vivo (51). An inflammatory
response has also been reported in the brains of transgenic mice with genetic deletion of the
epigenetic repressor Trim28 in neural progenitor cells, which was linked with upregulation and
accumulation of ERV-derived proteins, such as aggregates of intracisternal A particle (IAP) Gag
proteins (52). Cell death has also been attributed to ERV protein accumulation following deletion
of the epigenetic repressor Setdb1 in pro-B cells (53). It remains unclear whether the reported
toxicity of ERV proteins derives from their biological activities or their accumulation in sensitive
cell types. Lastly, immunosuppressive activity has been described for a shared domain of several
ERV envelope glycoproteins (49), but the underlying mechanism by which this activity may be
exerted remains incompletely understood.
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Innate Immune Stimulation by Non-LTR Elements

Nucleic acid species and replication intermediates derived from non-LTR retrotransposons also
possess immunogenic potential (Figure 2). Transfected Alu RNA has been reported to activate
TLR7 and TLR8, but also to increase the immunogenicity of associated proteins in ribonucle-
oprotein complexes (54, 55). Similarly to ERVs, bidirectional transcription of LINE-1 elements
following loss of epigenetic regulators such as SETDB1 or components of the HUSH (human
silencing hub) complex generates potentially immunogenic dsRNA in human cells (56, 57).

A connection between ERE derepression and the interferon response that follows treatment of
cells with the epigenetic drug 5-aza-2′-deoxycytidine (5-Aza) has long been established. Leonova
et al. (58) implicated dsRNA formation by SINE repeats, independently transcribed by poly-
merase III, in the induction of a suicidal interferon response triggered by 5-Aza treatment of
murine primary cells, as well as cancer cell lines lacking p53. These findings suggested the ex-
istence of an alarm system monitoring the transcriptional activity of normally repressed EREs
that, when triggered, leads to the induction of potent interferon responses. Subsequent studies
with 5-Aza treatment of cancer cell lines (40, 41) or loss of the epigenetic repressor LSD1 (59)
focused on ERVs as the potential dsRNA triggers of the interferon response. However, a major
role for SINEs in the induction of the interferon response was recently highlighted by studies
of the dsRNA-specific adenosine deaminase ADAR1, loss of which causes embryonically lethal
interferon induction, dependent on recognition of self-dsRNA through MDA5 and its down-
stream adaptorMAVS (60–62). ADAR1 catalyzes adenosine-to-inosine (A-to-I) editing in dsRNA,
thereby disrupting adenosine:uracil (A:U) base pairing and complementarity (63, 64). Investiga-
tion of ADAR1 targets revealed the dominant contribution of dsRNA structures formed by the
transcription of inverted Alu repeats (63, 64). The presence of two or more Alu copies in reverse
orientation in a single RNA transcript provides the sequence complementarity to form long hair-
pin loops that activate dsRNA sensors. Indeed, the lethal interferon response that develops in the
absence of ADAR1 activity is thought to be driven by unedited dsRNA from invertedmurine SINE
(62) and human Alu repeats (65, 66), typically in the 3′ UTR of a limited number of genes. More-
over, thorough investigation of immunogenic dsRNA bound to MDA5 in 5-Aza-treated cancer
cells identified inverted Alu repeats, and not ERVs as previously thought, as the main source (67).
Under these conditions, intronic and intergenic inverted Alu repeats that are normally prevented
from reaching the cytoplasm predominated the MDA5-bound fraction (67).

In addition to activating the MDA5-MAVS signaling cascade, self-dsRNA has recently been
suggested to trigger inflammatory cell death through activation of ZBP1, a sensor of left-handed
double-helical (Z-form) DNA and RNA (68–75). Where examined, the origin of Z-form dsRNA
activating ZBP1 could be traced back to EREs. Indeed, activation of ZBP1 in mice with defi-
ciency in necroptosis regulator RIPK1 or FADD (68) and in humans and mice with deficiency
in SETDB1 (69) has implicated dsRNA from SINEs and ERVs, respectively. Moreover, several
studies have now described an essential role for ZBP1 in the inflammatory cell death and fatal dis-
ease that develops when ADAR1 activity is reduced or when the Zα domain of its p150 isoform,
responsible for Z-form dsRNA binding, is mutated (71–75).Mutation of the ADAR1 p150 Zα do-
main and, therefore, loss of binding to Z-form dsRNA do not appear to compromise the overall
editing activity of ADAR1 (72, 73, 76). Although a small proportion of Z-form dsRNA, mostly
derived from inverted SINE repeats, may be edited in a Zα domain–dependent manner (72, 76),
differential interferon inducibility of ADAR1 isoforms may also produce such shifts in editing tar-
gets. These observations suggest that ADAR1 p150 may prevent ZBP1 activation by sequestering,
rather than editing, Z-form dsRNA (72, 73, 76). The intersection of ADAR1 and ZBP1 pathways
remains to be investigated, but it may involve physical interaction thought the Zα domains bind-
ing to the same Z-form dsRNAmolecule, or competition for immunogenic SINE-derived Z-form
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dsRNA (71, 75). Of note, while ZBP1 activation has been primarily connected with the induction
of various forms of cell death, including necroptosis, recent studies also revealed an indispens-
able contribution to the MAVS-dependent interferon response triggered when ADAR1 Z-form
dsRNA binding is lost (73, 75).

Thus, Z-form dsRNA, or incompletely edited A-form dsRNA derived from SINEs, can trigger
multiple signaling cascades converging on the interferon response. A central role for SINE-
derived dsRNA in triggering an interferon response in multiple settings is further supported by
the observation that expression of SINEs that can generate Z-form dsRNA or are targeted for
A-to-I editing by ADAR1 is also induced by interferon (68, 72, 77). Moreover, their sensors, in-
cluding ZBP1, as well as the Zα domain–bearing p150 isoform of ADAR1, are also interferon
inducible in mice (71) and in human cancer (78), pointing to a finely regulated feed-forward loop
of interferon induction.

Potentially immunogenic nucleic acids are additionally produced by the reverse transcrip-
tion of LINE-1 and SINE RNA, a process that relies on LINE-1 ORF2p (79). A role for
ORF2p-mediated reverse transcription was supported by findings in rare syndromes caused by
dysregulation of nucleic acid metabolism or sensing, such as Aicardi-Goutières syndrome (AGS)
(29). LINE-1 derepression and elevated ORF2p activity have been proposed to trigger the in-
terferon response and inflammation that accompanies cellular senescence (80, 81). Furthermore,
ORF2p activity is considered responsible for the interferon response that increases tumor im-
munogenicity in mice and humans, an enhanced form of which has been described for the
cancer-resistant blind mole rat (82).

To prevent recognition of nuclear DNA, the activity of DNA sensors, such as cGAS and its
downstream adaptor STING, is typically restricted to the cytoplasm (26). Although target-primed
reverse transcription mediated by ORF2p is restricted to the nucleus, recent evidence suggests
that LINE-1 and SINE complementary DNA (cDNA) can also be made in the cytoplasm. Indeed,
LINE-1 cDNA and self-primed Alu cDNA have been detected in the cytoplasmic fraction of
murine or human cells (80, 83), providing a possible mechanism for triggering the interferon
response.

Lastly, the fully functional ORF2p, as well as numerous ORF2p copies that retain only the
endonuclease activity, can introduce DNA double-strand breaks, triggering a DNA damage
response (84). In turn, genomic DNA damage can initiate the cGAS-STING signaling cascade,
leading to an interferon response (85), thus providing an alternative means of interferon activation
by ORF2p.

ENDOGENOUS RETROELEMENTS AND ADAPTIVE IMMUNITY

The combinatorial process of T cell receptor (TCR) and B cell receptor (BCR) gene segment re-
arrangement produces random specificities, some of which may be directed against self-antigens.
Consequently, powerful mechanisms including negative selection of potentially autoreactive anti-
gen receptors; naturally suppressive cells, such as regulatory T cells (Tregs); and inhibitory
ligand/receptor axes, such as PD-L1/PD-1, have evolved to ensure immunological tolerance to
self-antigens. Nevertheless, autoreactive TCRs and BCRs do develop and do occasionally break
through regulatory and inhibitory controls to cause autoimmunity.

As part of self, proteins encoded by EREs should also be immunologically tolerated by the
adaptive immune repertoire.However, specific features of ERE proteins may substantially modify
their immunogenic or tolerogenic activity.

Firstly, certain endogenous retroviral envelope glycoproteins exhibit long-recognized super-
antigen activity for reactive TCR Vβ families in mice and humans (86). These include several
endogenous MMTV proviruses in mice (87) and a HERV-K18 provirus in the first intron of the
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CD48 gene in humans (88). Superantigen reactivity may be particularly enriched in Tregs, which
typically escape negative selection by self-antigens, including retroviral superantigens (89). Indeed,
in the commonly used C57BL/6 strain of laboratory mice, 10% of all Tregs are reactive with an
endogenous MMTV superantigen (90), and their function can be directly modulated by changes
in endogenous MMTV superantigen expression during inflammation or unrelated infection
(91, 92).

Secondly, not all ERE-encoded proteins are or need to be expressed under physiological condi-
tions. In contrast to all other host proteins, which are evolutionarily selected for a given function,
most ERE protein products are unlikely to have retained their original function or assumed new
function. Their expression is not, therefore, subject to positive selection, and it may even be ac-
tively suppressed as part of the epigenetic control that the host imposes on the transcription of
many EREs. Insufficient expression of such EREs under physiological conditions also leads to
incomplete immunological tolerance of their products and instead may create immunological ig-
norance. However, failure of these control mechanisms, as it occurs in cancer or in autoimmunity,
may also lead to immune reactivity against these otherwise ignored antigens.

A third feature of certain ERE-encoded proteins that may enhance their immunogenicity is
their assembly into inherently immunogenic structures, such as virus particles, capsids, and ribonu-
cleoprotein complexes. Formation of transducing particles through complementation between
defective proviruses, such as endogenous MLVs, and even restoration of infectivity through re-
combination, giving rise to fully infectious retroviruses (12), is greatly facilitated by better overall
conservation of ERVs in laboratory mice than in humans. Nonetheless, formation of retrovirus
particles by human ERVs has also long been suspected or directly observed. Indeed, retrovirus par-
ticles have been detected in normal human placentas (93–95), attributed to HERV-K proviruses
(96). Similarly, retrovirus particles produced by human teratocarcinoma cell lines were traced
to HERV-K proviruses (97). HERV-K(HML-2)-derived particles are present in the plasma of
lymphoma patients and can mobilize HERV-K-related proviruses (98, 99). Although it remains
unclear whether other human ERVs can produce particles, the formation of particles by at least
some HERV-K proviruses would enhance the immunogenicity of HERV-K proteins, as well as
proteins from other ERVs that may be incorporated into HERV-K particles.

Lastly, comparison of the HLA class I–presented epitopes derived from ERVs with those from
other human proteins or exogenous viruses infecting humans revealed unique features of ERV-
derived epitopes that could potentially enhance their immunogenicity (100).ERV epitopes showed
higher sequence identity with virus than human protein epitopes and enrichment for amino acid
residues in specific epitope positions (100).

Adaptive Immune Responses to Endogenous Retrovirus Proteins in Humans

While the contribution to immunogenicity of unique features of ERE-encoded proteins remains
to be quantified, spontaneous adaptive immune responses against such proteins have been con-
sistently reported both in mice and in humans. The most frequent targets of adaptive immune
responses appear to be canonical ERV proteins, likely owing to better or earlier annotation of
these proteins, examples of which are listed below.

ERV3–1 envelope.One of the earliest demonstrations of adaptive immune reactivity to an ERV-
encoded protein in humans is that against the envelope glycoprotein of the ERV3–1 provirus. A
member of the HERV3 family (also known as HERV-R), ERV3–1 is a single-copy provirus on
chromosome 7q11.21 and one of the best-studied ERVs (101, 102). It is present only in old-world
primates, except gorillas, and the human copy has sustained mutations in all ORFs expect the env
ORF (101, 102). The ERV3–1 envelope glycoprotein is expressed in normal syncytiotrophoblasts
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and had been speculated to function similarly to syncytins, endogenous retroviral envelope glyco-
proteins that are essential for syncytiotrophoblast formation during placentation (49). However,
despite its preservation, the ERV3–1 env ORF carries a polymorphic premature stop codon in
∼1% of White people that does not compromise successful pregnancy (103, 104).

In early studies, sera from pregnant women, as well as those from patients with Sjögren syn-
drome or systemic lupus erythematosus (SLE), exhibited increased antibody reactivity against a
peptide corresponding to a predicted epitope from the ERV3–1 envelope glycoprotein and to
recombinant protein (105). The highest antibody levels were found in the sera from mothers
of infants with congenital heart block, a rare pregnancy-associated autoimmune disorder (105).
However, in a subsequent study of 12 mothers of infants with congenital heart block, none was
homozygous for the ERV3–1 env allele with the premature stop codon (103), arguing against a
mechanism whereby lack of immunological tolerance due to lack of ERV3–1 envelope expression
in mothers permits the induction of a pathogenic response against this glycoprotein expressed in
the fetus as a paternal alloantigen.

More recently, IgG antibodies reacting with the full-length ERV3–1 envelope glycoprotein
expressed on the target cell surface have been detected in sera from a fraction of juvenile-onset
SLE patients, as well as patients with multisystem inflammatory syndrome in children (MIS-C)
following SARS-CoV-2 infection (106). Collectively, these studies highlight a possible association
of ERV3–1 envelope antibodies with autoimmune manifestations.

HERV-K(HML-2). Arguably, the most frequently targeted canonical ERV-encoded proteins
in humans belong to the HERV-K(HML-2) family, which includes the most recent and most
complete proviruses (19). Consequently, numerous HERV-K(HML-2) proviruses in the human
genome carry intact and highly similar gag, pol, and env ORFs (19). In turn, it is often difficult to
establish which particular HERV-K(HML-2) copy might have induced a T cell or B cell response
that cross-reacts with the products of other similar copies. For example, of the 14 HERV-
K(HML-2) proviruses with a fully or partially intact env ORF in the human genome, at least
8 encode products with 95–98% amino acid identity between them and 98–99% amino acid
identity with the HERV-K(HML-2) envelope glycoprotein consensus.

T cell responses to HERV-K(HML-2) proteins have been detected primarily in the context of
cancer, targeting epitopes encoded by gag or pol ORFs (107, 108). Antibody responses to HERV-
K(HML-2) envelope glycoprotein and Gag precursor protein have also been frequently observed
in several cancer indications (109–117). Notably, antibodies reactive with HERV-K particle–
producing teratocarcinoma cells were also detected, albeit at low titers, in the sera of a small
proportion (∼4%) of healthy individuals and of pregnant women (117), suggesting that sponta-
neous autoreactivity against HERV-K(HML-2) envelope glycoproteins can arise in individuals
without overt pathological manifestations. Antibodies, primarily of the IgM class, to recombi-
nant HERV-K(HML-2) envelope glycoprotein and Gag precursor protein were also detected by
ELISA in an independent study of healthy individuals and were reported to be reduced in psoriasis
patients (118).

Antibody responses to recombinant HERV-K(HML-2) envelope glycoprotein have also been
reported in a recent study of healthy individuals and SLE patients (119). These were primarily
of IgG subclasses and were found at comparable titers between healthy donors and SLE pa-
tients. In this study, Tokuyama et al. (119) were able to pinpoint a particular HERV-K(HML-2)
provirus on chromosome 1q22, ERVK-7 (also known as HERV-K102), as the most likely source
of the targeted envelope glycoprotein. This provirus exhibited the highest expression among all
HERV-K(HML-2) proviruses examined both in healthy donors and in SLE patients and was also
upregulated in SLE patients. This study suggests that, similarly to ERV3–1, the product of a single
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HERV-K(HML-2) provirus alonemay be immunogenic and responsible for the observed immune
reactivity.

Titers of antibodies reacting with the consensus HERV-K(HML-2) envelope glycoprotein ex-
pressed on the cell surface were also comparably low in children and adolescents with autoimmune
rheumatic diseases and age-matched controls, but substantially higher in MIS-C patients (106),
indicating that such antibodies may be induced in the weeks following acute viral infection, such
as with SARS-CoV-2, but not necessarily associated with autoimmune rheumatic diseases.

HERV-E.Members of the HERV-E family have been found to be highly immunogenic particu-
larly in clear cell renal cell carcinoma (ccRCC).Graft-versus-tumor effect in a ccRCC patient who
underwent hematopoietic stem cell transplantation led to the identification of a HERV-E provirus
on chromosome 6q15 (also known as CT-RCC) as the source of the tumor-associated epitope
targeted by donor CD8+ T cells (120). This provirus shows minimal expression in healthy tissues,
including the kidney, but is strongly upregulated in ccRCC, likely through the combined effects
of epigenetic derepression, inactivation of the VHL tumor suppressor gene, and overexpression
of the HERV-E LTR transcription factor HIF-2α (121). As a result, translation products from
partial gag-pro-pol and env ORFs are produced specifically in ccRCC, triggering T cell responses
(120, 122).

A more comprehensive search of potentially immunogenic HERVs in ccRCC additionally
identified another HERV-E family member on chromosome 19q12, also expressed specifically in
this indication, with products from partial gag-pro-pol ORFs targeted by a substantial proportion
of tumor-reactive CD8+ T cells (123). The repeated identification of HERV-E family members
as the triggers of adaptive immune responses in ccRCC underlines the commonalities in their
regulation during development of this cancer type.

HERV-H.The HERV-H family is a large grouping of diverse proviruses with some unusual
characteristics. Most proviruses were acquired before the split of old-world and new-world mon-
keys about 40 million years ago. Some members were acquired even earlier than that, whereas
other members are specific to great apes (19). Despite their age, an atypically larger proportion of
HERV-H proviruses have retained proviral sequences between the two LTRs, in contrast to most
other families, whose members are predominantly in solo LTR form (124). The ORFs in the re-
tained internal sequences are not necessarily intact, and indeed, the env genes of HERV-H family
members show a decay rate that is typical of all ERVs and are highly mutated (124). Nevertheless,
numerous HERV-H family members are expressed in healthy cells and may be linked with physi-
ological processes, most notably transcriptional regulation of human stem cell pluripotency (125).
Expression of HERV-H proviruses in healthy cells does not, however, negate the immunogenicity
of all copies in the genome, and CD8+ T cell responses have been documented against products of
one particular HERV-H provirus on chromosome Xp22.3 (126). This provirus is strongly upreg-
ulated in gastrointestinal cancers, and in addition to a partial gagORF, it contains an atypical ORF
upstream of the pre-gagORF present in certain other retroviruses (127). The product of this atyp-
ical retroviral ORF, rather than the reported env product (126), was the likely target recognized
by CD8+ T cells in colorectal cancer cell lines.

HERV-W. In multiple sclerosis patients, elevated antibody reactivity has also been reported
against peptides corresponding to the envelope glycoproteins of HERV-W proviruses (128,
129), including Syncytin-1, encoded by the ERVW-1 provirus on chromosome 7q21.2 (49), and
multiple sclerosis–associated retrovirus (MSRV), a speculated but so far elusive virus thought
to be related to HERV-W proviruses (130). However, reactivity against insect cell–produced,
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full-length versions of the envelope glycoproteins revealed no reactivity against the putative
MSRV envelope glycoprotein and very rare reactivity against Syncytin-1 (131).

Additional and unconventional ERE-encoded antigens. Recent technical advances in protein
identification through mass spectrometry, as well as in detection of reactive T cells, have allowed
more comprehensive discovery of putative antigens encoded by ERVs and other retroelements,
particularly in the context of cancer.

Using a limited list of 66 annotated HERVs in conjunction with DNA barcode–labeledMHC-
I multimers, Saini et al. (132) identified CD8+ T cells reactive with numerous peptides encoded by
canonical retroviral ORFs in members of the HERV-K,HERV-H,HERV-W, and HERV-E fam-
ilies in patients with hematological cancers. CD8+ T cells reactive with some of these peptides
were also found in healthy donors, albeit less frequently, suggesting clonal expansion in cancer
patients (132). In an analysis of all annotated genomic EREs, two studies identified ORFs within
LTR retroelements, as well as LINE-1, SINEs, and composite SVA elements, as the source of pep-
tides presented by MHC-I in glioblastoma (133, 134). Antibodies reactive with LINE-1 ORF1p
have been detected in most SLE patients, as well as in a smaller proportion of healthy individuals,
and their titers were higher in active SLE (135).

The identification of peptides derived from the translation of ERE transcripts not previously
thought to have coding potential is consistent with accumulating evidence for translation of un-
conventional ORFs, including 5′ and 3′ UTRs, pseudogenes, long noncoding RNAs, short ORFs,
and alternative ORFs (136–142).However, in addition to unconventional ORFs present in a given
RNAmolecule, alternative splicing patterns and use of alternative start or polyadenylation sites can
create diverse RNA isoforms transcribed from a given locus, carrying additional putative ORFs.
Indeed, increased alternative splicing in most human cancer types may create novel peptides that
include predicted MHC-I binders (143). Moreover, increased intron retention in ovarian can-
cer (144), acute myeloid leukemia (145), and SF3B1-mutated uveal melanoma (146) has been
implicated in the creation of tumor-specific T cell epitopes.

Given their genomic structure and sheer copy numbers, EREs represent the largest source
of alternative start, polyadenylation, and splicing sites in the genome (7, 8). Their transcriptional
utilization, therefore, has the potential to increase RNA isoform diversity quite considerably
(Figure 3). Transcripts originating from or including EREs are still incompletely annotated, but
recent efforts using de novo transcriptome assemblies without bias against repetitive sequences
have uncovered increased ERE utilization in novel transcripts, often in a cancer type–specific
manner (147–149). Inclusion of EREs in chimeric transcripts also overlapping unique neigh-
boring genomic regions creates the potential for translation of protein products (Figure 3),
with far less homology with products from other parts of the genome than products translated
from repetitive EREs alone and canonical retroviral ORFs that may also be expressed in healthy
tissues (100, 147). Indeed, recent studies integrating improved annotation of ERE-overlapping
transcripts with immunopeptidomic analyses highlighted the considerable contribution of such
chimeric products to the antigenic identity of cancer cells (147, 150, 151). Moreover, the overlap
of antigenic transcripts identified in each study using different methodologies is partial, suggesting
that the complete contribution of chimeric ERE-overlapping transcripts to cancer antigenicity
has not been captured yet.

Adaptive Immune Responses to Endogenous Retrovirus Proteins
in Animal Models

Despite the continuously evolving relationship between ERVs and the immune system of the host,
ERV products can be comparably immunogenic in humans and in animal models, but there are
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Transcript and protein isoforms
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mRNA

Canonical transcript, canonical protein

Alternative promoter, frame-shifted protein

Alternative intronic splicing, partly frame-shifted protein

Alternative termination and polyadenylation, C-terminal replacement
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An An

An

LTR Exon 1 Exon 2 Exon 3

Exon 1 Exon 2

Exon 1 Exon 2

Exon 3

Exon 1 Exon 2 Exon 3

Exon 2 Exon 3LTR

Figure 3

Generation of aberrant protein products by transcriptional utilization of EREs. A hypothetical example of a
protein-coding gene consisting of three exons with EREs integrated within and around the gene body (top)
and potential alternative splicing isoforms of transcribed RNA (bottom). Isoform 1 represents the canonical
mRNA and translated protein. Isoform 2 uses an LTR element as an alternative promoter, skipping the first
canonical exon and shifting the translation frame. Isoform 3 uses an alternative splice donor site in an
intronic SINE element instead of the canonical site at the end of exon 2, shifting the remaining translation.
Isoform 4 uses a LINE-1 fragment as alternative terminal exon, replacing the C-terminal sequence of the
translation product. Abbreviations: ERE, endogenous retroelement; LINE-1, long interspersed nuclear
elements 1; LTR, long terminal repeat; SINE, short interspersed nuclear element.

also notable differences. Spontaneous B cell responses to ERV products have long been detected
in mice, particularly from autoimmune-prone strains, where they have been implicated in SLE
development (152). These autoantibody responses were found to target predominantly the en-
velope glycoprotein of endogenous MLVs (152). Similarly, B and T cell responses are known to
be induced against endogenous MLVs expressed in transplantable cell lines used in murine can-
cer models (153–156). In the commonly used C57BL/6 mice, these adaptive immune responses
target most frequently the envelope glycoprotein of Emv2, a single-copy endogenous MLV that
induces partial immunological tolerance (157). Although Emv2 is a replication-defective provirus,
recombination with other defective endogenous MLVs can restore its infectivity, resulting in fully
infectious, now exogenous retrovirus. Restoration of Emv2 infectivity was first described in B16
melanoma cells, where it gave rise to the melanoma-associated retrovirus (MelARV) that rein-
fected these cells multiple times (15, 158). Notably, it was the hunt for the immunodominant
target of anti-B16 melanoma antibodies that ultimately lead to the discovery of MelARV (153,
154), suggesting that endogenousMLVs aremajor cancer antigens.Restoration of infectivity likely
contributes significantly to the heightened immunogenicity of endogenous MLVs and has been
reported in most transplantable cell lines (16, 18).

Restoration of Emv2 infectivity, leading to vertical transmission of infectious MLVs, has also
been documented in mouse strains with genetic deficiencies affecting antiretrovirus antibody pro-
duction (17, 33), underscoring the notion that adaptive immune responses to endogenous MLVs
are not only possible to induce but are also necessary to control the emergence and transmission
of infectious recombinants.
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In addition to MLVs, adaptive immune responses against the envelope glycoproteins of en-
dogenous MMTVs have also been documented. For example, T cell responses to EL4 T cell
lymphoma cells have long been shown to target epitopes from MMTV envelope glycoprotein
(159). Similarly to MLVs, MMTVs can also exist as defective endogenous and infectious exoge-
nous viruses in certain mouse strains, and they have been suggested to amplify their copies in
transplantable murine lymphoma cell lines (160).More recent studies, including those using high-
throughput discovery of cancer antigens, have independently identified epitopes from canonical
MLV and MMTV proteins that reinforce their immunogenicity. In a comprehensive study of
tumor-specific antigens by Laumont et al. (150), the most immunogenic and protective epitope
identified in EL4 cells was, in fact, derived from theMMTV envelope glycoprotein.The envelope
glycoprotein ofEmv2 has also been validated as tumor antigen in the transplantableGL261 glioma
model (161). Moreover, a genetic screen of chromatin regulators that modify immunogenicity of
mouse cancer models identified derepressed endogenous retroviruses as the predominant targets
in Setdb1-deficient cancer cells, with enrichment for peptides from Emv2 envelope glycoprotein,
as well as endogenous MLV Gag and polymerase (162). The recurrent identification of endoge-
nous MLV and MMTV antigens in independent studies points to a major contribution to mouse
cancer cell immunogenicity, likely accentuated by the increase inMLV andMMTV copy numbers
in transplantable cell lines.

CONSEQUENCES OF HOST IMMUNE RESPONSES
TO ENDOGENOUS RETROELEMENTS

As EREs are closely intertwined with the host, immune reactivity against their products could be
considered autoimmune in nature and, therefore, has the potential to cause pathology (Figure 4).
A pathogenic contribution of ERE-triggered interferon responses is supported by findings in AGS
and SLE, as well as in atrophic macular degeneration and age-related inflammation (29, 30, 37,
83). The nucleic acid sensors or metabolic enzymes implicated in the development of these con-
ditions lack the specificity that could discriminate between ERE-derived and other self–nucleic
acids (25, 26, 29). Nevertheless, a causative role for EREs is indicated by the use of RT inhibitors.
These have shown efficacy in early human AGS trials (37), although results frommouse models of
AGS have been conflicting (36, 163). A potential effect of RT inhibitors on SLE would also be im-
portant to establish. RT inhibitors also reduce inflammation in aged mice (80), and inspection of
health insurance databases indicates that RT inhibitors given as part of pre-exposure prophylaxis
to individuals not infected with HIV-1 may lower the risk of atrophic macular degeneration and
type 2 diabetes (83, 164).However, proinflammatory effects of pre-exposure prophylaxis have also
been reported in genital or gastrointestinal mucosae following topical application of RT inhibitors
(165, 166), and in the gastrointestinal mucosa but not the blood following oral administration in
individuals not infected with HIV-1 (167). Proinflammatory effects have also been reported in
colorectal cancer patients treated with RT inhibitors and in similarly treated colorectal cancer
cell lines, particularly those with p53 mutations (168), which are hypothesized to arise from resid-
ual ORF2p activity and lead to DNA damage or accumulation of DNA replication intermediates.
Collectively, these findings underscore a nonredundant pathogenic potential of RT encoded by
either LINE-1 or ERVs, which warrants further investigation into its source and regulation.

A pathogenic contribution of dysregulated innate immunity to EREs does not, however, pre-
clude a beneficial role in physiological conditions (Figure 4). Indeed, innate immune activation
by EREs has been suggested to augment the interferon response to exogenous, unrelated viruses,
such as herpesviruses (169) or influenza A virus (170), although these viruses can also subvert or in-
hibit ERE-induced interferon responses. ERE-triggered proinflammatory signaling downstream
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ERE epigenetic control in healthy cells
Removal of immunogenic by-products

ERE derepression
Loss of epigenetic regulators

Defective nucleic acid editing/metabolism

Healthy cells

Infected, senescent,
or transformed cell

Regulated ERE transcription
Regulated interferon response

Maintenance of innate and adaptive
immunological tolerance

Immune cell development
Enhanced response to infection

Regulated response to commensals
Cancer immunosurveillance

Excessive ERE transcription/accumulation
Excessive or chronic interferon production

Innate immune activation
T and B cell priming to ERE-derived antigens

Interferonopathies
Autoimmunity

Disproportionate response to commensals
Age-related inflammation

ba

Figure 4

Proposed consequences of ERE immunogenicity, depending on the degree of ERE activity. In physiological
conditions (a), ERE transcriptional activity is epigenetically controlled and their products eliminated in most
cells, with the exception of infected, transformed, senescent, or otherwise stressed cells. In turn, this prevents
interferon responses and priming of adaptive immune cells against the low level of ERE products in healthy
cells but permits immune reactions against elevated ERE products in stressed cells. Such regulated responses
are thought to contribute to several physiological processes. In contrast, when ERE transcription is
unleashed (b), through loss of epigenetic control, or their products accumulate, through loss of nucleic acid
metabolism or editing machineries, in a sufficient number of otherwise healthy cells, the resulting excessive
interferon and adaptive immune responses can trigger or contribute to a range of pathological conditions.
Abbreviation: ERE, endogenous retroelement.

of MDA5 and RIG-I is thought to be required for hematopoietic stem and progenitor cell devel-
opment (171). Activation of the cGAS-STING pathway by EREs has also been suggested to play
a major role in promoting the homeostatic adaptive immune response to skin microbiota (38).
Therefore, the induction of ERE transcription during infection or colonization with exogenous
microbes may function as an intrinsic adjuvant necessary for tuning innate immune reactivity. A
beneficial effect of EREs in immune defense from exogenous pathogens has also been described
in a mouse model for infection with herpes simplex virus type 2, where the effect was independent
of type I interferon signaling (172), suggesting additional mechanisms by which this interaction
can manifest at epithelial barriers. Moreover, a large body of evidence suggests a host-protective
role for EREs against cancer initiation and progression. Indeed, transcriptional upregulation
of EREs in response to mutation of key epigenetic regulators, oncogene activation, cytokines,
or natural and drug-induced genomic hypomethylation is associated with potent antitumor
effects, attributed to innate immunity induced intrinsically in cancer cells, and increased tumor
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immunogenicity (39–41, 56, 59, 77, 78, 123, 162, 173–181), although ERE-induced genome
instability has also been reported (182).

The link between ERE transcriptional activity and cell-intrinsic innate immune activation may
provide tonic and amplifying signals for the innate immune system, as well as the means of effec-
tive immunosurveillance of cells damaged by stress, infection, mutation, or transformation (183,
184).Disruption of such physiological processesmay, in turn, explain the pathogenic consequences
of ERE activation. For example, excessive ERE activation promoted by a high-fat diet can turn
homeostatic responses to the microbiota into inflammatory responses (38). Similarly, age-related
inflammation, SLE, and AGS may represent the spectrum of ERE dysregulation. Lastly, ERE up-
regulation in cancer may also be detrimental, particularly when the interferon response pathways
are disrupted (180, 185), which may also explain increased cancer susceptibility in old age, despite
increased ERE activity (82).

A pathogenic potential of adaptive immune responses to EREs can also be envisioned. Al-
though their titers were not elevated, antibodies reactive with HERV-K(HML-2) envelope
glycoproteins were found to cause neutrophil activation in SLE patients (119). Antibodies to
HERV and LINE-1 products have frequently been observed in autoimmune disorders, but also
in otherwise healthy individuals, albeit often less frequently (106, 135, 172). Consequently, their
contribution to disease initiation and progression remains unclear (186). Germline ERVs, as well
as maternally transmitted infectious counterparts, induce a degree of T cell tolerance in mouse
models (157, 187).However, B cells appear to escape deletional tolerance and ultimately mount an
anti-ERV antibody response in the offspring that protects further vertical transmission of infec-
tious viruses, without pathological signs (187).Moreover, induction of adaptive immune responses
against LINE-1ORF2p andHERV-K(HML-2)Gag and envelope proteins by vaccinationwas not
associated with adverse or pathological findings (188). Adaptive immune responses against ERV-
encoded antigens can afford protection against cancer, both in mouse models and in humans (189).
However, whether such responses are additionally associated with paraneoplastic autoimmunity
or adverse effects of checkpoint blockade remains an important question.

CONCLUDING REMARKS AND BROADER PERSPECTIVE

While both innate and adaptive responses to diverse ERE products can be clearly elicited, the
overall consequences for the host are context dependent. For a powerful defense weapon such as
the adaptive immune system, its response to a given stimulus may range from host protection to
immune pathology or autoimmunity (190), and responses to EREs seem to follow the same rules.
Equally, innate immune activation by EREs may contribute to protection from cancer but also
promote age-related inflammation (30). Such antagonistic pleiotropy has striking parallels with
dichotomous regulation of cancer risk and lifespan by p53 (191), or cancer risk and regenerative
ability (192).

Participation of EREs inmultiple biological processes implies that evolutionary adaptation will
be slower, but persistence in the host will be more likely. The adaptation of EREs and host im-
munity will naturally integrate stronger evolutionary pressure on the host immune system from
a multitude of exogenous pathogens, as well as ERE effects on host biological processes other
than the immune system. Fitness trade-offs associated with ERE activity in the host can mani-
fest at many levels, but arguably, a major battleground is genome function (7, 8, 79, 183, 193).
Indeed, genomic features of EREs, together with their abundance, provide the genetic diversity
for evolution of new gene function, including of immune genes.

A growing list of examples comprises the interferon inducibility provided by MER41 LTR
elements to several genes, including the cytoplasmic DNA sensor AIM2 (194), and the en-
hancer activity provided by an ERV1 LTR promoting HLA-G expression in human extravillous
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trophoblasts at the fetal-maternal interface (195). ERE-driven innate immune activation of
dendritic cells lacking TRIM28 is linked to transcriptional regulation of nearby immune genes,
rather than ligation of innate sensors (196), and LINE-1-containing transcript isoforms of
immune genes regulate naive T cell quiescence (197). Alternative splicing events exonizing EREs
can create isoforms of immune gene transcripts with novel function, such as the soluble form
of PD-L1 acting as a receptor antagonist (198), and polymorphic Alu integrations in intronic
regions can cause skipping of nearby exons, affecting the function of immune genes such as CD58,
which encodes lymphocyte function–associated antigen 3 (LFA-3) (199).

While major effects of EREs in immune gene function are likely selected over long evolution-
ary periods, the regulation of ERE activity, particularly in healthy cells, and the potential effects
of EREs on gene function are largely unexplored. Great progress is being made in defining ERE-
derived ligands and respective innate sensors and adaptive receptors, triggering of which leads
to immune activation in health and disease. However, our understanding of the full interaction
of EREs with the host immune system will only be completed with integration of their roles as
immune gene regulators, as well as immune activators.
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