Continuous Flow, Highly Enantioselective Michael Additions Catalyzed by a PS-Supported Squaramide

Supporting Information

Pinar Kasaplar,^a Carles Rodríguez-Escrich,^a and Miquel A.Pericàs^{a,b,*}

^a Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain Fax: (+34) 977 920 244; e-mail: mapericas@iciq.es
^b Departament de Química Orgànica, Universitat de Barcelona (UB), 08028 Barcelona, Spain

General Methods	S2
General procedure for the Michael reaction	S2
General procedure for the recycling reactions in batch conditions	S2
Description of the experimental setup for the continuous-flow process	S2
Description of the experimental setup for the continuous-flow process with different substrates	S3
Physical and spectroscopical data of Michael adducts 3a-m	S4
¹ H and ¹³ C NMR spectra of 3a-m	S9
HPLC chromatograms of 3a-m	S22

General Methods

Unless otherwise stated, all commercial reagents were used as received and solvents were used from solvent drying system, all reactions were carried out directly under open air. Merrifield resin (1% DVB, f = 0.53 mmol Cl g⁻¹ resin) was obtained from Novabiochem. All flash chromatography was carried out using 60 mesh silica gel and dry-packed columns. The ¹H and ¹³C NMR spectra were recorded at 400 MHz and 500 MHz for ¹H or at 100 MHz and 125 MHz for ¹³C, respectively. TMS was used as internal standard for ¹H NMR and CDCl₃ for ¹³C NMR. Chemical shifts are reported in ppm referred to TMS. FT-IR measurements carried out on a FTIR spectrometer equipped with a DTGS detector, KBr beamsplitter at 4 cm⁻¹ resolution. Elemental analyses were performed on a CHNS 932 micro-analyzer. Specific optical rotation measurement was carried out on a polarimeter equipped with a PMT detector using the Sodium line at 589 nm. High performance liquid chromatography (HPLC) was performed by using Chiralpak IA, and IC columns and guard columns. Racemic standard products were prepared using DABCO (20 mol%) as catalyst in order to establish HPLC conditions. Catalyst **PS-SQ** was synthesized according to the reported procedures.¹

General procedure for the Michael reaction

To a solution of squaramide organocatalyst **PS-SQ** (11.5 mg, 0.004 mmol, 2 mol%, f = 0.38 mmol·g⁻¹) in CH₂Cl₂ (0.5 mL) was added nitroolefin (0.2 mmol) and 2-hydroxy-1,4-naphthoquinone (0.2 mmol). Reactions were monitored by TLC until the consumption of starting compounds, and then the reaction mixture was directly purified by column chromatography on silica gel to afford the Michael product.

General procedure for the recycling reactions in batch conditions

To a solution of squaramide organocatalyst **PS-SQ** (23.0 mg, 0.008 mmol, 4 mol%, f = 0.38 mmol·g⁻¹) in CH₂Cl₂ (0.5 mL) was added nitroolefin (0.2 mmol) and 2-hydroxy-1,4-naphthoquinone (0.2 mmol). Reactions were monitored by TLC until the consumption of starting compounds. Then the reaction mixture was filtered, and washed with 15 ml of CH₂Cl₂. After that the filtrate was concentrated at reduced pressure and purified by column chromatography on silica gel to afford the Michael product.

Description of the experimental setup for the continuous flow process

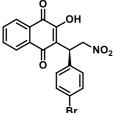
The packed bed reactor consisted of a vertically mounted and fritted low-pressure glass chromatography column (10 mm bore size and up to maximal 70 mm of adjustable bed height)

loaded with **PS-SQ** (0.25 g, 0.095 mmol, $f = 0.38 \text{ mmol} \cdot \text{g}^{-1}$). At the start, CH₂Cl₂/THF (10:1) was flushed for half an hour at 0.2 ml·min⁻¹ flow rate to swell the resin. After that, the solvent channel was switched to a solution of 2-hydroxy-1,4-naphthoquinone (27.0 mmol, 4.79 g) and *trans*- β -nitrostyrene (32.4 mmol, 4.83 g) in 270 ml CH₂Cl₂/THF (10:1) of this solution were pumped to the reactor with a flow rate 0.2 ml·min⁻¹. The reactor outlet was connected to a receiving flask where the product was collected. After 22 h flow was stopped and **PS-SQ** washed with CH₂Cl₂/THF (10:1) solvent system for an hour. Conversion and enantioselectivity of the formed product were determined by ¹H NMR and HPLC analysis of periodically collected samples. In the end, collected solution was concentrated at reduced pressure and purified by flash chromatography on silica gel.

Description of the experimental setup for the continuous flow process with different substrates

The packed bed reactor was loaded with swollen resin **PS-SQ** (0.50 g, 0.19 mmol, f = 0.38 mmol·g⁻¹) in CH₂Cl₂/THF (10:1) and flushed half an hour with the same solvent mixture at 0.2 ml·min⁻¹ flow rate. After the resin was conditioned, the solvent channel was switched to a solution of 2-hydroxy-1,4-naphthoquinone (1.80 mmol) and the corresponding nitroalkene (1.80 mmol) in 18 ml CH₂Cl₂/THF (10:1) and pumped through the reactor with a flow rate of 0.2 ml·min⁻¹. The reactor outlet was connected to a receiving flask where the product was collected. After 1 h, the flow was switched to a washing solvent CH₂Cl₂/THF (10:1) to clean the resin for half an hour. This process was repeated for each nitroalkene. Conversion and enantioselectivity of the product were determined by ¹H NMR and HPLC analysis of periodically collected samples. In the end, collected solutions were concentrated at reduced pressure and purified by flash chromatography on silica gel.

Physical and spectroscopical data of Michael adducts 3a-m

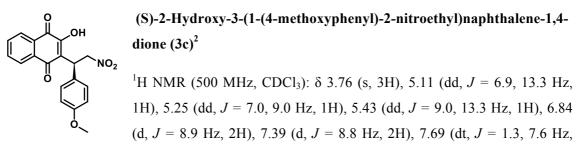


(S)-2-Hydroxy-3-(2-nitro-1-phenylethyl)naphthalene-1,4-dione (3a)² ¹H NMR (500 MHz, CDCl₃): δ 5.14 (dd, J = 6.9, 13.4 Hz, 1H), 5.31 (dd, J = 6.8, 9.1 Hz, 1H), 5.47 (dd, J = 9.1, 13.4 Hz, 1H), 7.24-7.32 (m, 3H), 7.46 (d, J = 7.2 Hz, 2H), 7.68 (dt, J = 1.3, 7.5 Hz, 1H), 7.76 (dt, J = 1.3, 7.5 Hz), 7.8 Hz (dt, J = 1.3, 7.5 Hz), 7.8 Hz

7.5 Hz, 1H), 8.05 (d, *J* = 7.6 Hz, 1H), 8.11 (d, *J* = 7.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl3): 39.7, 76.4, 120.8, 126.3, 127.2, 127.8, 128.3 (×2), 129.0 (×3), 132.6, 133.3, 135.4, 137.5, 153.2, 181.1, 183.7.

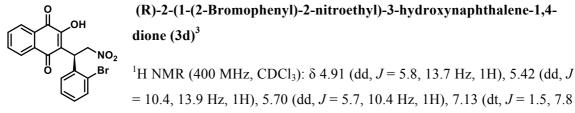
HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (90:5:5), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 17.8 \text{ (major)}$, 23.9 min (minor).



¹H NMR (400 MHz, DMSO-d₆): δ 5.17 (t, J = 7.7 Hz, 1H), 5.33-5.28 (m, 1H), 5.45 (dd, J = 8.3, 13.7 Hz, 1H), 7.34(d, J = 8.5Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.76 (t, J = 7.4 Hz, 1H), 7.82 (t, J = 7.4 Hz, 1H), 7.97-7.94

(m, 2H) ppm.

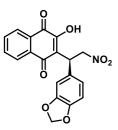
¹³C NMR (100 MHz, DMSO-d₆): 38.5, 76.9, 120.1, 120.6, 126.2, 126.4, 130.3, 130.5, 131.8, 132.5, 133.6, 135.2, 138.8, 158.6, 181.8, 183.6.


HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (85:14:1), flow rate = 1.0 mL/min, wavelength = 254 nm, r_t = 25.6 (major), 26.6 min (minor).

1H), 7.77 (dt, *J* = 1.3, 7.6 Hz, 1H), 8.06 (d, *J* = 7.6 Hz, 1H), 8.11 (d, *J* = 7.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): 39.0, 55.3, 76.6, 114.3, 121.1, 126.3, 127.3, 129.0, 129.4, 129.5, 132.7, 133.3, 135.4, 152.9, 159.2, 181.2, 183.3.

HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (92:4:4), flow rate = 0.6 mL/min, wavelength = 254 nm, r_t = 68.4 (major), 70.4 min (minor).



Hz, 1H), 7.27-7.23 (m, 1H), 7.41 (dd, *J* = 1.6, 7.8 Hz, 1H), 7.60 (dd, *J* = 1.2, 7.9 Hz, 1H), 7.80-7.69 (m, 2H), 8.13-8.09 (m, 2H) ppm.

¹³C NMR (100 MHz, CDCl₃): 39.9, 74.9, 119.6, 124.6, 126.4, 127.3, 127.9, 129.0, 129.4, 129.6, 132.7, 133.3, 133.6, 135.6, 136.2, 154.0, 181.0, 183.8.

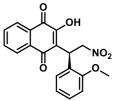
HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (90:9:1), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 23.2 \text{ (major)}$, 24.1 min (minor).

(S)-2-(1-(Benzo[d][1,3]dioxol-5-yl)-2-nitroethyl)-3hydroxynaphthalene-1,4-dione (3e)

¹H NMR (400 MHz, CDCl₃): δ 5.13 (dd, J = 7.1, 13.1 Hz, 1H), 5.22 (t, J = 7.1, 15.6 Hz, 1H), 5.38 (dd, J = 8.4, 13.1 Hz, 1H), 5.90 (dd, J = 1.2, 4.0 Hz, 2H), 6.72 (d, J = 8.1 Hz, 1H). 6.93 (dd, J = 2.1, 7.8 Hz, 1H), 6.97 (d, J

= 1.7 Hz, 1H), 7.67 (dt, *J* = 1.3, 7.5 Hz, 1H), 7.79-7.75 (m, 2H), 8.05 (dd, *J* = 1.4, 7.6 Hz, 1H), 8.10 (dd, *J* = 1.4, 7.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): 39.5, 76.6, 101.2, 108.6, 108.7, 120.9, 121.8, 126.3, 127.2, 129.0,
131.1, 132.6, 133.3, 135.4, 147.2, 148.0, 153.0, 181.1, 183.7.

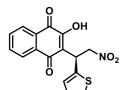

HRMS (ESI): m/z calcd. for C₁₉H₁₂NO₇ [M – H]⁻ 366.0621, found 366.0619.

 $[\alpha]_D^{26} = +2.29 (c 7.40, CHCl_3)$

m.p. 136-138 °C.

IR (ATR): v = 3229, 2891, 1673, 1635, 1546, 1271, 1235, 1038, 790.

HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (88:6:6), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 29.9 \text{ (major)}$, 49.8 min (minor).

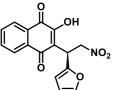

(S)-2-Hydroxy-3-(1-(2-methoxyphenyl)-2-nitroethyl)naphthalene-1,4dione (3f)³

b i H NMR (400 MHz, CDCl₃): δ 3.87 (s, 3H), 4.96 (dd, J = 5.6, 13.6 Hz, 1H), 5.41 (dd, J = 10.2, 13.6 Hz, 1H), 5.65 (dd, J = 5.6, 10.2 Hz, 1H), 6.90-6.86 (m, 2H), 7.26-7.22 (m, 2H), 7.68 (dt, J = 1.3, 6.2 Hz, 1H), 7.71 (s, 1H), 7.76 (dt, J =

1.4, 6.2 Hz, 1H), 8.11- 8.07 (m, 2H) ppm.

¹³C NMR (100 MHz, CDCl₃): 34.2, 55.6, 75.4, 110.9, 120.5, 120.7, 124.9, 126.3, 127.2, 128.8, 129.0, 129.1, 132.9, 133.1, 135.3, 154.0, 156.9, 181.2, 183.8.

HPLC analysis: Chiralpak IC Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (75:23:2), flow rate = 0.7 mL/min, wavelength = 254 nm, r_t = 13.7 (major), 14.4 min (minor).

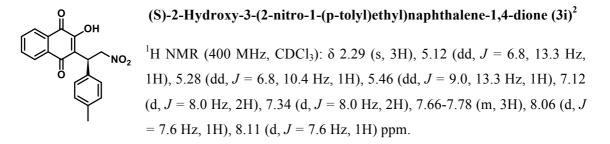

(S)-2-Hydroxy-3-(2-nitro-1-(thiophen-2-yl)ethyl)naphthalene-1,4dione (3g)²

¹H NMR (400 MHz, CDCl₃): δ 5.13 (dd, J = 6.8, 13.5 Hz, 1H), 5.43 (dd, J = 8.9, 13.5 Hz, 1H), 5.61 (dd, J = 6.6, 9.0 Hz, 1H), 6.93 (dd, J = 3.5, 5.1

Hz, 1H), 7.10-7.11 (m, 1H), 7.20 (dd, *J* = 1.2, 5.1 Hz, 1H), 7.71 (dt, *J* = 1.3, 7.6 Hz, 1H), 7.81-7.77 (m, 2H), 8.08 (d, *J* = 7.5 Hz, 1H), 8.14 (d, *J* = 7.5 Hz, 1H) ppm.

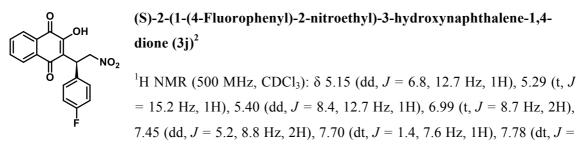
¹³C NMR (100 MHz, CDCl₃): 34.8, 76.7, 119.9, 125.4, 126.4, 126.6, 127.0, 127.2, 129.0, 132.6, 133.4, 135.6, 139.0, 153.1, 181.0, 183.3.

HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (90:5:5), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 21.2 \text{ (major)}$, 22.9 min (minor).


(S)-2-(1-(Furan-2-yl)-2-nitroethyl)-3-hydroxynaphthalene-1,4-dione (3h)²

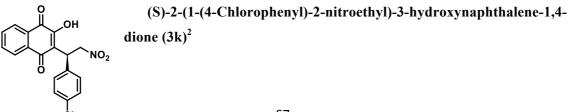
¹H NMR (500 MHz, CDCl₃): δ 5.19 (dd, J = 6.9, 13.5 Hz, 1H), 5.27 (dd, J = 8.6, 13.5 Hz, 1H), 5.47 (t, J = 8.7 Hz, 1H), 6.23 (d, J = 3.3 Hz, 1H),

6.30 (dd, *J* = 1.8, 3.3 Hz, 1H), 7.32 (dd, *J* = 0.7, 1.8 Hz, 1H), 7.71 (dt, *J* = 1.2, 7.6 Hz, 1H), 7.81-7.78 (m, 2H), 8.09 (dd, *J* = 1.4, 7.7 Hz, 1H), 8.14 (dd, *J* = 1.4, 7.7 Hz, 1H) ppm.


¹³C NMR (100 MHz, CDCl₃): 33.4, 74.7, 107.4, 110.7, 118.0, 126.4, 127.3, 129.0, 132.6, 133.4, 135.6, 142.3, 149.8, 153.9, 181.0, 183.2.

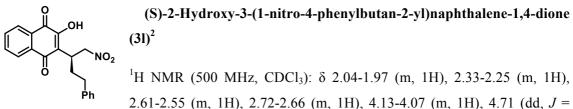
HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (92:4:4), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 24.1 \text{ (major)}$, 27.5 min (minor).

¹³C NMR (100 MHz, CDCl₃): 21.0, 39.3, 76.4, 121.0, 126.3, 127.2, 128.1, 129.0, 129.7, 132.7, 133.2, 134.5, 135.4, 137.7, 153.1, 181.2, 183.7.


HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (90:5:5), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 20.9 \text{ (major)}$, 25.8 min (minor).

1.4, 7.6 Hz, 1H), 8.07 (d, *J* = 7.6 Hz, 1H), 8.11 (d, *J* = 7.7 Hz, 1H) ppm.

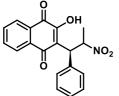
¹³C NMR (100 MHz, CDCl₃): 39.0, 76.4, 115.9 (d, J = 21.3 Hz), 120.6, 126.4, 127.2, 128.9, 130.0 (d, J = 8.3 Hz), 130.1, 132.6, 133.3, 133.4, 135.6, 153.3, 162.2 (d, J = 246.9 Hz), 181.1, 183.7.


HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (90:5:5), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 20.5$ (major), 23.4 min (minor).

¹H NMR (400 MHz, DMSO-d₆): δ 5.19 (t, J = 7.8 Hz, 1H), 5.32 (dd, J = 7.5, 13.9 Hz, 1H), 5.43 (dd, J = 8.2, 13.8 Hz, 1H), 7.41-7.35 (m, 4H), 7.79 (dt, J = 1.4, 7.4 Hz, 1H), 7.85 (dt, J = 1.4, 7.4 Hz, 1H), 8.00-7.97 (m, 2H) ppm.

¹³C NMR (100 MHz, DMSO-d₆): 38.3, 76.9, 120.8, 126.3, 126.4, 129.0 (×2), 130.2 (×3), 130.4, 132.2, 133.9, 135.3, 138.0, 157.1, 181.3, 184.2.

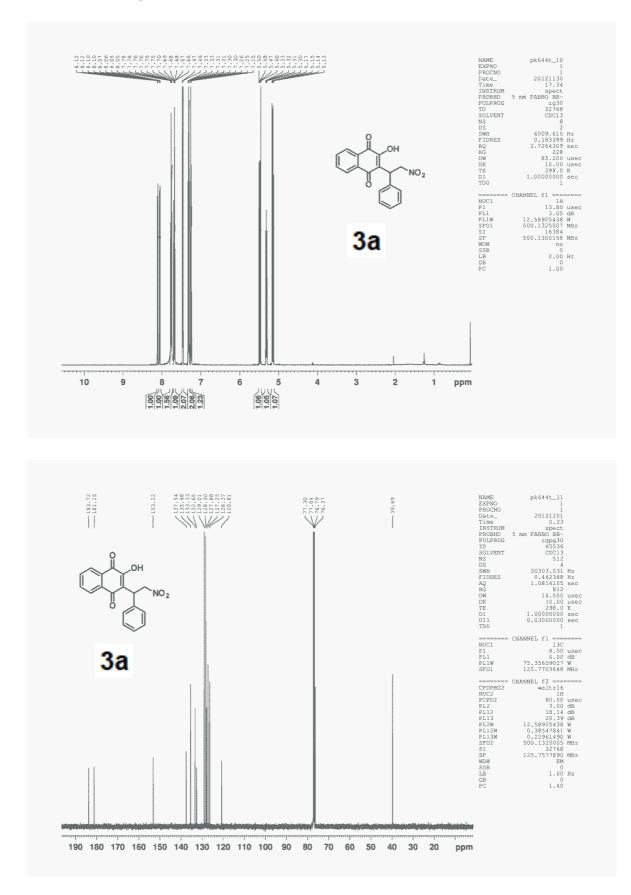
HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (90:5:5), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 20.4$ (major), 21.8 min (minor).

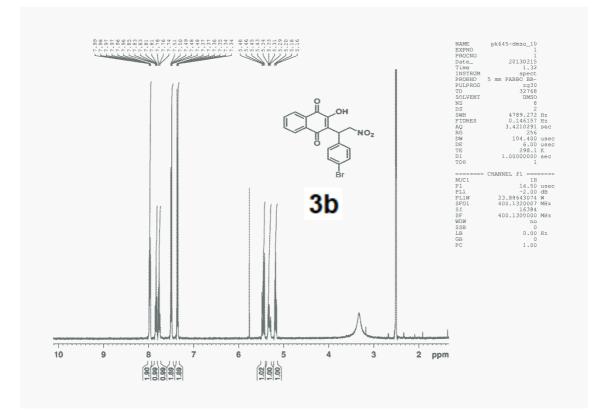


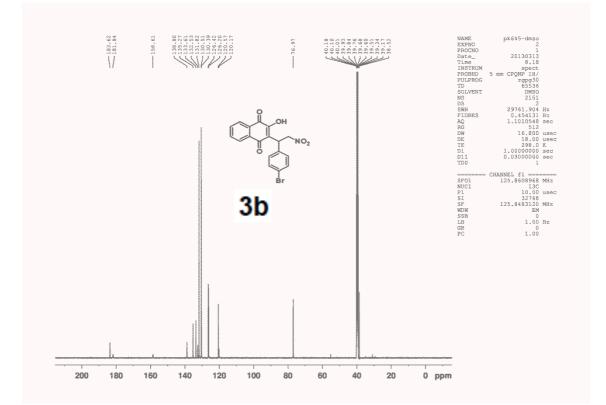
12.6, 6.2 Hz, 1H), 4.96 (dd, J = 12.7, 9.1 Hz, 1H), 7.10-7.04 (m, 3H), 7.17-7.14 (m, 2H), 7.70 (t, J = 7.5 Hz, 1H), 7.78 (t, J = 7.5 Hz, 1H), 8.06 (d, J = 7.6 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H) ppm.

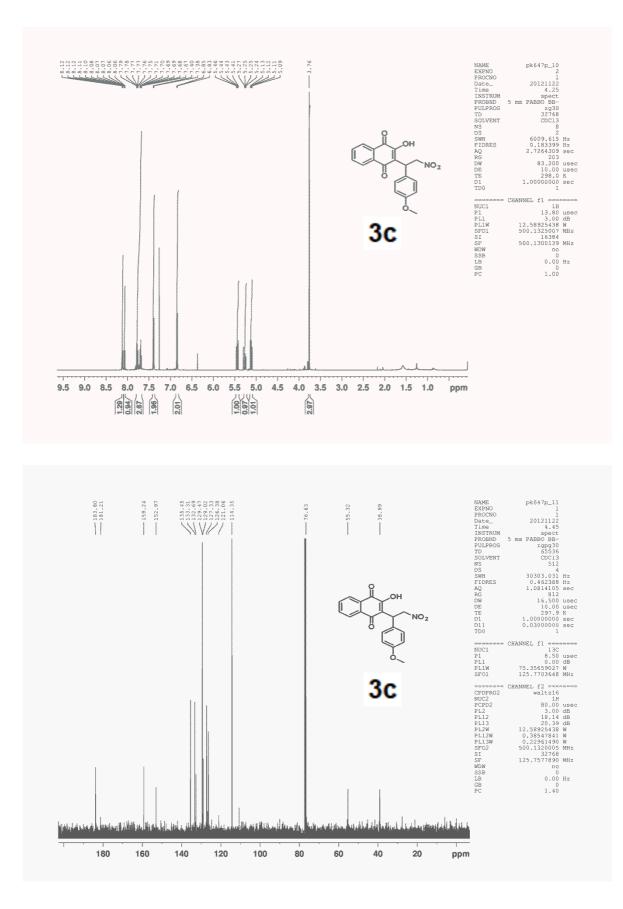
¹³C NMR (100 MHz, CDCl₃): 31.7, 33.8, 34.8, 77.1, 120.4, 126.1, 126.3, 127.1, 128.2, 128.3, 129.1, 132.8, 133.2, 135.3, 140.9, 153.9, 180.7, 183.9.

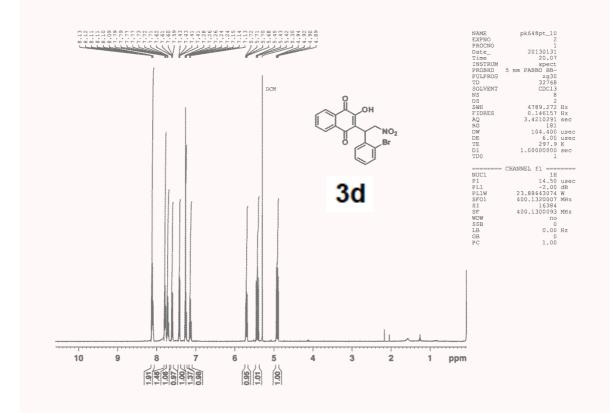
HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (90:9:1), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 23.8 \text{ (major)}$, 25.4 min (minor).

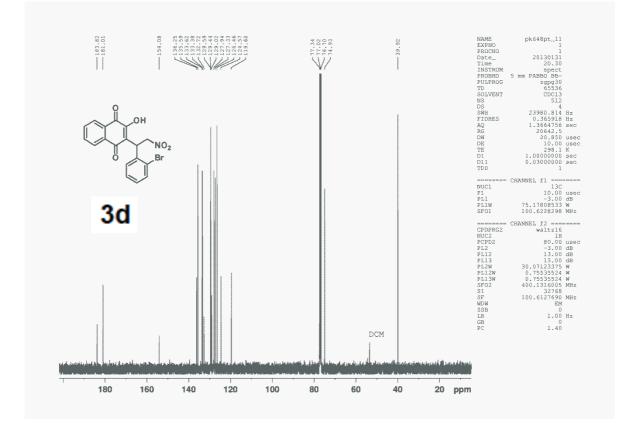

2-Hydroxy-3-((1S)-2-nitro-1-phenylpropyl)naphthalene-1,4-dione (3m)³

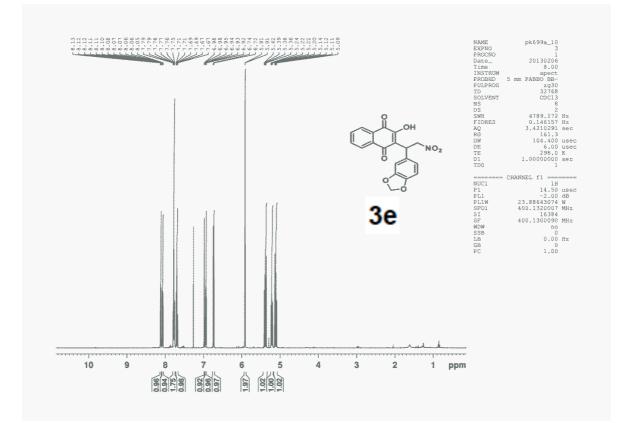


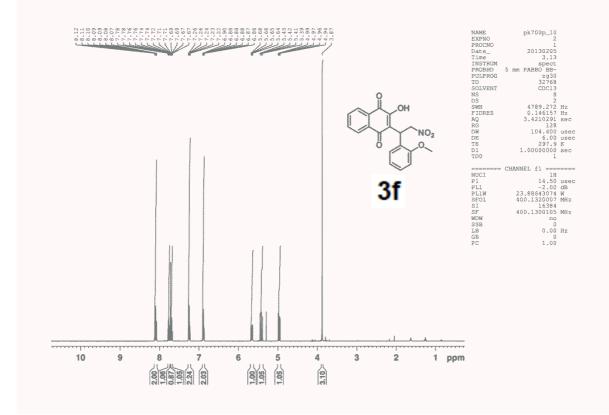

¹³C NMR (100 MHz, CDCl₃): 19.7, 46.6, 83.4, 121.2, 126.2, 127.2, 127.9, 129.1, 129.2, 129.9, 132.7, 133.1, 135.3, 137.3, 152.8, 181.1, 183.6.

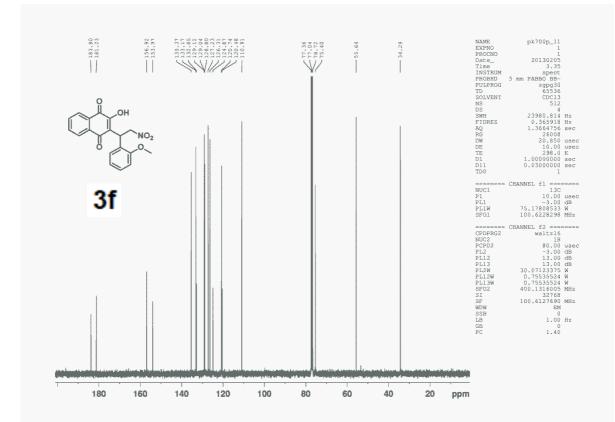

HPLC analysis: Chiralpak IA Column, Hexane (0.1% TFA)/Dichloromethane/Ethanol (90:5:5), flow rate = 1.0 mL/min, wavelength = 254 nm, $r_t = 15.2$ (major), 23.9 min (minor).

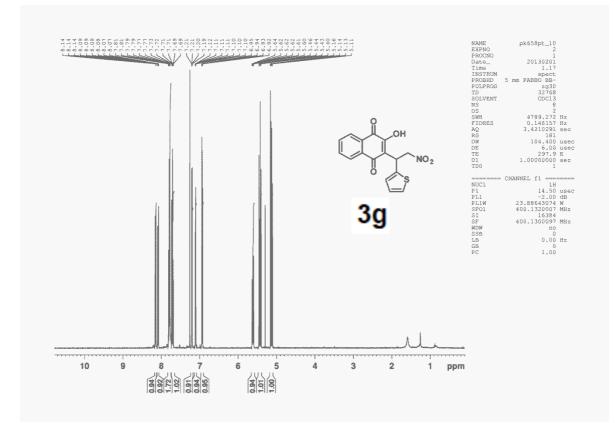

¹H and ¹³C NMR spectra of 3a-m

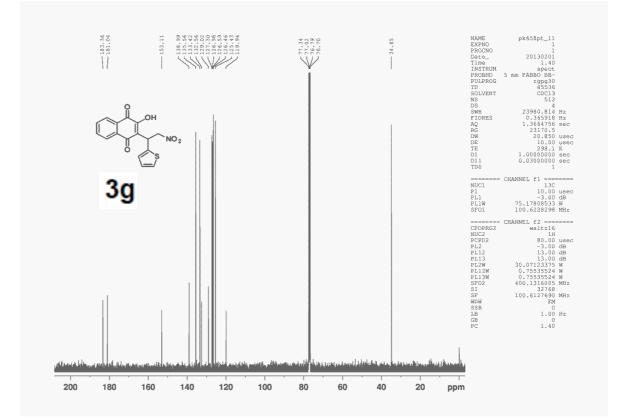


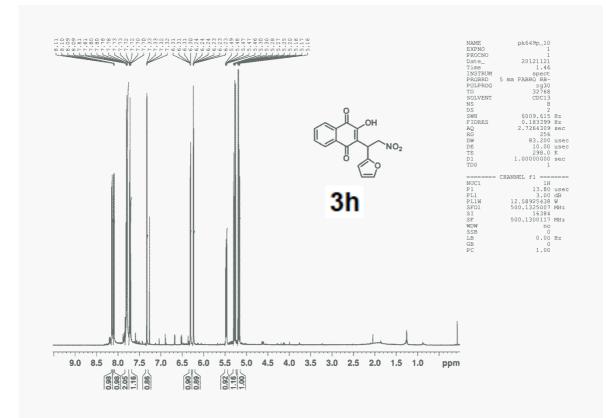


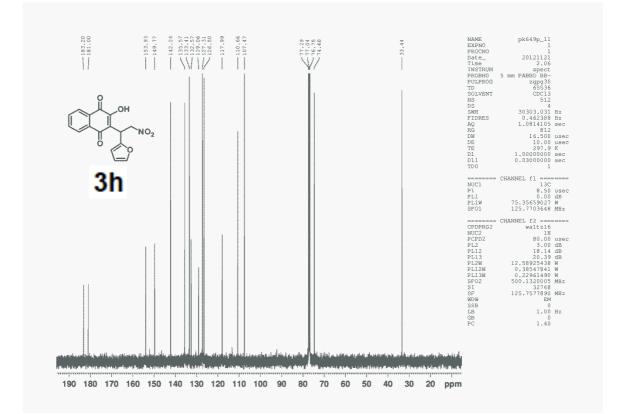


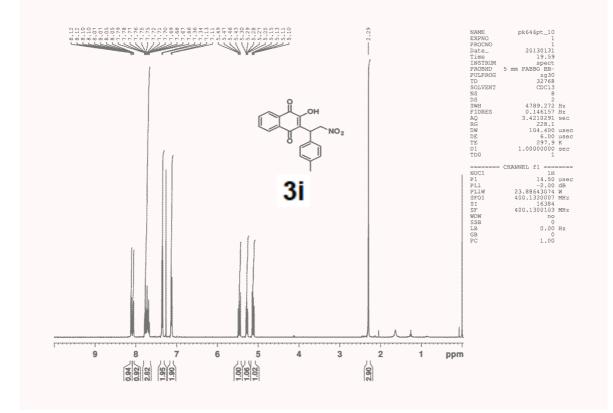


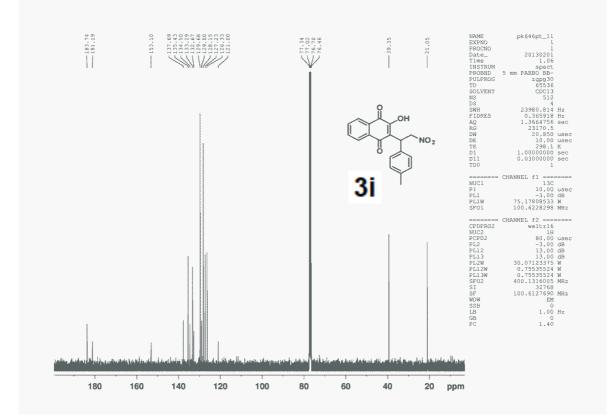


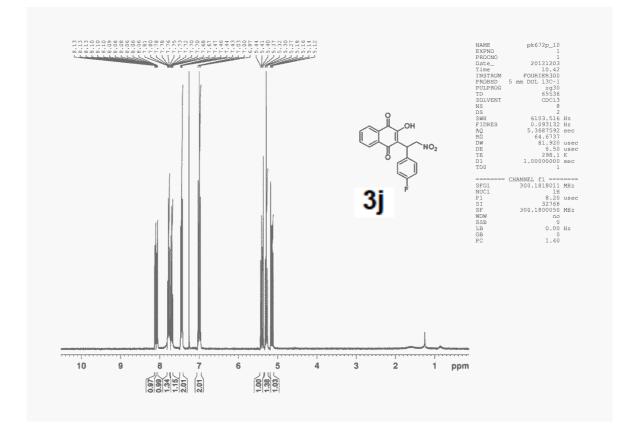


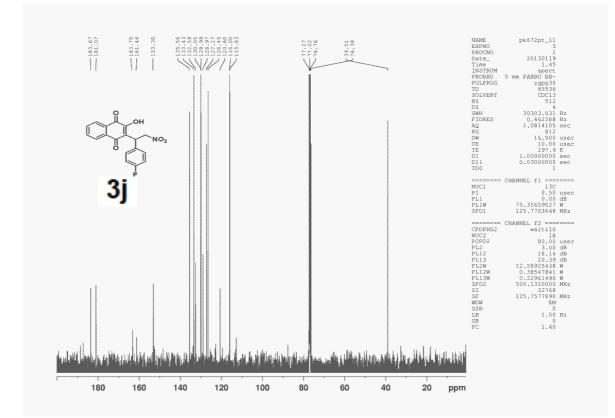


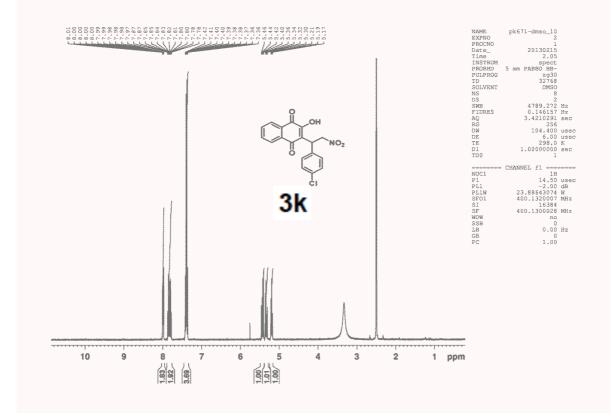


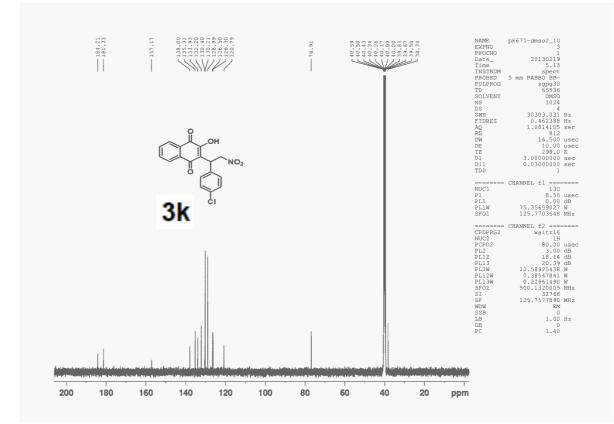


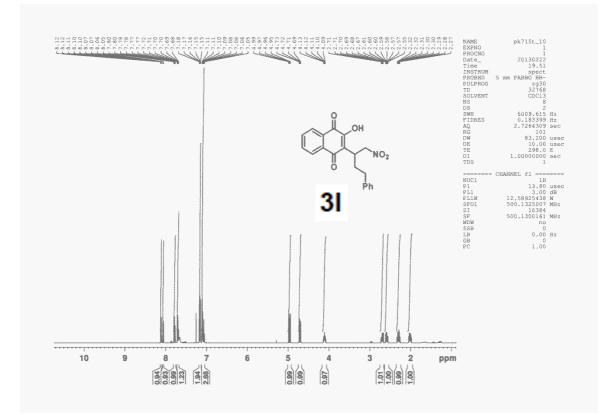


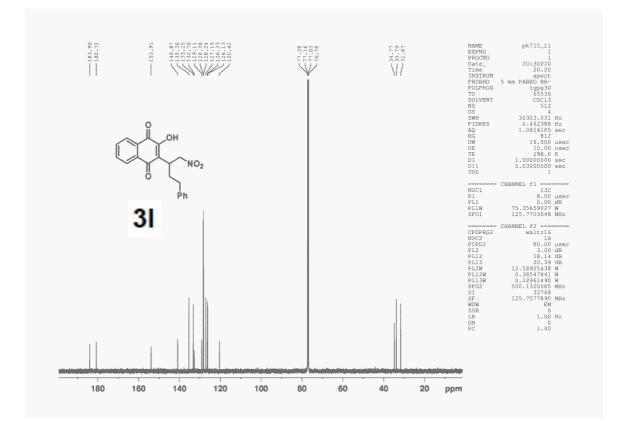


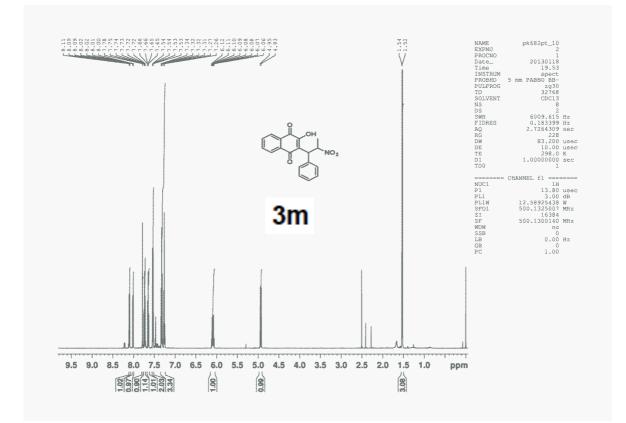


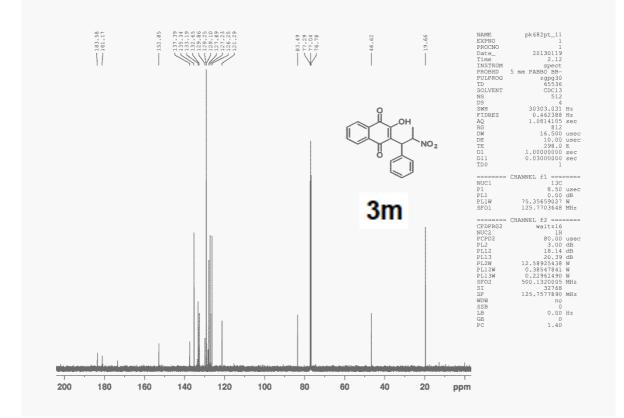


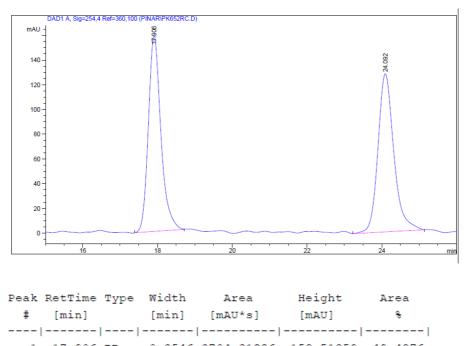


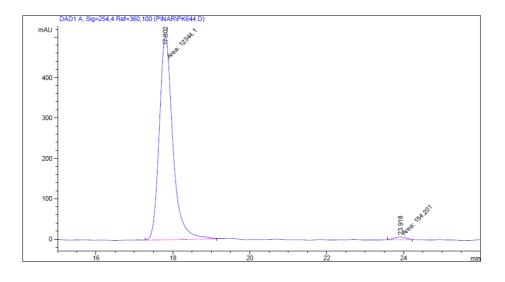




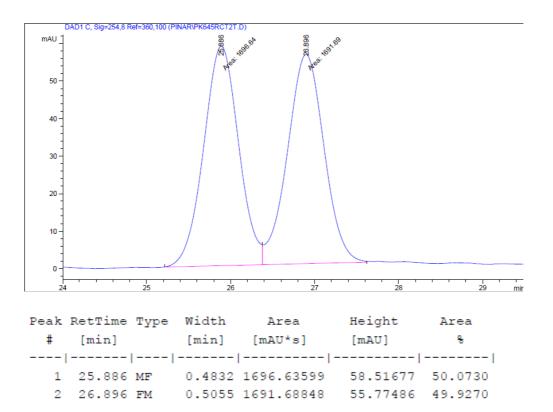




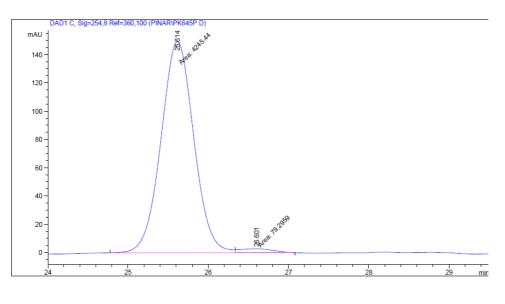



HPLC chromatograms of 3a-m

Racemic 3a

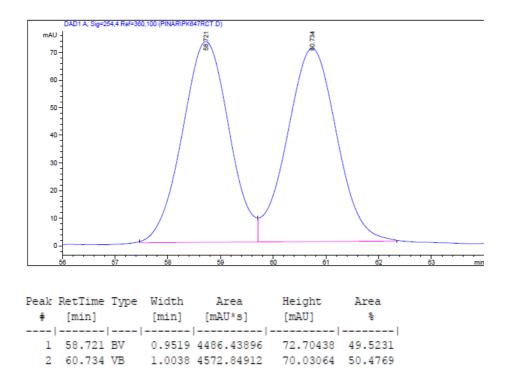

1 17.906 BB 0.3546 3704.31226 158.51859 49.4876 2 24.092 VB 0.4464 3781.01489 128.08470 50.5124

Enantioenriched 3a

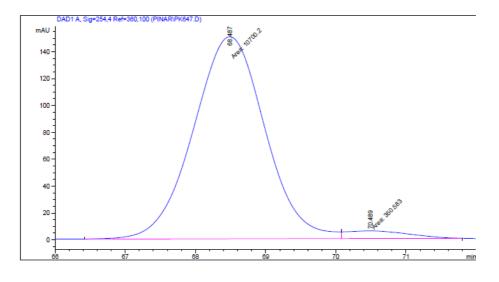


Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	÷
1	17.802	MM	0.4089	1.23441e4	503.11310	98.7662
2	23.918	MM	0.3580	154.20116	7.17821	1.2338

Racemic 3b

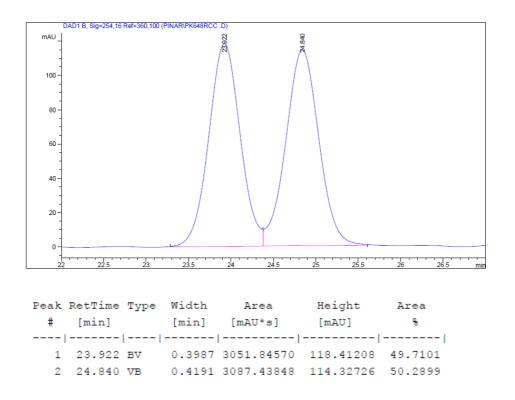


Enantioenriched 3b

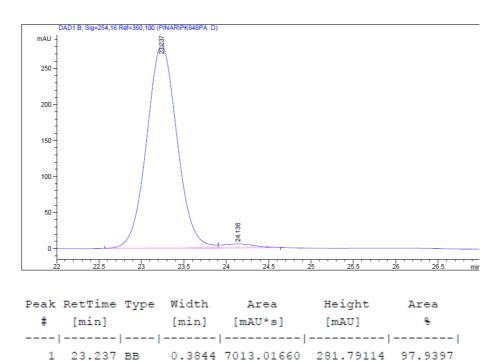


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	25.614	MF	0.4735	4245.44092	149.44862	98.1665
2	26.601	FM	0.4632	79.29591	2.85333	1.8335

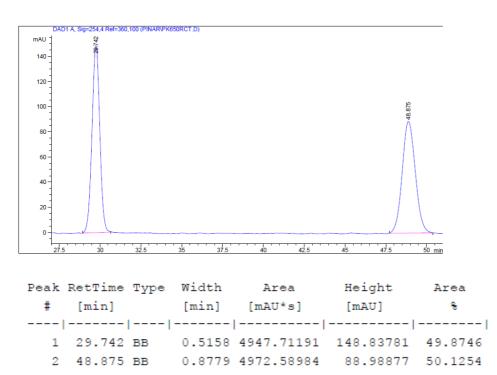
Racemic **3c**⁴



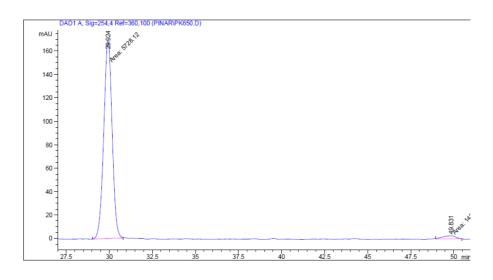
Enantioenriched 3c



Peak	RetTime	Type	Width	Area	Height	Area
ŧ	[min]		[min]	[mAU*s]	[mAU]	용
1	68.487	MF	1.1854	1.07002e4	150.44484	96.8275
2	70.489	FM	1.0188	350.58313	5.73535	3.1725

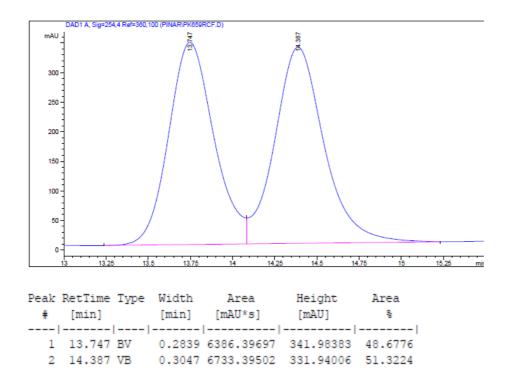


Enantioenriched 3d

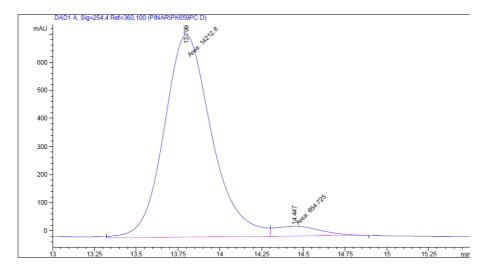


2 24.136 BB 0.3789 147.52817 5.64431 2.0603

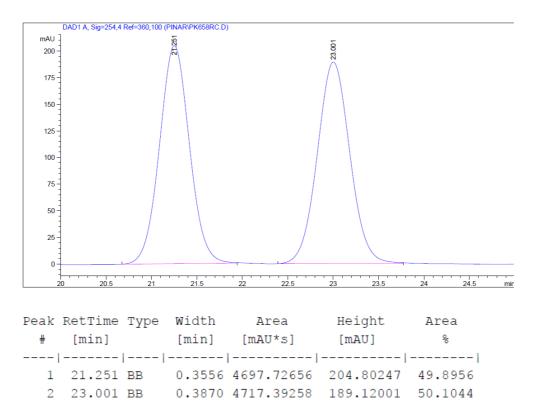
Racemic 3e



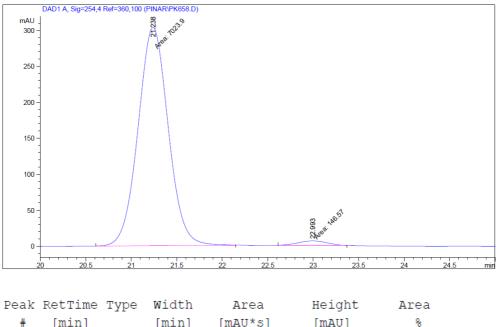
Enantioenriched 3e



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	29.924	MM	0.5640	5728.11670	169.28139	97.5633
2	49.831	MM	0.8819	143.06218	2.70373	2.4367

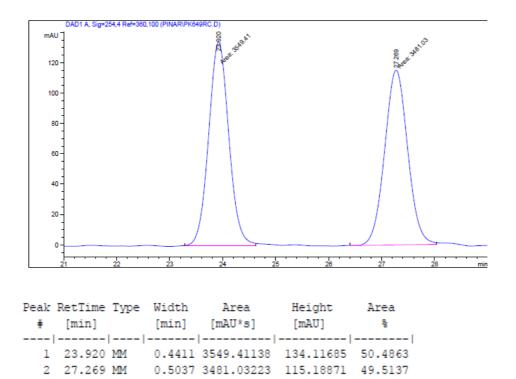


Enantioenriched 3f

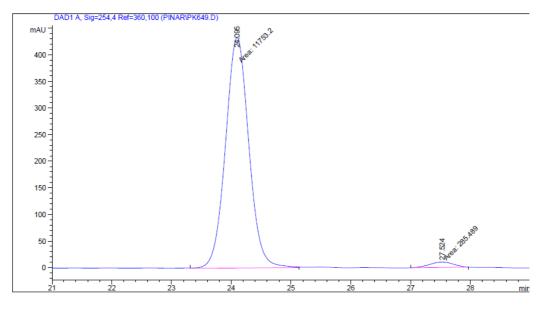


Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	13.799	MF	0.3295	1.42128e4	718.94635	95.5963
2	14.447	FM	0.3105	654.72528	35.14039	4.4037

Racemic 3g

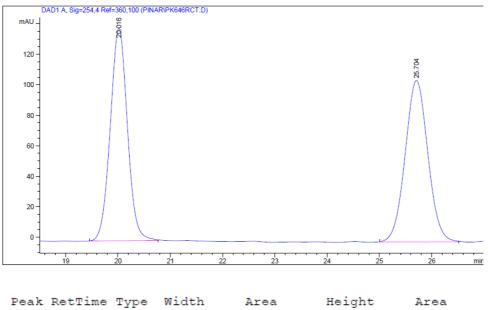


Enantioenriched 3g

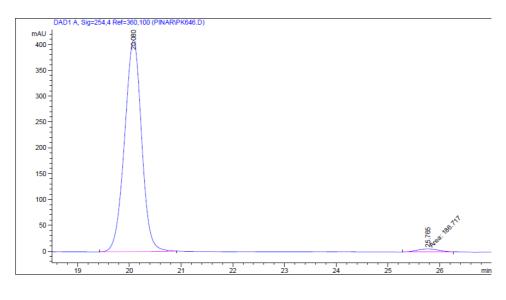


	[]		[]	[1010 0]	[1010]	
1	21.238	MM	0.3854	7023.89551	303.71033	97.9559
2	22.993	MM	0.3748	146.57024	6.51727	2.0441

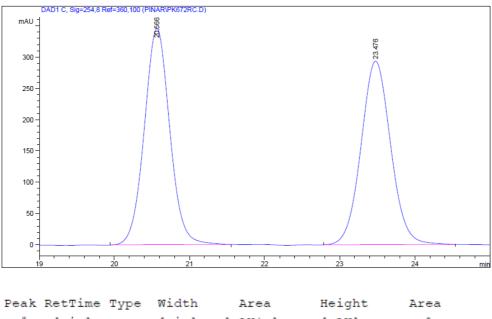
Racemic 3h



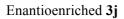
Enantioenriched 3h

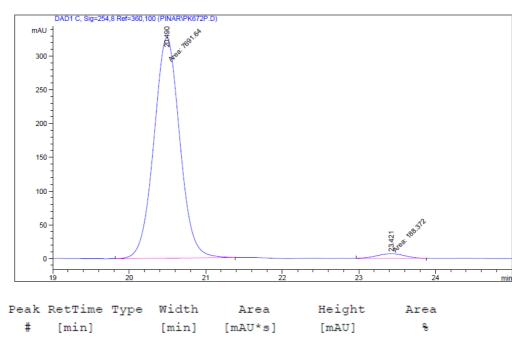

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	24.095	MM	0.4520	1.17532e4	433.41428	97.6286
2	27.524	MM	0.4689	285.48889	10.14751	2.3714

Racemic 3i


#	[min]		[min]	[mAU*s]	[mAU]	8
1	20.016	BB	0.3520	3181.97534	139.53908	49.8061
2	25.704	BB	0.4666	3206.75098	106.10830	50.1939

Enantioenriched 3i

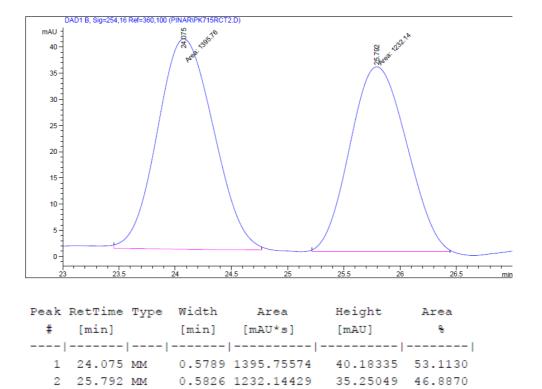



Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	20.080	BB	0.3533	9366.82715	408.79440	98.0456
2	25.765	MM	0.5020	186.71684	6.19931	1.9544

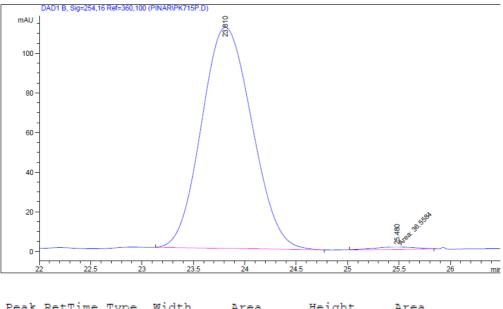
#	[min]		[min]	[mAU*s]	[mAU]	8
1	20.566	BB	0.3638	8186.64111	346.32211	50.3370
2	23.476	BB	0.4246	8077.02148	293.88864	49.6630

1	20.490	MM	0.3923	7691.63916	326.79651	97.6095
2	23.421	MM	0.4365	188.37187	7.19243	2.3905

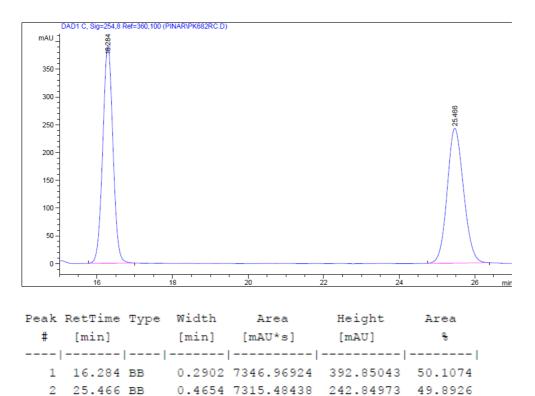
Racemic 3k



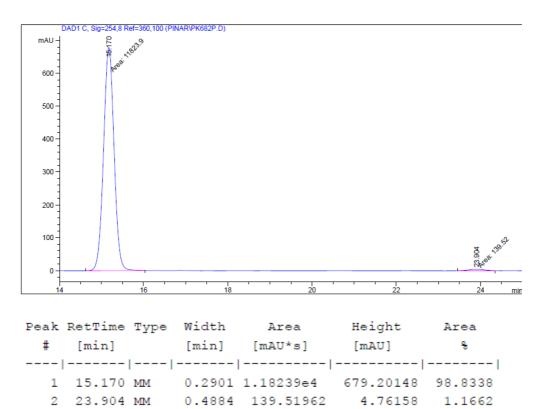
Enantioenriched 3k



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	20.446	MM	0.4199	2582.33276	102.49802	97.7483
2	21.814	MM	0.3618	59.48645	2.74052	2.2517



Enantioenriched 31



Peak	RetTime	туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	23.810	BB	0.5423	3808.82153	111.57813	99.0493	
2	25.480	MM	0.4555	36.55839	1.33774	0.9507	

Enantioenriched 3m

References

- Kasaplar, P.; Riente, P.; Hartmann, C.; Pericàs, M. A., *Adv. Synth. Catal.* 2012, *354*, 2905.
 Zhou, W.-M.; Liu, H.; Du, D.-M., *Org. Lett.* 2008, *10*, 2817.
- 3. Wu, R.; Chang, X.; Lu, A.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C., Chem. Commun. 2011,

47, 5034.

4. For racemic samples, HPLC flow was 0.7 ml/min.