Supporting Information

Effective $\boldsymbol{\pi}$-Extension of Carbazole-Based Thiaporphyrins by Peripheral Phenylethynyl Substituents

Chihiro Maeda,* Mikako Masuda, Naoki Yoshioka*
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: cmaeda@okayama-u.ac.jp, yoshioka@applc.keio.ac.jp

Table of Contents

Instrumentation and materials S2
Experimental section. S2
References S15
NMR spectra S16
Fluorescence spectra S37
Molecular orbital S38
Cyclic and differential pulse voltammograms S39

Instrumentation and materials

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were taken on a JEOL ECA-500 spectrometer, and chemical shifts were reported as the delta scale in ppm as internal reference $\left(\delta=7.260\right.$ for ${ }^{1} \mathrm{H}$ NMR, 77.00 for ${ }^{13} \mathrm{C} \mathrm{NMR}$, for CDCl_{3}). UV/vis/NIR absorption spectra were recorded on a JASCO V-650 spectrometer or on a JASCO V-570 spectrometer. Fluorescence spectra were recorded on HORIBA SPEX-Fluorog NIR-KD spectrometer. MALDI-TOF mass spectra were taken on a Bruker microTOF. Redox potentials were measured by cyclic voltammetry method and differential pulse voltammetry method on an ALS electrochemical analyzer model 6102B. Size-exclusion chromatography (SEC) was performed by using Bio-Rad Bio-Beads S-X1. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene were distilled from CaH_{2}.

Experimental section

Scheme S1. Synthesis of 7 and 10

1,3-Dioctyloxy-2-iodobenzene (4)

DMF (30 mL) solution of 2-iodoresorcinol (4.59 g , 19.4 mmol$)$,
1-bromooctane $(8.0 \mathrm{~mL}, 49 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(11 \mathrm{~g}, 80 \mathrm{mmol})$ was stirred for
 16 h at $80^{\circ} \mathrm{C}$. The mixture was diluted with CHCl_{3}, washed with water, passed through a silica gel column with CHCl_{3}, and evaporated. The residue was separated over a silica gel column with
$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as an eluent to give $\mathbf{4}(7.88 \mathrm{~g}, 17.1 \mathrm{mmol}, 88 \%)$ as a colorless solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=7.19(\mathrm{t}, J=8.15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.45(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 4.01(\mathrm{t}, J=6.45$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.24\left(16 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.90 \mathrm{ppm}(\mathrm{t}, J=6.88$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=159.09,129.47,104.95,79.10,69.33,31.79,29.25,29.21,29.13$, $26.07,22.64$, and 14.09 ppm ; Mp: $41 \sim 42^{\circ} \mathrm{C}$.

1,3-Dioctyloxy-2-trimethylsilylethynylbenzene (5)

A dry toluene $(10 \mathrm{~mL})$ solution of $\mathbf{4}(7.88 \mathrm{~g}, 17.1 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4},(154 \mathrm{mg}$,
 $133 \mu \mathrm{~mol})$, and tributyl(trimethylsilylethynyl)tin ($8.97 \mathrm{~g}, 23.2 \mathrm{mmol}$) was degassed. The mixture was stirred for 18 h at reflux under Ar. After the solvent was evaporated, the residue was separated over a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as an eluent to give $\mathbf{5}(5.92 \mathrm{~g}, 13.7$ mmol, 80%) as colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=7.13(\mathrm{t}, J=8.30 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.45(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 3.99(\mathrm{t}, J=6.30$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89(\mathrm{t}$, $J=7.03 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$), and $0.26 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}, \mathrm{TMS}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=161.54,129.61,104.58$, $102.51,102.48,97.41,68.76,31.83,29.38,29.29,29.27,26.01,22.65,14.05$, and 0.11 ppm .

1,3-Dioctyloxy-2-ethynylbenzene (6)

$5(5.92 \mathrm{~g}, 13.7 \mathrm{mmol})$ was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(6.32 \mathrm{~g}, 45.8 \mathrm{mmol})$ in MeOH
 $(100 \mathrm{~mL})$ for 14 h . After the solvent was removed under reduced pressure, the residue was separated over a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane as an eluent to give $\mathbf{6}(4.70 \mathrm{~g}, 13.1$ $\mathrm{mmol}, 96 \%)$ as a pale orange solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=7.17(\mathrm{t}, J=8.45 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.48(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 4.02(\mathrm{t}, J=6.60$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 1.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right)$, and
$0.90 \mathrm{ppm}\left(\mathrm{t}, J=7.03 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=161.68$, 129.75, 104.43, 101.33, 84.94, $76.21,68.85,31.73,29.23,29.16,29.02,25.85,22.58$, and 14.01 ppm ; Mp: $37 \sim 38^{\circ} \mathrm{C}$.

(2,6-Dioctyloxyphenylethynyl)tributyltin (7)

n-BuLi (1.64 m in hexane, $12.0 \mathrm{~mL}, 19.7 \mathrm{mmol}$) was added to a dehydrated THF (40 mL) solution of $6(4.70 \mathrm{~g}, 13.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under Ar , and the
 mixture was stirred for 20 min at $-78^{\circ} \mathrm{C}$. Tributyltin chloride ($3.9 \mathrm{~mL}, 14 \mathrm{mmol}$) was then added and the mixture was stirred for another 20 min at $-78^{\circ} \mathrm{C}$. After warming up to rt , water was added. The mixture was diluted with CHCl_{3}, washed with water and brine, passed through a short silica gel column with CHCl_{3}. Organic solvents were removed under reduced pressure, which provided $7(8.28 \mathrm{~g}, 12.8$ $\mathrm{mmol}, 98 \%$) as orange liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=7.09(\mathrm{t}, J=8.30 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.45(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 3.99(\mathrm{t}, J=6.60$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.25\left(22 \mathrm{H}, \mathrm{CH}_{2}\right), 1.05(\mathrm{t}$, $\left.J=7.03 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92\left(\mathrm{t}, J=7.03 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, and $0.89 \mathrm{ppm}\left(\mathrm{t}, J=6.30 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=161.47,128.71,104.73,103.51,101.58,101.48,68.81,31.90,29.42,29.31,28.86$, 27.04, 26.01, 22.67, 14.07, 13.64, and 11.13 ppm .

1,3-Dioctyloxy-2-(4-trimethylsilylethynyphenylethynyl)benzene (8)

A dry toluene $(20 \mathrm{~mL})$ solution of $7(4.61 \mathrm{~g}, 7.11 \mathrm{mmol})$, 1-bromo-4-trimethylsilylethynylbenzene ${ }^{[\mathrm{S} 1]}(1.73 \mathrm{~g}, 6.84 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(64.6$ $\mathrm{mg}, 70.5 \mu \mathrm{~mol})$, and $\mathrm{PPh}_{3}(161 \mathrm{mg}, 615 \mu \mathrm{~mol})$ was degassed, and the mixture was stirred for 13 h at reflux under Ar. After the solvent was evaporated, the
 residue was separated over a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give $\mathbf{8}(2.88 \mathrm{~g}, 5.42 \mathrm{mmol}, 76 \%)$ as a yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=7.47(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.43(\mathrm{~d}, J=8.55 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.18(\mathrm{t}, J=8.45$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.51(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 4.04\left(\mathrm{t}, J=6.43 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56(\mathrm{~m}$,
$\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35-1.21\left(12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90\left(\mathrm{t}, J=7.00 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, and $0.28 \mathrm{ppm}(\mathrm{s}$, $9 \mathrm{H}, \mathrm{TMS}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=160.99,131.68,131.11,129.76,124.66,122.10,104.95,104.59$, $102.34,97.18,95.61,84.70,68.82,31.80,29.37,29.30,29.26,26.06,22.64,14.05$, and -0.10 ppm ; $\mathrm{Mp}: 56 \sim 58^{\circ} \mathrm{C}$.

1,3-Dioctyloxy-2-(4-ethynyphenylethynyl)benzene (9)

$8(1.15 \mathrm{~g}, 2.17 \mathrm{mmol})$ was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(1.09 \mathrm{~g}, 7.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 \mathrm{~mL} / 10 \mathrm{~mL})$ for 14 h . After the solvents were removed under reduced pressure, the residue was separated over a silica gel column with
 CHCl_{3} as an eluent to give $9(981 \mathrm{mg}, 2.14 \mathrm{mmol}, 99 \%)$ as brown oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=7.48(\mathrm{dd}, J=1.9,8.75 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.44(\mathrm{dd}, J=1.7,8.60 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.18(\mathrm{t}$, $J=9.30 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.51(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 4.04\left(\mathrm{t}, J=6.40 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv$ $\mathrm{CH}), 1.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34-1.20\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$, and 0.88 $\operatorname{ppm}\left(\mathrm{t}, J=6.00 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=161.05,131.87,131.22,129.84,125.07,121.07$, $104.64,102.31,97.01,84.76,83.54,78.40,68.89,31.81,29.38,29.31,29.28,26.08,22.66$, and 14.07 ppm.

[4-(2,6-Dioctyloxyphenylethynyl)phenylethynyl]tributyltin (10)

$n-\mathrm{BuLi}(1.64 \mathrm{M}$ in hexane, $2.50 \mathrm{~mL}, 4.10 \mathrm{mmol})$ was added to a dehydrated THF (20 mL) solution of $9(981 \mathrm{mg}, 2.14 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under Ar , and the mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$. Tributyltin chloride $(0.61 \mathrm{~mL}, 2.2$
 mmol) was then added and the mixture was stirred for another 10 min at $-78^{\circ} \mathrm{C}$.

After warming up to rt , water was added. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine, passed through a short silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic solvents were removed under reduced pressure, which provided $10(1.55 \mathrm{~g}, 2.07 \mathrm{mmol}, 97 \%)$ as orange oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=7.45(\mathrm{dd}, J=1.2,8.00 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.42(\mathrm{dd}, J=1.5,8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.17(\mathrm{t}$, $J=8.30 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.51(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 4.04\left(\mathrm{t}, J=6.30 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.65\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35-1.22\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.09(\mathrm{t}, J=7.73$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 0.95\left(\mathrm{dt}, J=1.6,7.25 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, and $0.88 \mathrm{ppm}\left(\mathrm{dt}, J=1.7,6.80 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=160.97,131.63,131.08,129.62,123.93,123.08,109.92,104.62,102.50,97.36$, $95.02,84.26,68.84,31.81,29.39,29.31,29.29,28.87,26.94,26.08,22.65,14.04,13.64$, and 11.16 ppm.

3,6-Bis(2,6-dioctyloxyphenylethynyl)-1,8-bis(trimethylsilylethynyl)carbazole (12a)

A dry
toluene
(10
mL)
solution
of
3,6-dibromo-1,8-bis(trimethylsilylethynyl)carbazole (11) ${ }^{[\mathrm{S} 2]}$ (286 mg, $\left.581 \mu \mathrm{~mol}\right)$, $7(1.24 \mathrm{~g}, 1.91 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4},(46.0 \mathrm{mg}, 23.7 \mu \mathrm{~mol})$ was degassed. The mixture was stirred for 17 h at reflux under Ar. After the solvent was
 evaporated, the residue was separated over a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as an eluent to give 12a ($249 \mathrm{mg}, 232 \mu \mathrm{~mol}, 46 \%$) as orange oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=8.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.19(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$, carbazole-H), $7.76(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, 2 H , carbazole-H), $7.18(\mathrm{t}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.55(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 4.09(\mathrm{t}, J=6.43 \mathrm{~Hz}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.90\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.59\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.27(\mathrm{~m}, 16 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 0.81\left(\mathrm{t}, J=7.03 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$, and $0.37 \mathrm{ppm}(\mathrm{s}, 18 \mathrm{H}, \mathrm{TMS}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=160.94$, $139.84,132.65,129.17,124.45,122.90,116.41,106.12,104.74,102.93,99.83,99.80,97.47,81.17$, 68.90, $31.74,29.36,29.31,29.28,26.09,22.59,13.98$, and 0.03 ppm ; MALDI-TOF-MS: $m / z=1070.63$. calcd for $\mathrm{C}_{70} \mathrm{H}_{97} \mathrm{NO}_{4} \mathrm{Si}_{2}: 1070.69\left[(\mathrm{M}-\mathrm{H})^{-}\right]$; UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=292$ (49000), 301 (47600), and $340 \mathrm{~nm}\left(55600 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$.

1,8-Diethynyl-3,6-bis(2,6-dioctyloxyphenylethynyl)carbazole (13a)

Tetrabutylammonium fluoride (1.0 M in THF, $0.70 \mathrm{~mL}, 0.70 \mathrm{mmol}$) was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution of 12a $(241 \mathrm{mg}, 225 \mu \mathrm{~mol})$ and stirred for 10 min . After the solvent was evaporated, the residue was separated over a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as an eluent to give $\mathbf{1 3 a}$ (154 mg , $166 \mu \mathrm{~mol}, 74 \%)$ as yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=8.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$, carbazole-H), $7.81(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 2 H , carbazole-H), $7.19(\mathrm{t}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.55(\mathrm{~d}, J=8.55 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 4.09(\mathrm{t}, J=6.43 \mathrm{~Hz}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.50(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 1.91\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.59\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.25\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.81 \mathrm{ppm}\left(\mathrm{t}, J=7.00 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=160.97$, $140.00,133.36,129.28,124.65,123.03,116.54,105.04,104.73,102.80,97.30,82.35,81.35,78.87$, 68.93, 31.80, 29.43, 29.36, 29.30, 26.14, 22.61, and 14.00 ppm ; MALDI-TOF-MS: $m / z=926.63$. calcd for $\mathrm{C}_{64} \mathrm{H}_{80} \mathrm{NO}_{4}: 926.61\left[(\mathrm{M}-\mathrm{H})^{-}\right] ;$UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=288$ (41800), 304 (43200), and 370 (56300 $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$).

3,3',6,6'-Tetrakis(2,6-dioctyloxyphenylethynyl)-substituted butadiyne-bridged carbazole dimer (14a)

To a pyridine $(10 \mathrm{~mL})$ suspension of $\mathrm{Cu}(\mathrm{OAc})_{2}(274 \mathrm{mg}, 1.50$ $\mathrm{mmol})$ was added dropwise a toluene $(100 \mathrm{~mL})$ solution of $\mathbf{1 3 a}$ (169
 $\mathrm{mg}, 182 \mu \mathrm{~mol}$) for 2 h , and the mixture was stirred for further 2.5 days under air. After the solvents were evaporated, the residue was separated over a silica gel column with CHCl_{3} and SEC column to give 14 a ($92.5 \mathrm{mg}, 49.9 \mu \mathrm{~mol}, 55 \%$) as an yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=9.44(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.21(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}$, carbazole-H), $7.72(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, 4 H , carbazole-H), $7.17(\mathrm{t}, J=8.30 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 6.53(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 4.08(\mathrm{t}, J=6.60 \mathrm{~Hz}, 16 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.91\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.59\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.27(\mathrm{~m}, 32 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right)$, and $0.82 \mathrm{ppm}\left(\mathrm{t}, J=6.88 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=160.98,142.05,131.22,129.34$, $125.50,123.00,116.78,104.81,104.68,102.66,97.22,81.61,79.79,79.42,68.95,31.87,29.49,29.46$,
29.33, 26.18, 22.68, and 14.09 ppm ; MALDI-TOF-MS: $m / z=1852.29$. calcd for $\mathrm{C}_{128} \mathrm{H}_{158} \mathrm{~N}_{2} \mathrm{O}_{8}$: $1852.21\left[\mathrm{M}^{-}\right] ; \mathrm{Mp}: 128-130{ }^{\circ} \mathrm{C}$; UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=310(138000), 332(166000)$, and 440 nm ($50400 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$).

3,3',6,6'-Tetrakis(2,6-dioctyloxyphenylethynyl)-substituted isophlorine (15a)

A p-xylene/2-methoxyethanol ($5.0 \mathrm{~mL} / 5.0 \mathrm{~mL}$) solution of $\mathbf{1 4 a}$ (112 $\mathrm{mg}, 60.4 \mu \mathrm{~mol})$ and $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}(147 \mathrm{mg}, 613 \mu \mathrm{~mol})$ was heated refluxed for 9 h under Ar. The mixture was diluted with CHCl_{3}, washed with water, and passed through a silica gel column with CHCl_{3}.
 Solvents were removed under the reduced pressure, which gave $\mathbf{1 5 a}(109 \mathrm{mg}, 56.7 \mu \mathrm{~mol}, 94 \%)$ as orange oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=10.56(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.31(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}$, carbazole-H), $8.00(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 4 H , carbazole-H), $7.49(\mathrm{~s}, 4 \mathrm{H}$, thiophene- β), $7.13(\mathrm{t}, J=8.30 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 6.45(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph})$, $4.13\left(\mathrm{t}, J=6.60 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.94\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33(\mathrm{~m}$, $\left.16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.24\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.80 \mathrm{ppm}\left(\mathrm{t}, J=7.00 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=$ $161.00,138.93136 .78,129.22,127.78,127.17,124.21,124.08,117.70,116.94,104.85,103.03,98.10$, $81.25,69.00,31.82,29.47,29.39,29.32,26.15,22.62$, and $14.02 \mathrm{ppm} ;$ MALDI-TOF-MS: $m / z=$ 1919.10. calcd for $\mathrm{C}_{128} \mathrm{H}_{161} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}: 1919.17\left[(\mathrm{M}-\mathrm{H})^{-}\right] ; \mathrm{UV} /$ vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=312(120000), 331$ (132000), and 417 nm (21100 $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$).

3,3',6,6'-Tetrakis(2,6-dioctyloxyphenylethynyl)-substituted carbazole based porphyrin (2a)

To a dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ solution of $\mathbf{1 5 a}(91.3 \mathrm{mg}, 47.5 \mu \mathrm{~mol})$ was added $\mathrm{MnO}_{2}(971 \mathrm{mg})$ and resulting suspension was stirred. After 15 h , $\mathrm{MnO}_{2}(898 \mathrm{mg})$ was added and the mixture was stirred for further 9 h . The mixture was then passed through a pad of silica gel. Evaporation

of the solvent provided $\mathbf{2 a}(73.3 \mathrm{mg}, 38.2 \mu \mathrm{~mol}, 80 \%)$ as a black solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=9.71(\mathrm{~s}, 4 \mathrm{H}$, carbazole-H), $9.50(\mathrm{~s}, 4 \mathrm{H}$, carbazole- H$), 8.67(\mathrm{~s}, 4 \mathrm{H}$, thiophene- β), $7.30(\mathrm{t}, J=8.15 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 6.65(\mathrm{~d}, J=8.45 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 4.22\left(\mathrm{t}, J=6.45 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 2.07(\mathrm{~m}$, $\left.16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22(\mathrm{~m}$, $16 \mathrm{H}, \mathrm{CH}_{2}$), and $0.74 \mathrm{ppm}\left(\mathrm{t}, J=7.18 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=161.28,151.52,145.51$, $131.87,129.90,128.50,127.10,125.93,125.13,121.85,104.73,102.92,100.23,86.81,69.50,31.85$, 29.55, 29.47, 29.42, 26.24, 22.61, and 13.98 ppm ; MALDI-TOF-MS: $m / z=1917.15$. calcd for $\mathrm{C}_{128} \mathrm{H}_{159} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}: 1917.15\left[(\mathrm{M}-\mathrm{H})^{-}\right] ; \mathrm{Mp}: 93-95{ }^{\circ} \mathrm{C}$; UV/vis/NIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=306(101000), 339$ (90400), 972 (45400), 1030 (54700), and $1122 \mathrm{~nm}\left(70200 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$.

3,6-Bis(2,6-dioctyloxyphenylethynylphenylethynyl)-1,8-bis(trimethylsilylethynyl)carbazole

 (12b)A dry toluene (20 mL) solution of $\mathbf{1 1}(477 \mathrm{mg}, 923 \mu \mathrm{~mol}), 10(2.49 \mathrm{~g}, 3.33$ $\mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4},(54.9 \mathrm{mg}, 47.5 \mu \mathrm{~mol})$ was degassed. The mixture was stirred for 18 h at reflux under Ar. After the solvent was evaporated, the residue was separated over a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as an
 eluent to give $\mathbf{1 2 b}(538 \mathrm{mg}, 423 \mu \mathrm{~mol}, 46 \%)$ as orange oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=8.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.21(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$, carbazole-H), $7.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 2 H , carbazole-H), $7.53(\mathrm{~d}, J=5,70 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 7.52(\mathrm{~d}, J=8.35 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 7.19(\mathrm{t}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ph}), 6.52(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 4.06\left(\mathrm{t}, J=6.45 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.87\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.57(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90\left(\mathrm{t}, J=6.88 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$, and $0.37 \mathrm{ppm}(\mathrm{s}, 18 \mathrm{H}$, $\mathrm{TMS}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=160.02$. 140.14, 132.85, 131.34, 131.26, 129.73, 124.72, 124.26, 122.92, $122.46,115.17,106.53,104.65,102.45,100.52,99.37,97.36,90.86,88.37,84.56,68.90,31.82,29.39$, 29.33, 29.29, 26.09, 22.67, 14.10, and 0.03 ppm ; MALDI-TOF-MS: $m / z=1271.77$. calcd for
$\mathrm{C}_{86} \mathrm{H}_{105} \mathrm{NO}_{4} \mathrm{Si}_{2}: 1271.762\left[\mathrm{M}^{+}\right] ;$UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=343$ (95500), and $372 \mathrm{~nm}(78100$ $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$).

1,8-Diethynyl-3,6-bis(2,6-dioctyloxyphenylethynylphenylethynyl)carbazole (13b)

Tetrabutylammonium fluoride ($0.50 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 0.50 mmol) was added to a $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ solution of $\mathbf{1 2 b}(150 \mathrm{mg}, 188 \mu \mathrm{~mol})$ and stirred for 10 min . The mixture was passed through a silica gel column with CHCl_{3}, and solvent was evaporated, which provided 13b ($113 \mathrm{mg}, 115 \mu \mathrm{~mol}, 97 \%$) as orange oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=8.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$,
 carbazole-H), 7.79 (d, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$, carbazole-H), $7.54(\mathrm{~s}, 8 \mathrm{H}, \mathrm{Ph}), 7.18(\mathrm{t}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, $6.52(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 4.05\left(\mathrm{t}, J=6.30 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.53(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 1.88\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.57\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.21\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.91 \mathrm{ppm}(\mathrm{t}, J=$ $\left.7.03 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=160.99,140.26,133.39,131.34,131.27,129.72,124.94$, 124.32, 122.98, 122.35, 115.29, 105.41, 104.61, 102.41, 97.33, 90.65, 88.50, 84.63, 82.86, 78.53, 68.86, 31.81, 29.39, 29.32, 29.28, 26.08, 22.66, and 14.09 ppm ; MALDI-TOF-MS: $m / z=1126.67$. calcd for $\mathrm{C}_{80} \mathrm{H}_{88} \mathrm{NO}_{4}: 1126.67[(\mathrm{M}-\mathrm{H})] ;$ UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad \lambda_{\max }(\varepsilon)=344$ (92600), and 370 nm (76900 $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$).

3,3',6,6'-Tetrakis(2,6-dioctyloxyphenylethynylphenylethynyl)-substituted butadiyne-bridged carbazole dimer (14b)

To a pyridine (10 mL) suspension of $\mathrm{Cu}(\mathrm{OAc})_{2}(259 \mathrm{mg}$, $1.42 \mathrm{mmol})$ was added dropwise a toluene (100 mL) solution of 13b (113 mg, $115 \mu \mathrm{~mol}$) for 3 h , and the mixture was stirred for further 4 days under air. After the solvents were evaporated, the residue was separated over a

silica gel column with CHCl_{3} and SEC column to give $\mathbf{1 4 b}$ ($39.2 \mathrm{mg}, 17.4 \mu \mathrm{~mol}, 30 \%$) as an orange solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.12(\mathrm{~s}, 4 \mathrm{H}$, carbazole-H$), 7.60(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}$, carbazole-H), $7.45(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 7.42(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 7.09(\mathrm{t}, J=8.33 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph})$, $6.42(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 3.98\left(\mathrm{t}, J=6.88 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.38\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.91 \mathrm{ppm}\left(\mathrm{t}, J=6.88 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta=160.92,142.40,131.24,129.63,125.61,124.19,122.83,122.32,115.30,105.05,104.50,102.34$, $97.53,90.75,88.62,84.74,80.00,79.56,68.90,31.87,29.47,29.37,29.34,26.10,22.71$, and 14.15 ppm; MALDI-TOF-MS: $m / z=2252.36$. calcd for $\mathrm{C}_{160} \mathrm{H}_{174} \mathrm{~N}_{2} \mathrm{O}_{8}: 2252.33$ [M]; Mp: 201-204 ${ }^{\circ} \mathrm{C}$; UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\varepsilon)=346(261000), 414(32400)$, and $436 \mathrm{~nm}\left(67900 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$.

3,3',6,6'-Tetrakis(2,6-dioctyloxyphenylethynylphenyleth ynyl)-substituted isophlorine (15b)

A p-xylene/2-methoxyethanol $(2.0 \mathrm{~mL} / 2.0 \mathrm{~mL})$ solution of 14b ($39.2 \mathrm{mg}, 17.4 \mu \mathrm{~mol}$) and $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}(77.2 \mathrm{mg}, 332$ $\mu \mathrm{mol})$ was heated refluxed for 11 h under Ar. The mixture was diluted with CHCl_{3}, washed with water, and passed
 through a silica gel column with CHCl_{3}. Solvents were removed under reduced pressure, which gave 15b ($34.2 \mathrm{mg}, 14.7 \mu \mathrm{~mol}, 84 \%$) as a yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=10.45(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.25(\mathrm{~s}, 4 \mathrm{H}$, carbazole-H$), 7.94(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}$, carbazole-H), $7.54(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 7.52(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 7.51(\mathrm{~s}, 4 \mathrm{H}$, thiophene- β), $7.18(\mathrm{t}, J=8.30 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 6.51(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 4.04\left(\mathrm{t}, J=6.48 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.87(\mathrm{~m}$, $\left.16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.91 \mathrm{ppm}(\mathrm{t}, J=6.88 \mathrm{~Hz}$, $\left.24 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=161.03,138.62,136.94,131.35,131.29,129.70,127.71,127.31$, $124.45,124.24,124.07,122.51,117.89,115.74,104.64,102.49,97.44,91.46,88.60,84.61,68.91$,
31.85, 29.42, 29.36, 29.31, 26.10, 22.70, and 14.13 ppm ; MALDI-TOF-MS: $m / z=2320.31$. calcd for $\mathrm{C}_{160} \mathrm{H}_{178} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}: 2320.31$ [M]; Mp: 197-199 ${ }^{\circ} \mathrm{C}$; UV/vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=346$ (205000), 373 (145000), and $410 \mathrm{~nm}\left(27200 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$.

3,3',6,6'-Tetrakis(2,6-dioctyloxyphenylethynylphenylethynyl)-substituted
carbazole-based porphyrin (2b)

To a dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ solution of $\mathbf{1 5 b}(69.2 \mathrm{mg}, 29.8$ $\mu \mathrm{mol})$ was added $\mathrm{MnO}_{2}(746 \mathrm{mg})$ and resulting suspension was stirred. After 17 h , the mixture was then passed through a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the solvent provided $\mathbf{2 b}(49.8 \mathrm{mg}, 21.5 \mu \mathrm{~mol}, 72 \%)$ as a black solid.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=8.83(\mathrm{~s}, 4 \mathrm{H}$, carbazole-H), $8.72(\mathrm{~s}, 4 \mathrm{H}$, carbazole- H$), 8.08(\mathrm{~s}, 4 \mathrm{H}$, thiophene- β), $7.81(\mathrm{~s}, J=7.20 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 7.71(\mathrm{~d}, J=7.20 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 7.21(\mathrm{t}, J=8.15 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 6.55(\mathrm{~d}, J=$ $8.00 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 4.04\left(\mathrm{t}, J=6.03 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.47-1.21$ $\left(64 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.99 \mathrm{ppm}\left(\mathrm{t}, J=6.75 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta=161.17,149.80,145.07,131.80$, $131.64,131.40,130.64,129.50,128.06,126.19,124.84,123.22,122.68,119.23,104.59,102.77,97.75$, 93.69, $92.81, ~ 85.19,68.95,31.96,29.52,29.47,29.37,26.16,22.81$, and 14.25 ppm ; MALDI-TOF-MS: $m / z=2317.31$. calcd for $\left.\mathrm{C}_{160} \mathrm{H}_{175} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}: 2317.28[(\mathrm{M}-\mathrm{H})]^{-}\right] ; 207-209{ }^{\circ} \mathrm{C}$; $\mathrm{UV} / \mathrm{vis} / \mathrm{NIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=352$ (206000), 972 (54800), 1029 (60100), and $1126 \mathrm{~nm}(70600$ $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$).

β-Tetrakis(2,6-dioctyloxyphenylethynyl)-substituted isophlorine (17a)

A dry toluene $(2.5 \mathrm{~mL})$ solution of $\boldsymbol{9}^{[\mathrm{S} 2]}(33.5 \mathrm{mg}, 32.4 \mu \mathrm{~mol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.9$ $\mathrm{mg}, 6.4 \mu \mathrm{~mol}), \mathrm{PPh}_{3}(14.0 \mathrm{mg}, 53.4 \mu \mathrm{~mol})$, and $7(939 \mathrm{mg}, 1.46 \mathrm{mmol})$ was degassed. The mixture was stirred for 15 h at reflux under Ar. After the

solvent was evaporated, the residue was separated by SEC column with CHCl_{3} and by a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as an eluent to give $\mathbf{1 7 a}(51.2 \mathrm{mg}, 23.9 \mu \mathrm{~mol}, 74 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=10.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.53(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}$, carbazole-H$), 8.07(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 4 H , carbazole-H), $7.20(\mathrm{t}, J=8.30 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 6.43(\mathrm{~d}, J=8.55 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 3.80(\mathrm{t}, J=7.03 \mathrm{~Hz}, 16 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.43\left(\mathrm{~s}, 36 \mathrm{H}, t-\mathrm{Bu} ; \mathrm{m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.21 \sim 1.02\left(80 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.78 \mathrm{ppm}(\mathrm{t}, J=7.15 \mathrm{~Hz}, 24 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=161.40,142.66,137.69,135.61,129.05,124.66,124.64,124.10,116.68$, $116.09,105.17,103.90,92.06,87.10,69.33,34.95,31.92,31.73,29.16,28.74,25.76,22.61$, and 14.03 ppm; MALDI-TOF-MS: $m / z=2145.44$. calcd for $\mathrm{C}_{144} \mathrm{H}_{195} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}: 2145.44\left[(\mathrm{M}-\mathrm{H})^{-}\right] ; \mathrm{Mp}: 46-50{ }^{\circ} \mathrm{C}$; $\mathrm{UV} / \mathrm{vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\varepsilon)=306(73100), 334(72400)$, and $420 \mathrm{~nm}\left(19900 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$.

β-Tetrakis(2,6-dioctyloxyphenylethynyl)-substituted thiaporphyrin (3a)

To a dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution of $\mathbf{1 7 a}(51.2 \mathrm{mg}, 23.9 \mu \mathrm{~mol})$ was added $\mathrm{PbO}_{2}(143 \mathrm{mg})$ and resulting suspension was stirred for 4 days, during which further $\mathrm{PbO}_{2}(1.94 \mathrm{~g})$ was added in several portions. The mixture was then passed through a pad of celite. Evaporation of the solvent provided 3a (38.1
 $\mathrm{mg}, 17.8 \mu \mathrm{~mol}, 76 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=10.98(\mathrm{~s}, 4 \mathrm{H}$, carbazole-H), $8.72(\mathrm{~s}, 4 \mathrm{H}$, carbazole-H), $7.25(\mathrm{t}, J=8.30 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{Ph}), 6.57(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 3.90\left(\mathrm{t}, J=6.88 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67(\mathrm{~s}, 36 \mathrm{H}, t-\mathrm{Bu}), 1.57(\mathrm{~m}, 16 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.22\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.03\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.55 \mathrm{ppm}(\mathrm{t}, J=6.38 \mathrm{~Hz}, 24 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=161.39,151.74,148.40,143.06,131.64,129.33,128.15,124.98,123.84$, $121.02,104.78,104.32,96.48,94.83,69.29,36.21,31.64,31.57,29.31,29.12,29.01,26.03,22.40$, and $13.85 \mathrm{ppm} ;$ MALDI-TOF-MS: $m / z=2142.39$. calcd for $\mathrm{C}_{144} \mathrm{H}_{192} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}: 2142.42\left[\mathrm{M}^{-}\right] ; \mathrm{Mp}: 98-100$ ${ }^{\circ} \mathrm{C} ; \mathrm{UV} / \mathrm{vis} / \mathrm{NIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=306(51600), 339(54600), 397(38000), 490(37100), 879(34100)$, 959 (20800), and $1111 \mathrm{~nm}\left(88100 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$.

β-Tetrakis(2,6-dioctyloxyphenylethynylphenylethynyl)-substituted isophlorine (17b)

A dry toluene (3 mL) solution of $16(31.9 \mathrm{mg}, 31.0 \mu \mathrm{~mol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, ($9.9 \mathrm{mg}, 8.6 \mu \mathrm{~mol}$), and $10(240 \mathrm{mg}, 322 \mu \mathrm{~mol})$ was degassed. The mixture was stirred for 23 h at reflux under Ar. After the solvent was evaporated, the residue was separated over a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane as an eluent to give $\mathbf{1 7 b}(78.7 \mathrm{mg}, 30.9 \mu \mathrm{~mol}, 99.7 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.95(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.39(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}$, carbazole-H), 8.23 (d, $J=1.2 \mathrm{~Hz}, 4 \mathrm{H}$, carbazole-H), 7.53 (d, $J=8.55$
 $\mathrm{Hz}, 8 \mathrm{H}, \mathrm{Ph}), 6.51(\mathrm{~d}, J=8.55 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 7.19(\mathrm{t}, J=8.30 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 6.53(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph})$, $4.06\left(\mathrm{t}, J=6.30 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.87\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56\left(\mathrm{~s}, 36 \mathrm{H}, t \mathrm{Bu}\right.$, and $\left.\mathrm{m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.39(\mathrm{~m}$, $\left.16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36-1.20\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.86 \mathrm{ppm}\left(\mathrm{t}, J=6.88 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=$ $161.04,143.26,139.33,135.99,131.51,131.30,129.72,124.66,124.44,123.93,123.30,122.10$, $117.79,115.57,104.61,102.47,97.32,94.51,85.50,84.82,68.88,35.02,32.10,31.76,29.31,29.28$, 29.23, 26.03, 22.63, and $14.06 \mathrm{ppm} ;$ MALDI-TOF-MS: $m / z=2543.80 . \mathrm{C}_{176} \mathrm{H}_{209} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}: 2543.55$ $\left[(\mathrm{M}-\mathrm{H})^{-}\right] ; \mathrm{Mp}:>300{ }^{\circ} \mathrm{C} ; \mathrm{UV} / \mathrm{vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon)=346 \mathrm{~nm}\left(140000 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$.

β-Tetrakis(2,6-dioctyloxyphenylethynylphenylethynyl)-substituted thiaporphyrin (3b)

To a dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ solution of $\mathbf{1 7 b}(25.3 \mathrm{mg}, 9.94 \mu \mathrm{~mol})$ was added $\mathrm{PbO}_{2}(379 \mathrm{mg})$ and resulting suspension was stirred. After 42 h , the mixture was passed through a pad of celite. Evaporation of the solvent provided 3b ($23.5 \mathrm{mg}, 9.24 \mu \mathrm{~mol}, 93 \%$).

3b is not stable enough to measure ${ }^{13} \mathrm{C}$ NMR and absorption coefficient.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=10.71(\mathrm{~s}, 4 \mathrm{H}$, carbazole-H), $8.75(\mathrm{~s}, 4 \mathrm{H}$,

carbazole-H), 7.83 (d, $J=8.05 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 7.61$ (d, $J=8.05 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 7.21$ (t, $J=8.45 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}$), $6.54(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}), 4.07\left(\mathrm{t}, J=6.45 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.76(\mathrm{~s}, 36 \mathrm{H}, t \mathrm{Bu})$, $1.56\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.20\left(\mathrm{~m}, 64 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $0.86 \mathrm{ppm}\left(\mathrm{t}, J=6.73 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right)$; MALDI-TOF-MS: $m / z=2541.32$. calcd for $\mathrm{C}_{176} \mathrm{H}_{207} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}: 2541.53[(\mathrm{M}-\mathrm{H})] ; \mathrm{Mp}:>300{ }^{\circ} \mathrm{C}$; UV/vis/NIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}$ (relative intensity) $=345$ (18.9), 495 (2.69), 888 (1.49), 967 (1), and 1109 nm (3.82).

References

[S1] Schmittel, M.; Ammon, H. Synlett, 1999, 750.
[S2] Maeda, C.; Yoshioka, N. Org. Biomol. Chem. 2012, 10, 5153.

Figure S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4}$ in CDCl_{3}

$$
\left.\mathrm{CH}_{2} \quad\right|^{\mathrm{CH}_{3}}
$$

Figure S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 in CDCl_{3}

Figure S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 in CDCl_{3}

S18

Figure S4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7 in CDCl_{3}

CH_{3}
CH_{2}

Figure S5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8}$ in CDCl_{3}

Figure S6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 in CDCl_{3}

Figure S7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 0}$ in CDCl_{3}

Figure S8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 2}$ a in CDCl_{3}

S23

Figure S9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 3 a}$ in CDCl_{3}

S24

Figure S10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 4 a}$ in CDCl_{3}

Figure S11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 5 a}$ in CDCl_{3}

Figure S12. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 a}$ in CDCl_{3}

Figure S13. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 2 b}$ in CDCl_{3}

Figure S14. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 3 b}$ in CDCl_{3}

Figure S15. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 4 b}$ in CDCl_{3}

Figure S16. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 5 b}$ in CDCl_{3}

Figure S17. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 b}$ in CDCl_{3}

Figure S18. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 7 a}$ in CDCl_{3}

Figure S19. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a}$ in CDCl_{3}

Figure S20. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 7 b}$ in CDCl_{3}

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}

Figure S22. Fluorescence spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (black line: 1, red line: 2a, blue line: 2b, pink line: 3a, green line: 3b). The excitation wavelengths are 980 nm .

Figure S23. Molecular orbitals of (a) 1, (b) 2a, (c) 2b, (d) 3a, and (e) 3b calculated at the B3LYP/6-31G(d) level.

Figure S24. Cyclic and differential pulse voltammograms of (a) 2a, (b) 2b, (c) 3a, and (d) 3b
(solvent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ supporting electrolyte: $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.10 \mathrm{M})$, counter electrode: Pt , reference electrode: $\mathrm{Ag} / \mathrm{Ag}^{+}$, scan rate: $0.05 \mathrm{~V} / \mathrm{s}$).

c)

d)

