Supporting Information for: ## Polarity and Air-Stability Transitions in Field-Effect Transistors Based on Fullerenes with Different Solubilizing Groups Hojeong Yu, a,† Han-Hee Cho, b,† Chul-Hee Cho, b Ki-Hyun Kim, b Dong Yeong Kim, a Bumjoon J. Kim, b,* and Joon Hak $Oh^{a,*}$ ^aSchool of Nano-Bioscience & Chemical Engineering, KIER-UNIST Advanced Center for Energy, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea ^bDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea ^{*}Electronic mail: joonhoh@unist.ac.kr, bumjoonkim@kaist.ac.kr [†]These authors contributed equally to this work. ## **Table of contents** ## **Supplementary Figures S1-9** | | OFET performance of the fullerene bisadducts devices | S3 | |----|---|-----| | | OFET performance of the fullerene trisadducts devices | S4 | | | XRD patterns of drop cast PCBM, OXCMA and ICMA films | S5 | | | AFM topographic height and phase images of drop cast OXCMA film | S6 | | | XRD patterns of solution sheared OXCMA films | S7 | | | CV curves of the indene and <i>o</i> -xylene C ₆₀ multiadducts and PCBM with an Ag quasi-reference electrode | S8 | | | UV-vis absorption spectra of the indene and o-xylene C ₆₀ multiadducts and PCBM | S9 | | | Solution concentration effect on OXCMA OFETs | S10 | | | Shear rate effect on OXCMA OFETs | S11 | | | | | | Sı | applementary Table S1-4 | | | Sı | A summary of the HOMO and LUMO levels of PCBM, ICMA, ICBA, ICTA, OXCMA, OXCBA, and OXCTA. | S12 | | Sı | A summary of the HOMO and LUMO levels of PCBM, ICMA, ICBA, ICTA, | S12 | | | A summary of the HOMO and LUMO levels of PCBM, ICMA, ICBA, ICTA, OXCMA, OXCBA, and OXCTA. Summary of the electrical performance of OFET devices based on the drop cast | | **Figure S1**. OFET performance of the fullerene bisadducts devices. Transfer characteristic of (a) OXCBA and (b) ICBA recorded at electron-enhancement mode (V_{DS} = +100 V). Output curves of (c) OXCBA and (d) ICBA recorded with increasing V_{GS} in steps of 20 V and 30 V, respectively, at electron-enhancement mode (The W/L values of OXCBA and ICBA films were 9.56 and 20, respectively). **Figure S2**. OFET performance of the fullerene trisadducts devices. Transfer characteristics of (a) OXCTA and (b) ICTA recorded at an electron-enhancement mode (V_{DS} = +100 V). Transfer characteristics of (c) OXCTA and (d) ICTA at a hole-enhancement mode (V_{DS} = -100 V). The W/L values of OXCTA and ICTA films were 11.79 and 20, respectively. **Figure S3.** XRD patterns of drop cast (a) PCBM, (b) OXCMA, and (c) ICMA films on OTS-treated SiO₂/Si substrates. The diffraction peaks were observed under the same film thicknesses of approximately 1.5 μ m. (* denotes the second polymorphic crystalline phase) **Figure S4.** AFM topographic (a) height and (b) phase images of drop cast OXCMA film on OTS-treated SiO₂/Si substrates. **Figure S5**. XRD patterns of solution sheared OXCMA films at a shearing rate of (a) 0.12 mm s⁻¹ and (b) at 0.2 mm s⁻¹ on OTS-treated SiO₂/Si substrates. The diffraction peaks were observed at the almost same 2θ ranges with different peak intensities under the same film thicknesses of approximately 1.5 μ m. **Figure S6**. CV curves of the indene and o-xylene C_{60} multiadducts and PCBM with an Ag quasi-reference electrode **Figure S7**. UV–vis absorption spectra of the indene and o-xylene C_{60} multiadducts and PCBM **Figure S8**. Effects of solution concentration on the mobility enhancement of OXCMA OFETs. Transfer characteristics were recorded from OXCMA OFETs prepared with a concentration of (a) 3 mg mL⁻¹ and (b) 10 mg mL⁻¹, respectively. Mobility enhancement in the device fabricated from the higher concentration solution (W/L=20, $\mu_e=7.07\times10^{-4}$ cm²V⁻¹s⁻¹) was found to be a factor of 2.2 compared with the device fabricated using the lower concentration solution (W/L=20, $\mu_e=3.74\times10^{-4}$ cm²V⁻¹s⁻¹). **Figure S9**. Effects of shearing rate on the mobility enhancement of OXCMA OFETs under identical solution concentrations of 10 mg mL⁻¹ without doping. The representative transfer characteristics were obtained from OXCMA OFETs prepared under a shearing rate of (a) 0.12 mm s⁻¹ and (b) 0.2 mm s⁻¹, respectively. Mobility enhancement in the device fabricated under the higher shearing rate (W/L = 0.39, $\mu_e = 0.549$ cm²V⁻¹s⁻¹) was found to be a factor of 2.2 compared with the device fabricated under the lower shearing rate (W/L = 16.64, $\mu_e = 0.191$ cm²V⁻¹s⁻¹). **Table S1.** Summary of the HOMO and LUMO levels of PCBM, ICMA, ICBA, ICTA, OXCMA, OXCBA, and OXCTA. | | LUMO (eV) ^[a] | $\lambda_{\text{onset}} (\text{nm})^{[b]}$ | $E_{\rm g}({\rm eV})^{\rm [c]}$ | HOMO (eV) | |-------|--------------------------|--|---------------------------------|-----------| | PCBM | -3.85 | 728 | 1.70 | -5.55 | | ICMA | -3.88 | 731 | 1.70 | -5.58 | | ICBA | -3.67 | 740 | 1.68 | -5.35 | | ICTA | -3.50 | 689 | 1.80 | -5.30 | | OXCMA | -3.85 | 729 | 1.70 | -5.55 | | OXCBA | -3.66 | 747 | 1.66 | -5.32 | | OXCTA | -3.50 | 690 | 1.80 | -5.30 | ^[a]LUMOs measured by cyclic voltametry; ^[b]the long wavelength absorption edge on the UV-vis absorption spectra; ^[c]Optical bandgaps measured by the absorption onset of the UV-vis absorption spectra Table S2. Electrical Performance of OFET Devices Based on the Drop Cast Thin Films of Fullerene Derivatives (These mobilities were measured in a N₂-filled glove-box) | | <i>n</i> -type | | | <i>p</i> -type | | | | | |----------|--|----------------------------|------------------------|-----------------------|---|--|------------------------|-----------------------| | Compound | $\mu_{ m e,max} \ [{ m cm}^2 { m V}^{-1} { m s}^{-1}]^{[a]}$ | $[cm^2V^{-1}s^{-1}]^{[b]}$ | $I_{ m on}/I_{ m off}$ | V _T
[V] | $\mu_{\mathrm{h,max}}$ [cm ² V ⁻¹ s ⁻¹] [a] | $\frac{\mu_{\rm h,avg}}{[\rm cm^2V^{-1}s^{-1}]}$ | $I_{ m on}/I_{ m off}$ | V _T
[V] | | PCBM | 0.0331 | 0.0206 | 2.5×10^{5} | 16.3 | N/A ^[c] | N/A ^[c] | $N/A^{[c]}$ | N/A ^[c] | | OXCMA | 0.0405 | 0.0274 | 1.6×10^{3} | 8.6 | $N/A^{[c]}$ | N/A ^[c] | N/A ^[c] | N/A ^[c] | | OXCBA | 7.36×10^{-5} | 3.95×10^{-5} | 3.1×10^{3} | 33.7 | 6.17×10^{-6} | 4.46×10^{-6} | 7.5×10^4 | -40.2 | | OXCTA | 1.26×10^{-6} | 7.73×10^{-7} | 7.5×10^4 | 40.3 | 3.21×10^{-7} | 2.54×10^{-7} | 5.0×10^{3} | -3.8 | | ICMA | 0.0507 | 0.0417 | 7.1×10^4 | 11.7 | $N/A^{[c]}$ | $N/A^{[c]}$ | $N/A^{[c]}$ | N/A ^[c] | | ICBA | 4.63×10^{-3} | 3.84×10^{-3} | 7.5×10^4 | 32.8 | 5.97×10^{-4} | 1.91×10^{-4} | 2.2×10^{2} | -61.8 | | ICTA | 2.90×10^{-6} | 2.18×10^{-6} | 3.2×10^{3} | 53.2 | 1.05×10^{-5} | 7.28×10^{-6} | 1.3×10^{6} | -23.0 | [[]a] The maximum mobility of the OFET devices [b] The average mobility of the OFET devices [c] The *p*-type performance of PCBM and fullerene monoadducts was not observed **Table S3.** Peak Assignments for the Out-of-Plane XRD Patterns Obtained from Drop Cast PCBM, OXCMA, and ICMA Thin Films. | | PCBM | | OX | KCMA | ICMA | | |-------|-----------|-------------|----------------------------|------------------------------|---------------------|----------------------| | (00n) | 2θ | d(001)- | 2θ | d(001)- | 2θ | d(001)- | | | (degree) | spacing (Å) | (degree) | spacing (Å) | (degree) | spacing (Å) | | (001) | 5.54 | 15.93 | 5.23 (6.19) ^[a] | 16.86 (14.26) ^[a] | $8.52 (8.88)^{[a]}$ | $10.37 (9.95)^{[a]}$ | | (002) | 10.83 | - | 10.46 | - | - | - | | (003) | - | - | 15.69 | - | - | - | | (004) | 19.37 | - | 20.99 | - | - | - | [[]a] polymorphic peak **Table S4.** Peak Assignments for the Out-of-Plane XRD Patterns Obtained from OXCMA Thin Films Depending on the Solution Shearing Rate. | Coating method | (00n) — | OXCMA | | | |-----------------------------|---------|--------------------|----------------------------|--| | Coating method | (00n) | 2θ (degree) | <i>d</i> (001)-spacing (Å) | | | | (001) | 5.25 | 16.83 | | | Solution shearing | (002) | 10.47 | - | | | at 0.12 mm s^{-1} | (003) | 15.75 | - | | | | (004) | 20.93 | - | | | | (001) | 5.25 | 16.83 | | | Solution shearing | (002) | 10.47 | - | | | at 0.2 mm s ⁻¹ | (003) | 15.73 | - | | | | (004) | 21.01 | - | |