Preparation and Reactions of Enantiomerically Pure α-Functionalised Grignard Reagents

Peter J. Rayner, ${ }^{\dagger}$ Peter O’Brien, ${ }^{* \dagger}$ Richard A. J. Horan ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.,
*GlaxoSmithKline Research \& Development Ltd., Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, U.K.
peter.obrien@york.ac.uk

Index

1. Experimental Details S2
1.1 General S2
1.2 Experimental Procedures and Characterisation Data S3
2. Additional Information S51
2.1 Proof of Configuration of Sulfoxides anti- $\left(S, S_{s}\right)-\mathbf{6}$ and $\operatorname{syn}-\left(R, S_{s}\right)-6 \quad$ S52
2.2 Proof of configuration of Sulfoxides syn- $\left(R, R, S_{\mathrm{s}}\right)-7$ and anti- $\left(S, S, S_{\mathrm{s}}\right)-7 \quad$ S52
3. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR Spectra and CSP-HPLC Data S53
4. References for Supporting Information S108

1. Experimental details

1.1 General

Water is distilled water. Brine refers to a saturated aqueous solution of NaCl . All non-aqueous reactions were carried out under oxygen-free Ar using flame-dried glassware. Alkyllithiums were titrated against N-benzylbenzamide before use. ${ }^{1}$ All diamines and electrophiles were distilled over CaH_{2} before use. $\mathrm{Et}_{2} \mathrm{O}$ and THF were freshly distilled from sodium and benzophenone ketyl. Petrol refers to the fraction of petroleum ether boiling in the range 40-60 ${ }^{\circ} \mathrm{C}$.

Flash column chromatography was carried out using Fluka Chemie GmbH silica (220-440 mesh). Thin layer chromatography was carried out using Merck F_{254} aluminium-backed silica plates. ${ }^{1} \mathrm{H}$ (400 MHz) and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR spectra were recorded on a Jeol ECX-400 instrument with an internal deuterium lock. Chemical shifts are quoted as parts per million and referenced to $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}} 7.27\right)$ and or $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}} 77.0\right.$, central line of triplet). ${ }^{13} \mathrm{C}$ NMR spectra were recorded with broadband proton decoupling. ${ }^{13} \mathrm{C}$ NMR spectra were assigned using DEPT experiments. Coupling constants (J) are quoted in Hertz. IR spectra were recorded on an ATI Matteson Genesis FT-IR spectrometer. Melting points were measured on a Gallenkamp melting point apparatus. Electrospray high and low resolution mass spectra were recorded on a Bruker Daltronics microOTOF spectrometer. Chiral stationary phase HPLC was performed on an Agilent 1200 series instrument and a multiple wavelength, UV/Vis diode array detector; integration was normally performed at 230 nm .

The following compounds were made according to the reported procedures: O-alkyl carbamate $\mathbf{8},{ }^{2} O$-alkyl carbamate $\mathbf{1 0},{ }^{3}(+)$-sparteine surrogate, ${ }^{4}$ diamines (R, R) - $\mathbf{1 2}$ and $(S, S)-\mathbf{1 2}{ }^{5}$ and isobutyl boronic acid pinacol ester. ${ }^{6}$

1.2 Experimental Procedures and Characterisation Data

General Procedure A: \boldsymbol{s}-BuLi/diamine-mediated lithiation-electrophilic trapping of \boldsymbol{O}-alkyl carbamate 8 (Table 1, "Normal, A")

s - $\operatorname{BuLi}(0.92 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $1.20 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise to a stirred solution of carbamate $\mathbf{8}(263 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and diamine (1.20 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, the electrophile ($2.00 \mathrm{mmol}, 2.0$ eq.) was added dropwise and the solution was allowed to warm to rt over 2 h and stirred at rt for 16 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure B: \boldsymbol{s}-BuLi/diamine-mediated lithiation-electrophilic trapping of \boldsymbol{O}-alkyl carbamate 8 (Table 1, "Normal, B")

s-BuLi (0.92 mL of a 1.3 M solution in hexanes, $1.20 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise to a stirred solution of carbamate $\mathbf{8}(263 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and diamine (1.20 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) in$ $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, the electrophile ($2.00 \mathrm{mmol}, 2.0$ eq.) was added dropwise and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min. Then, $\mathrm{MeOH}(2 \mathrm{~mL})$ was added and the resulting solution was allowed to warm to rt over 30 min . The solution was poured into $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure C: \boldsymbol{s}-BuLi/diamine-mediated lithiation-electrophilic trapping of \boldsymbol{O}-alkyl carbamate 8 with reverse addition to Andersen's sulfinate $\left(S_{\mathrm{s}}\right)$-3 (Table 1, "Reverse, B")

s - $\mathrm{BuLi}(0.92 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $1.20 \mathrm{mmol}, 1.2$ eq.) was added dropwise to a stirred solution of carbamate $\mathbf{8}(263 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and diamine (1.20 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) in$ $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then added dropwise via cannula transfer to a stirred solution of Andersen's sulfinate (S_{s})-3 (589 mg , $2.00 \mathrm{mmol}, 2.0$ eq.) in THF (4 mL) at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 5 min . Then, $\mathrm{MeOH}_{(\mathrm{aq})}(2 \mathrm{~mL})$ was added and the resulting solution was allowed to warm
to rt over 30 min . The solution was poured into $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure D: Sulfoxide \rightarrow Magnesium Exchange Reactions

$i-\mathrm{PrMgCl}(0.13-0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.26-0.50 \mathrm{mmol}, 1.3-2.5 \mathrm{eq}$.) was added dropwise to a stirred solution of the sulfoxide ($0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt under Ar. The resulting solution was stirred at rt for 1-30 min. Then, the electrophile ($0.26-0.50 \mathrm{mmol}, 1.3-$ 2.5 eq.) was added dropwise and the resulting solution was stirred at rt for 5 min . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(7 \mathrm{~mL})$ was added and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure E: s-BuLi/diamine-mediated lithiation-electrophilic trapping of 4-chloro N-Boc piperidine 25 (Table 3, "Normal, A")

s-BuLi (1.69 mL of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.) was added dropwise to a stirred solution of N-Boc 4-chloro piperidine $\mathbf{2 5}(219 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and diamine (2.20 mmol, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then, the electrophile ($2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.) was added dropwise. The solution was allowed to warm to rt over 2 h and stirred at rt for 16 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure F: s-BuLi/diamine-mediated lithiation-electrophilic trapping of 4-chloro N-Boc piperidine 25 (Table 3, "Normal, B")
s-BuLi (1.69 mL of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.) was added dropwise to a stirred solution of N-Boc 4-chloro piperidine $\mathbf{2 5}(219 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and diamine (2.20 mmol, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, the electrophile ($2.20 \mathrm{mmol}, 2.2$ eq.) was added dropwise and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min . Then, $\mathrm{MeOH}(2 \mathrm{~mL})$ was added and the resulting solution was
allowed to warm to rt over 30 min . The solution was poured into $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure G: \boldsymbol{s}-BuLi/diamine-mediated lithiation of 4-chloro \boldsymbol{N}-Boc piperidine 25 with reverse addition to Andersen's sulfinate (S_{s})-5 (Table 3, "Reverse, B")

s-BuLi (1.69 mL of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.) was added dropwise to a stirred solution of N-Boc 4-chloro piperidine $\mathbf{2 5}(219 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and diamine (2.20 mmol, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then added dropwise via cannula transfer to a stirred solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}\left(647 \mathrm{mg}, 2.20 \mathrm{mmol}, 2.2 \mathrm{eq}\right.$.) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min . Then, $\mathrm{MeOH}(2 \mathrm{~mL})$ was added and the resulting solution was allowed to warm to rt over 30 min . The solution was poured into $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure H: Sulfoxide \rightarrow Magnesium Exchange Reactions with Transmetallation-Negishi Coupling

$i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.5 \mathrm{mmol}, 2.5$ eq.) was added dropwise to a stirred solution of sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-7(65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in THF (8 \mathrm{~mL}$) at rt under Ar. The resulting solution was stirred at rt for 1 min . Then, $\mathrm{ZnCl}_{2}(0.12 \mathrm{mmol}$ of a 1.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 0.6$ eq.) was added dropwise. The solution was stirred at rt for 30 min . Then, $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq}),. t-\mathrm{Bu}_{3} \mathrm{PH} . \mathrm{BF}_{4}(3.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.06 \mathrm{eq}$.$) and aryl$ bromide ($0.24 \mathrm{mmol}, 1.2$ eq.) were added sequentially. The resulting brown solution was stirred at rt for 16 h . Then, $\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}(0.1 \mathrm{~mL})$ was added and the resulting solution was stirred for 30 min. The solids were removed by filtration through Celite ${ }^{\circledR}$ and the filtrate was washed with water $(5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

(S)-(-)-Menthyl p-toluenesulfinate $\left(S_{\mathrm{S}}\right)-\mathbf{3}$

Thionyl chloride ($46.0 \mathrm{~mL}, 828 \mathrm{mmol}, 4.5$ eq.) was added dropwise to a stirred suspension of sodium p-toluenesulfinate (dried via azeotropic distillation from $3 \times 75 \mathrm{~mL}$ toluene, $32.8 \mathrm{~g}, 184$ $\mathrm{mmol}, 1.0$ eq.) in toluene (110 mL) at $0^{\circ} \mathrm{C}$ over 30 min . The resulting solution was then stirred at rt for 2 h . Then, the volatiles were evaporated under reduced pressure and the residue was dissolved in toluene $(75 \mathrm{~mL})$. The volatiles were then evaporated under reduced pressure to give the crude sulfinyl chloride. The crude sulfinyl chloride was dissolved in $\mathrm{Et}_{2} \mathrm{O}(90 \mathrm{~mL})$ and added dropwise over 30 min to a stirred solution of (-)-menthol ($35.9 \mathrm{~g}, 230 \mathrm{mmol}, 1.25 \mathrm{eq}$.) in pyridine $(33 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. A white precipitate immediately formed and the resulting suspension was stirred at rt for 16 h . Then, the suspension was poured into water (150 $\mathrm{mL})$ and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(3 \times 60 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The resulting solid was recrystallised from hot acetone (20 $\mathrm{mL})$. A second recrystallisation of the solid from hot acetone (20 mL) gave Andersen's sulfinate $\left(S_{\mathrm{S}}\right) \mathbf{- 3}$ as colourless needles $(8.65 \mathrm{~g}, 16 \%)$. Then, 3 drops of conc. $\mathrm{HCl}_{(\mathrm{aq})}$ were added to the mother liquor to effect equilibrium of the sulfinate diastereomers. This resulted in crystallisation of Andersen's sulfinate $\left(S_{\mathrm{S}}\right)$-3. A recrystallisation of the solid from hot acetone (20 mL) gave Andersen's sulfinate $\left(S_{\mathrm{S}}\right)-\mathbf{3}$ as colourless needles ($18.23 \mathrm{~g}, 34 \%$). Total yield from two crops $=$ $26.88 \mathrm{~g}(50 \%)$ as colourless needles, mp 107-108 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{7} \mathrm{mp} 107-109^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.61\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.33\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 4.13(\mathrm{td}, J=$ $10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{CHOS}(\mathrm{O})$), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (dtd, $J=14.0,7.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{ddt}, J=14.0,10.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.24$ (m, 1H), 1.10-0.79 (m, 2H), 0.97 (d, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.87$ (d, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.72$ (d, J $=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1$ (ipso-Ar), 142.4 (ipso-Ar), 129.6 (Ar), $125.0(\mathrm{Ar}), 80.1(\mathrm{CHO}), 47.8(\mathrm{CH}), 42.9\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 31.7(\mathrm{CH}), 25.2(\mathrm{CH}), 23.1\left(\mathrm{CH}_{2}\right)$,
$22.1(\mathrm{CH}), 21.5(\mathrm{Me}), 20.8(\mathrm{Me}), 14.4(\mathrm{Me}) ;[\alpha]_{\mathrm{D}}-199.3$ (c 1.05 in acetone) (lit., ${ }^{7}[\alpha]_{\mathrm{D}}-204(c$ 2.24 in acetone)). Spectroscopic data consistent with those reported in the literature. ${ }^{7}$

Methyl p-toluenesulfinate S1

S1

Bromine ($4.36 \mathrm{~g}, 1.40 \mathrm{~mL}, 27.6 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added to a stirred suspension of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($4.87 \mathrm{~g}, 46.0 \mathrm{mmol}, 5.0 \mathrm{eq}$.) and p-tolyl disulfide ($2.27 \mathrm{~g}, 9.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in MeOH (195 mL) at rt . The resulting yellow suspension was stirred at rt for 3 h during which time the suspension became colourless. Then, the solvent was evaporated under reduced pressure. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ were added to the residue and the two layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product as a colourless oil. Purification by Kügelrohr distillation gave sulfinate $\mathbf{S 1}(2.93 \mathrm{~g}, 93 \%)$ as a colourless oil, bp $91-94{ }^{\circ} \mathrm{C} / 2.0 \mathrm{mmHg}$ (lit., ${ }^{8} \quad 129-130^{\circ} \mathrm{C} / 16.0$ $\mathrm{mmHg}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), 3.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $2.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8$ (ipso-Ar), 140.7 (ipso-Ar), 129.7 (Ar), 125.3 (Ar), 49.3 (OMe), 21.4 (Me). Spectroscopic data consistent with those reported in the literature. ${ }^{9}$
(1S)-1-(p-Tolylsulfinyl)-3-phenylpropyl N, N-diisopropylcarbamate $a n t i-\left(S, S_{s}\right)-6$ and (1R)-1-(p-tolylsulfinyl)-3-phenylpropyl N, N-diisopropylcarbamate $\operatorname{syn}-\left(R, S_{s}\right)-6$
(Scheme 2 and Table 1, Entry 1)

Using general procedure $\mathrm{A}, s-\mathrm{BuLi}(0.92 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $1.20 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) ,$ carbamate 8 ($263 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ eq.) and TMEDA ($139 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.2$ eq.) in $\mathrm{Et}_{2} \mathrm{O}$ (5 mL) and a solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right) \mathbf{- 3}(382 \mathrm{mg}, 1.3 \mathrm{mmol}, 1.3 \mathrm{eq}$.) in THF (1 mL) gave the crude product. Purification by flash column chromatography on silica with $3: 1$ petrol$\mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide anti-(S, $\left.S_{\mathrm{s}}\right)-\mathbf{6}(100 \mathrm{mg}, 25 \%, 83: 17$ er by CSP-HPLC) as a white solid, $\mathrm{mp} 58-60^{\circ} \mathrm{C}$; $R_{\mathrm{F}}(3: 1$ petrol- EtOAc$) 0.3$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2971,1697(\mathrm{C}=\mathrm{O}), 1436$, $1370,1286,1091,1035,910,812,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.28\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Ph}), 7.16(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}$), 7.02 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}$), 5.45 (dd, $J=10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}$), 3.94 (br s, 2H, NCH), 2.74 (ddd, $J=14.0,10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 2.56 (ddd, $J=14.0,10.0,7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} H_{\mathrm{B}}$), $2.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) 2.36-2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.06-1.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.26(\mathrm{br} \mathrm{s}, 12 \mathrm{H}$, $\mathrm{NCH} \mathrm{Me}_{2}$); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 153.5$ (C=O), 141.2 (ipso-Ar), 140.3 (ipso-Ar), 137.4 (ipso-Ar), 129.7 (Ar), 128.3 (Ar), 128.1 (Ar), 126.0 (Ar), 124.4 (Ar), 91.7 (OCH), 46.7 (br, $\mathrm{NCH}), 46.0(\mathrm{br}, \mathrm{NCH}), 31.1\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 21.3(\mathrm{Me}), 20.2(\mathrm{br}, \mathrm{Me}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 424$ [(M $\left.+\mathrm{Na})^{+}, 100\right], 402\left[(\mathrm{M}+\mathrm{H})^{+}, 20\right] ;$ HRMS m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 424.1917(+1.3$ ppm error), found 424.1911; CSP-HPLC: Chiracel OD (97.5:2.5 Hexane-iPrOH, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$) anti- $\left(R, R_{\mathrm{s}}\right)-\mathbf{6} 12.8 \mathrm{~min}$, anti- $\left(S, S_{\mathrm{s}}\right)-\mathbf{6} 14.0 \mathrm{~min}$ and sulfoxide $\operatorname{syn}-\left(R, S_{\mathrm{s}}\right)-\mathbf{6}(84 \mathrm{mg}, 21 \%, 85: 15 \mathrm{er}$ by CSP-HPLC) as a colourless oil, R_{F} (3:1 petrol-EtOAc) 0.20 ; IR (film) 2971, 2968, 1707 (C=O), 1434, 1370, 1291, 1136, 1091, 1038, $809 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), 7.28-7.24 (m, 4H, Ar), 7.21-7.14 (m, 3H, Ar), 5.72 (dd, $J=9.5,4.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}$), 3.99 (br s, $1 \mathrm{H}, \mathrm{NCH}$), 3.57 (br s, $1 \mathrm{H}, \mathrm{NCH}$), 2.79-2.75 (m, 2H, PhCH_{2}), 2.41-2.33 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 2.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.21-0.99(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR
(100.6 MHz, CDCl_{3}) $\delta 152.3$ ($\mathrm{C}=\mathrm{O}$), 141.5 (ipso-Ar), 140.3 (ipso-Ar), 136.0 (ipso-Ar), 129.5 (Ar), 128.5 (Ar), 128.4 (Ar), 126.3 (Ar), 125.3 (Ar), 86.8 (OCH), 46.3 (br, NCH) 45.9 (br, NCH), $31.7\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 21.3(\mathrm{Me}), 21.1(\mathrm{Me}), 20.8(\mathrm{Me}), 20.2(\mathrm{Me}), 20.1(\mathrm{Me}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $424\left[(\mathrm{M}+\mathrm{Na})^{+}, 90\right], 402\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right] ;$ HRMS m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$ 424.1917, found 424.1905 (+2.7 ppm error); CSP-HPLC: Chiracel OD (97.5:2.5 Hexane-iPrOH, $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1}\right) \operatorname{syn}-\left(S, R_{\mathrm{s}}\right)-\mathbf{6} 21.3 \mathrm{~min}, \operatorname{syn}-\left(R, S_{\mathrm{s}}\right)-\mathbf{6} 23.8 \mathrm{~min}$.
(1S)-(p-Tolylsulfinyl)-ethyl N, N-diisopropylcarbamate anti-($\left.S, S_{\mathrm{s}}\right)-11$ and (1R)-(p-Tolylsulfinyl)-ethyl N, N-diisopropylcarbamate $\operatorname{syn}-\left(R, S_{\mathrm{s}}\right)-11$

Using general procedure $\mathrm{A}, s-\mathrm{BuLi}(1.85 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $2.40 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) ,$ carbamate 10 ($346 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.0$ eq.) and diamine (S, S) $\mathbf{- 1 2}$ ($744 \mathrm{mg}, 2.40 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$ and a solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}(1.18 \mathrm{~g}, 4.0 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) in THF (10$ mL) gave the crude product. Purification by flash column chromatography on silica with $3: 1$ petrol-EtOAc $+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide anti-(S, S_{s})-11 (24 mg, 4\%, er not determined) as a colourless oil, R_{F} (7:3 petrol-EtOAc) 0.4; IR (film) 2971, 2959, 1694 ($\mathrm{C}=\mathrm{O}$), 1531, 1475, $1312,1296,1050,910,854,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), 7.32 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), 5.52 (q, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}$), 4.04 (br s, 1 H , NCH), 3.86 (br s, 1H, NCH), $2.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) 1.36$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Me}$), 1.29-1.21 (br m, $12 \mathrm{H}, \mathrm{NCHMe} 2$) ; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8$ ($\mathrm{C}=\mathrm{O}$), 141.2 (ipso-Ar), 137.7 (ipso-Ar), 129.8 (Ar), 124.3 (Ar), 89.3 (OCH), 46.8 (br, NCH), 45.9 (br, NCH), 21.5 (br, Me), 21.4 (Me), 20.3 (br, Me), 9.4 (Me); MS (ESI) $m / z 334\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 312\left[(\mathrm{M}+\mathrm{H})^{+}, 80\right] ;$ HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 334.1447$ (-0.1 ppm error), found 334.1448 and sulfoxide syn$\left(R, S_{\mathrm{s}}\right)-\mathbf{1 1}\left(55 \mathrm{mg}, 9 \%\right.$, er not determined) as a colourless oil, R_{F} (7:3 petrol-EtOAc) 0.30; IR (film) 2992, 2978, 2970, 1700 (C=O), 1530, 1472, 1450, 1390, 1291, 1122, 1078, 910, $730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 5.80(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 3.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}), 3.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}), 2.39(\mathrm{~s}$,
$\left.3 \mathrm{H}, \mathrm{Me}), 1.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Me}), 1.15-1.04(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CHMe})_{2}\right){ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.5$ ($\mathrm{C}=\mathrm{O}$), 141.7 (ipso-Ar), 136.0 (ipso-Ar), 129.4 (Ar), 125.4 (Ar), 84.0 (OCH), 47.6 (NCH) 46.1 (NCH), $21.5(\mathrm{Me}), 21.4(\mathrm{Me}), 20.8(\mathrm{Me}), 20.5(\mathrm{Me}), 20.1(\mathrm{Me}), 13.7$ (Me); MS (ESI) $m / z 334\left[(\mathrm{M}+\mathrm{Na})^{+}, 70\right], 312\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right] ;$ HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{Na})^{+} 334.1447$, found 334.1447 (+0.1 ppm error).

1-(p-Tolylsulfinyl)-ethyl N, N-diisopropylcarbamate anti-rac-11 and 1-(p-tolylsulfinyl)-ethyl N, N-diisopropylcarbamate syn-rac-11

Using general procedure $\mathrm{A}, s-\mathrm{BuLi}(0.92 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $1.20 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) ,$ carbamate 10 ($173 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and TMEDA ($179 \mu \mathrm{~L}, 1.20 \mathrm{mmol}, 1.2$ eq.) in $\mathrm{Et}_{2} \mathrm{O}$ (5 mL) and methyl p-tolyl sulfinate $\mathbf{S} \mathbf{S}(255 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) gave the crude product.$ Purification by flash column chromatography on silica with $3: 1$ petrol-EtOAc $+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide anti-rac-11 (90 mg, 29\%) as a colourless oil and sulfoxide syn-rac-11 (69 $\mathrm{mg}, 22 \%$) as a colourless oil.

1-(p-Tolylsulfinyl)-3-phenylpropyl N, N-diisopropylcarbamate anti-rac-6, 1-(p-tolylsulfinyl)-3-phenylpropyl N, N-diisopropylcarbamate syn-rac-6, 1-(p-tolylsulfinyl)-ethyl N, N diisopropylcarbamate anti-rac-11 and 1-(p-tolylsulfinyl)-ethyl N, N-diisopropylcarbamate syn-rac 11 (Scheme 4)

s-BuLi (0.38 mL of a 1.3 M solution in hexanes, $0.50 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added to a stirred solution of carbamate 10 ($87 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ eq.) and TMEDA ($75 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 1.0 \mathrm{eq}$.)
in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, a solution of sulfoxide anti-rac-6 ($200 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added dropwise and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . $\mathrm{MeOH}(1 \mathrm{~mL})$ was added and the solution was warmed to rt over 30 min . The solution was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10$ $\mathrm{mL})$ and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 4:1-3:1 petrol$\mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave recovered carbamate $10(51 \mathrm{mg}, 59 \%)$ as a colourless oil and a 70:5:13:12 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of sulfoxides anti-rac-6, syn-rac-6, anti-rac-11, syn-rac-11 ($180 \mathrm{mg}, 66 \%, 5 \%, 13 \%, 12 \%$ respectively based on sulfoxide anti-rac-6) as a pale yellow oil.

Part of the ${ }^{1} \mathrm{H}$ NMR spectrum of the 70:5:13:12 mixture of sulfoxides anti-rac-6, syn-rac-6, anti-rac-11, syn-rac-11

Optimisation of Sulfoxide $\rightarrow \mathbf{M g}$ Exchange Reaction (Table 2)

Methyl 2-[(N,N-diisopropylcarbamoyl)oxy]-4-phenylbutanoate rac-13, O-alkyl carbamate 8, and i-propyl p-tolyl sulfoxide rac-14

(Table 2, Entry 1)

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.13 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.26 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and sulfoxide anti-rac- 6 ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) in THF (8 mL) at rt for 5 min and methyl chloroformate ($25 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3 \mathrm{eq}$.) at rt for 5 min gave the crude product. Purification by flash column chromatography on silica with 9:1 petrol-EtOAc as eluent gave ester rac-46 (27 $\mathrm{mg}, 48 \%$) as a colourless oil, O-alkyl carbamate $8(9 \mathrm{mg}, 14 \%)$ as a colourless oil, recovered sulfoxide anti-rac-6 ($8 \mathrm{mg}, 4 \%$) and sulfoxide rac-14 (30 mg, 81\%). Full characterisation data is presented later.
(Table 2, Entry 2)

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.13 \mathrm{~mL}$ of a 2.0 M solution in $\mathrm{THF}, 0.26 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and sulfoxide anti-rac- 6 ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and methyl chloroformate ($25 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3 \mathrm{eq}$.) at rt for 5 min gave the crude product. Purification by flash column chromatography on silica with 9:1 petrol-EtOAc as eluent gave ester rac-13 (37 $\mathrm{mg}, 65 \%$) as a colourless oil, O-alkyl carbamate 8 ($4 \mathrm{mg}, 6 \%$) as a colourless oil, recovered sulfoxide anti-rac-6 (16 mg, 8\%) and sulfoxide rac-14 (27 mg, 73\%). Full characterisation data is presented later.
(Table 2, Entry 3)

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.15 \mathrm{~mL}$ of a 2.0 M solution in $\mathrm{THF}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$. and sulfoxide anti-rac- $6(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 5 min and methyl
chloroformate ($29 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) at rt for 5 min gave the crude product. Purification by flash column chromatography on silica with 9:1 petrol-EtOAc as eluent gave ester rac-13 (24 $\mathrm{mg}, 42 \%)$ as a colourless oil, O-alkyl carbamate $\mathbf{8}(9 \mathrm{mg}, 17 \%)$ as a colourless oil and sulfoxide rac-14 ($30 \mathrm{mg}, 82 \%$). Full characterisation data is presented later.
(Table 2, Entry 4)

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.15 \mathrm{~mL}$ of a 2.0 M solution in $\mathrm{THF}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and sulfoxide anti-rac- $6(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) in THF $(8 \mathrm{~mL})$ at rt for 1 min and methyl chloroformate ($29 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) at rt for 5 min gave the crude product. Purification by flash column chromatography on silica with 9:1 petrol-EtOAc as eluent gave ester rac-13 (38 $\mathrm{mg}, 67 \%)$ as a colourless oil, O-alkyl carbamate $\mathbf{8}(6 \mathrm{mg}, 9 \%)$ as a colourless oil and sulfoxide rac-14 ($31 \mathrm{mg}, \mathbf{8 4 \%}$). Full characterisation data is presented later.
(Table 2, Entry 5)

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide anti-rac- $6(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in THF (8 \mathrm{~mL}$) at rt for 1 min and methyl chloroformate ($48 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.5$ eq.) gave the crude product. Purification by flash column chromatography on silica with 9:1 petrol-EtOAc as eluent gave ester rac-13 ($48 \mathrm{mg}, 75 \%$) as a
 84%). Full characterisation data is presented later.

Methyl (2R)-[N,N-(diisopropylcarbamoyl)oxy]-4-phenylbutanoate (R)-13

(R)-13

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide anti- $\left(S, S_{\mathrm{s}}\right)-6$ ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) in THF (8 mL) and methyl chloroformate ($48 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.5$ eq.) gave the crude product. Purification by flash column
chromatography on silica with 9:1 petrol-EtOAc as eluent gave ester $(R) \mathbf{- 1 3}(\mathbf{4 6} \mathbf{m g}, 73 \%, 99: 1 \mathrm{er}$ by CSP-HPLC) as a colourless oil, $R_{\mathrm{F}}\left(9: 1\right.$ petrol-EtOAc) $0.2 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Ph}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 5.08$ (t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 4.11$ (br s, 1H, NCH), 3.80 (br s, $1 \mathrm{H}, \mathrm{NCH}$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.79-2.75 (m, 2H, PhCH_{2}), 2.21-2.15 (m, 2 H , CH), 1.35-1.20 (br m, 12H, NCHMe) ; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6\left(\mathrm{CO}_{2} \mathrm{Me}\right), 154.8$ (i- $\mathrm{Pr}_{2} \mathrm{~N} C=\mathrm{O}$), 140.7 (ipso- Ph), $128.5(\mathrm{Ph}), 128.3(\mathrm{Ph}), 126.2(\mathrm{Ph}), 72.0(\mathrm{OCH}), 52.0(\mathrm{OMe}), 45.4$ (br, NCH), $33.3\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 20.4$ (br, Me); $[\alpha]_{\mathrm{D}}-17.8\left(c 0.55\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\right.$ lit. ${ }^{2},[\alpha]_{\mathrm{D}}-17.3$ (c 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for (R)-13 of 97:3 er)]; CSP-HPLC: Chiracel OD ($95: 5$ Hexane-iPrOH, 0.5 mL $\left.\min ^{-1}\right)(S) \mathbf{- 1 3} 10.7 \mathrm{~min},(R) \mathbf{- 1 3} 11.9 \mathrm{~min}$. Spectroscopic data consistent with those reported in the literature. ${ }^{2}$

1-Phenylhex-5-en-(3R)-yl N, N-diisopropylcarbamate (R)-16

(R)-16
$i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added dropwise to a stirred solution of sulfoxide $\operatorname{anti}-\left(S, S_{\mathrm{s}}\right)-\mathbf{6}(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt under Ar. The resulting solution was stirred at rt for 1 min . Then, a solution of $\mathrm{CuBr} . \mathrm{SMe}_{2}(8.2 \mathrm{mg}$, $0.04 \mathrm{mmol}, 0.2$ eq.) in THF (1.0 mL) and allyl bromide ($43 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5$ eq.) were added sequentially. The solution was stirred at rt for 2 h . Then, saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $9: 1$ petrol $-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave carbamate $(R) \mathbf{- 1 6}\left(43 \mathrm{mg}, 70 \%, 99: 1\right.$ er by CSP-HPLC) as a colourless oil, $R_{\mathrm{F}}(9: 1$ petrol-Et ${ }_{2}$ O) 0.3; IR (film) 3047, 2901, 2874, 1654 (C=O), 1597, 1487, 1301, 1298, 1275, 1117, 1054, $893 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.25$ (m, 2H, Ph), 7.19-7.15 (m, $3 \mathrm{H}, \mathrm{Ph}$), 5.85-5.76 (m, 1H, CH $=\mathrm{CH}$), 5.11-5.04 (m, $2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$), $5.00-4.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 4.10(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NCH}$), 3.74 (br s, 1H, NCH), 2.74-2.60 (m, 2H, CH), 1.96-1.83 (m, 2H, CH), 1.25-1.21 (br
$\left.\mathrm{m}, 12 \mathrm{H}, \mathrm{NCHMe})_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4$ ($\mathrm{C}=\mathrm{O}$), 142.0 (ipso-Ph), 134.1 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 128.4(\mathrm{Ph}), 128.3(\mathrm{Ph}) 125.8(\mathrm{Ph}), 117.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 73.2(\mathrm{OCH}), 46.2(\mathrm{br}, \mathrm{NCH})$, $39.0\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{br}, \mathrm{NCH} \mathrm{Me}_{2}\right)$; MS (ESI) $m / z 326\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right]$, $304\left[(\mathrm{M}+\mathrm{H})^{+}, 20\right] ;$ HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$326.2091, found $326.2082(+2.5$ ppm error). $[\alpha]_{\mathrm{D}}+3.0$ (c 0.45 in CHCl_{3}); CSP-HPLC: Chiracel OD-H (99:1 Hexane-iPrOH, 1.0 $\left.\mathrm{mLmin}^{-1}\right)(R)-165.4 \mathrm{~min},(S)-166.7 \mathrm{~min}$.

1-Phenylhex-5-en-3-yl N, N-diisopropylcarbamate rac-16

$i-\mathrm{PrMgCl}(0.15 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) was added dropwise to a$ stirred solution of sulfoxide anti-rac-6 ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt under Ar. The resulting solution was stirred at rt for 1 min . Then, a solution of $\mathrm{CuBr} . \mathrm{SMe}_{2}(8.2 \mathrm{mg}, 0.04$ mmol, 0.2 eq.) in THF (1.0 mL) and allyl bromide ($26 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were added sequentially. The solution was stirred at rt for 2 h . Then, saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave carbamate $\mathrm{rac}-\mathbf{1 6}(31 \mathrm{mg}, 51 \%)$ as a colourless oil.

(1R)-(1-Hydroxycyclohexyl)-3-phenylpropyl N, N-diisopropylcarbamate (R)-17

(R) -17

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide anti-(S, S_{s}) $\mathbf{- 6}(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and cyclohexanone ($52 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5$ eq.) gave the crude product. Purification by flash column chromatography on silica with $95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave alcohol $(R) \mathbf{- 1 7}(52 \mathrm{mg}, 71 \%$, 99:1 er by CSP-HPLC) as a colourless oil, $R_{\mathrm{F}}\left(95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) 0.2$; IR (film) 3392 (OH), 2920, 2889, 1647 (C=O), 1417, 1347, 1278, 1138, 1117, 1034, $894 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 4.88-4.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 4.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NCH}), 3.87$ (br s, 1H, NCH), 2.75-2.58 (m, 2H, CH), 1.98-1.94 (m, 2H, CH), 1.84 (br s, 1 H , OH), 1.63-1.25 (br m, 22 $\mathrm{H}, \mathrm{CH}+\mathrm{NCHMe}$) ; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100.6} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.9$ (C=O), 142.1 (ipso-Ph), $128.4(\mathrm{Ph}), 128.3(\mathrm{Ph}) 125.8(\mathrm{Ph}), 80.1(\mathrm{OCH}), 73.2(\mathrm{COH}), 46.5(\mathrm{br}, \mathrm{NCH})$, 45.4 (br, NCH), $34.3\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 21.8(\mathrm{br}, \mathrm{NCHMe})$, $21.5\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{2}\right), 20.5(\mathrm{br}, \mathrm{NCHMe})$; MS (ESI) $m / z 384\left[(\mathrm{M}+\mathrm{Na})^{+}, 90\right], 219(100), 90$ (80); HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 384.2509$, found 384.2493 (+4.1 ppm error); $[\alpha]_{\mathrm{D}}+29.1\left(c 0.6\right.$ in CHCl_{3}); CSP-HPLC: Chiracel OD (98:2 Hexane-iPrOH, $0.5 \mathrm{mLmin}^{-1}$) $(R)-\mathbf{1 7}$ $14.5 \mathrm{~min},(S)-1721.2 \mathrm{~min}$.
(Scheme 8) Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.13 \mathrm{~mL}$ of a 2.0 M solution in THF, 0.25 mmol, 2.5 eq.) and sulfoxide anti-($\left(S, S_{\mathrm{s}}\right)-6(40 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) in THF (4 mL) at rt for 15 min and cyclohexanone ($26 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with $95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave alcohol $(R) \mathbf{- 1 7}(12 \mathrm{mg}$, $34 \%, 98: 2$ er by CSP-HPLC) as a colourless oil,
(Scheme 8) Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.13 \mathrm{~mL}$ of a 2.0 M solution in THF, 0.25 mmol, 2.5 eq.) and sulfoxide anti-($\left.S, S_{\mathrm{s}}\right)-\mathbf{6}(40 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ eq.) in THF (4 mL) at rt for 30 min and cyclohexanone ($26 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) gave the crude product. Purification by flash
column chromatography on silica with $95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave alcohol $(R) \mathbf{- 1 7}(8.5 \mathrm{mg}$, $24 \%, 98: 2$ er by CSP-HPLC) as a colourless oil.
(1S)-(1-Hydroxycyclohexyl)-3-phenylpropyl N, N-diisopropylcarbamate (S)-17 and (S)isopropyl p-tolyl sulfoxide (S)-14

(S) -17

(S) -14

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.43 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.60 \mathrm{mmol}, 2.5 \mathrm{eq}$. and sulfoxide $\operatorname{syn}-\left(R, S_{\mathrm{s}}\right)-6(96 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (9 mL) at rt for 1 min and cyclohexanone ($62 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 2.5$ eq.) gave the crude product. Purification by flash column chromatography on silica with 95:5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave alcohol (S) - $\mathbf{1 7}(65 \mathrm{mg}, 74 \%$, 99:1 er by CSP-HPLC) as a colourless oil, $[\alpha]_{\mathrm{D}}-28.6$ (c 1.0 in CHCl_{3}); CSP-HPLC: Chiracel OD (98:2 Hexane- $\mathrm{iPrOH}, 0.5 \mathrm{mLmin}^{-1}$) $(R)-\mathbf{1 7} 13.4 \mathrm{~min},(S)-\mathbf{1 7} 21.4 \mathrm{~min}$ and sulfoxide (S) - $\mathbf{1 4}$ ($31 \mathrm{mg}, 78 \%$) as a colourless oil, $R_{\mathrm{F}}\left(95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) 0.05 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.48\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.31\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$), 2.82 (sept, $J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{S}(\mathrm{O}) \mathrm{CH}), 2.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}), 1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, CHMe); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5$ (ipso-Ar), 138.5 (ipso-Ar), 129.6 (Ar), 125.1 (Ar), $54.6\left(\mathrm{CHMe}_{2}\right), 21.5(\mathrm{Me}), 15.8(\mathrm{Me}), 14.2(\mathrm{Me}) ;[\alpha]_{\mathrm{D}}-194.2$ (c 1.0 in EtOH) $\left[\right.$ lit. ${ }^{10},[\alpha]_{\mathrm{D}}$ -187 (c 2.4 in EtOH)]. Spectroscopic data consistent with those reported in the literature. ${ }^{11}$

The isolation of sulfoxide (S)-14 allows assignment of the configuration in sulfoxides anti-($\left(S, S_{\mathrm{s}}\right)$ $\mathbf{6}$ and $\operatorname{syn}-\left(R, S_{\mathrm{s}}\right)-\mathbf{6}$. Sulfoxide $(S)-\mathbf{1 4}$ is the expected product of double inversion from Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-3$.

1-(1-Hydroxycyclohexyl)-3-phenylpropyl N, N-diisopropylcarbamate rac-17

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in $\mathrm{THF}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$. and sulfoxide anti-rac- 6 ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and cyclohexanone ($52 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5$ eq.) gave the crude product. Purification by flash column chromatography on silica with 95:5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave alcohol rac-17 (45 mg, 62\%) as a colourless oil.

1-Hydroxy-1,4-diphenylbutan-2-yl N, N-diisopropylcarbamate (R, S)-18 and (R, R)-18

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide anti- $\left(S, S_{\mathrm{s}}\right)-6(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and benzaldehye ($51 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5$ eq.) gave the crude product which contained a $90: 10$ mixture of $(R, S)-\mathbf{1 8}$ and $(R, R)-\mathbf{1 8}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography on silica with 95:5-9:1 petrol-EtOAc as eluent gave a 96:4 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of alcohols $(R, S)-\mathbf{1 8}$ and $(R, R)-\mathbf{1 8}(42 \mathrm{mg}, 58 \%$, each diastereoisomer 99:1 er by CSP-HPLC) as a colourless oil, $R_{\mathrm{F}}(9: 1$ petrol-EtOAc) 0.2 ; IR (film) $3378(\mathrm{OH}), 2923,2881$, 1653 ($\mathrm{C}=\mathrm{O}$), 1572, 1451, 1358, 1139, 1118, $943 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.32$ (m, 4H, Ph), 7.28-7.26 (m, 3H, Ph), 7.21-7.17 (m, 1H, Ph), 7.14-7.12 (m, 2H, Ph), 5.12-5.08 (m,
$0.96 \mathrm{H}, \mathrm{OCH}), 5.06-5.01(\mathrm{~m}, 0.04 \mathrm{H}, \mathrm{OCH}), 4.89(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 3.98-3.81(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NCH}), 2.77-2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.64-2.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.94-1.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})$, 1.27-1.08 (m, 12H, NCHMe $)$, OH not resolved; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for (R, S) - $\mathbf{1 8} \delta$ 156.1 (C=O), 141.4 (ipso-Ph), 140.1 (ipso-Ph), 128.4 (Ph), 128.3 (Ph) 128.0 (Ph), 127.5 (Ph), $127.0(\mathrm{Ph}), 126.8(\mathrm{Ph}), 78.6(\mathrm{OCH}), 76.3(\mathrm{OCH}), 46.3(\mathrm{br}, \mathrm{NCH}), 32.4\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 20.4$ (br, NCHMe e_{2}; MS (ESI) $m / z 392\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 370\left[(\mathrm{M}+\mathrm{H})^{+}, 35\right]$; HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$392.2202, found 392.2202 (+0.3 ppm error), CSP-HPLC: Chiracel OD (95:5 Hexane-iPrOH, $1.0 \mathrm{mLmin}^{-1}$) (S, S) - $\mathbf{1 8} 14.5 \mathrm{~min},(R, S)-\mathbf{1 8} 16.7 \mathrm{~min},(R, R)$ - $\mathbf{1 8} 18.6 \mathrm{~min}$, $(S, R)-\mathbf{1 8} 26.5 \mathrm{~min}$.

1-Hydroxy-1,4-diphenylbutan-2-yl N, N-diisopropylcarbamate anti-rac-18 and syn-rac-18

anti-rac-18

syn-rac-18

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$. and sulfoxide anti- $\left(S, S_{\mathrm{s}}\right)-6(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and benzaldehye ($51 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) gave the crude product which contained a $90: 10$ mixture of $(R, S)-\mathbf{1 8}$ and $(R, R)-\mathbf{1 8}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography on silica with 95:5-9:1 petrol-EtOAc as eluent gave a $92: 8$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of alcohols $(R, S) \mathbf{- 1 8}$ and $(R, R)-\mathbf{1 8}(36 \mathrm{mg}, 49 \%)$ as a colourless oil.

4-Hydroxy-5,5-dimethyl-1-phenylhexan-3-yl N, N-bis(propan-2-yl)carbamate (R, S)-19 and (R, R) $\mathbf{- 1 9}$

$(R, S)-19$

$(R, R)-\mathbf{1 9}$

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide anti- $\left(S, S_{\mathrm{s}}\right)-\mathbf{6}(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in THF (8 \mathrm{~mL})$ at rt for 1 min and pivaldehyde ($54 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) gave the crude product which contained a $60: 40$ mixture of $(R, S)-19$ and $(R, R)-\mathbf{1 9}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography on silica with 9:1-8:2 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave a 70:30 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of alcohols $(R, S)-19$ and $(R, R)-19(54 \mathrm{mg}, 78 \%$, minor diastereoisomer 99:1 er by CSP-HPLC of the diol, major diastereoisomer er not determined) as a colourless oil, R_{F} (8:2 petrol-Et ${ }_{2} \mathrm{O}$) 0.2; IR (film) $3383(\mathrm{OH}), 2914,2889,1648(\mathrm{C}=\mathrm{O}), 1429,1300,1271,1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 5.19(\mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}$, $0.3 \mathrm{H}, \mathrm{OCH}$), 4.98 (dt, $J=10.0,2.5 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathrm{OCH}$), 4.04-3.90 (br m, 2H, NCH), 3.48 (d, $J=2.5$ $\mathrm{Hz}, 0.7 \mathrm{H}, \mathrm{C} H \mathrm{OH}$), $3.24(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathrm{CHOH}), 2.78(\mathrm{ddd}, J=14.0,10.5,5.0 \mathrm{~Hz}, 0.7 \mathrm{H}$, $\mathrm{CH}), 2.68-2.60(\mathrm{~m}, 1.3 \mathrm{H}, \mathrm{CH}), 2.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.00-1.91(\mathrm{~m}, 1 \mathrm{H}$, CH), 1.28-1.26 (m, 12H, NCHMe 2), $0.96\left(\mathrm{~s}, 6.3 \mathrm{H}, \mathrm{CMe}_{3}\right), 0.95\left(\mathrm{~s}, 2.7 \mathrm{H}, \mathrm{CMe}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) for $(R, S)-19$ and $(R, R)-19 \quad \delta 155.3(\mathrm{C}=\mathrm{O}), 154.3(\mathrm{C}=\mathrm{O})$, 142.0 (ipso- Ph), 141.7 (ipso-Ph), 128.4 (Ph), 128.3 (Ph) 128.3 (Ph), 128.3 (Ph), 125.8 (Ph) 125.8 (Ph), 80.9 (OCH), $79.8(\mathrm{OCH}), 76.2(\mathrm{OCH}), 72.8(\mathrm{OCH}), 46.0(\mathrm{br}, \mathrm{NCH}), 45.5(\mathrm{br}, \mathrm{NCH}), 35.1\left(\mathrm{CMe}_{3}\right), 34.6$ $\left(\mathrm{CMe}_{3}\right), 32.41\left(\mathrm{CH}_{2}\right), 32.40\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CMe}_{3}\right), 26.4\left(\mathrm{CMe}_{3}\right) 21.6$ (br, NCHMe $)$, 20.5 (br, NCHMe 2); MS (ESI) $m / z 372\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 350\left[(\mathrm{M}+\mathrm{H})^{+}, 50\right] ;$ HRMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 372.2509$, found $372.2496(+3.4 \mathrm{ppm}$ error).

4-Hydroxy-5,5-dimethyl-1-phenylhexan-3-yl N, N-bis(propan-2-yl)carbamate anti-rac-19 and syn-rac-19

anti-rac-19

syn-rac-19

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$. and sulfoxide anti-rac- $\mathbf{6}$ ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and pivaldehyde ($54 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) gave the crude product which contained a $60: 40$ mixture of anti-rac-19 and syn-rac-19 by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography on silica with 9:1-8:2 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave a 70:30 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of alcohols anti-rac-19 and syn-rac-19 (48 mg, 69\%) as a colourless oil.
(3R,4R)-5,5-Dimethyl-1-phenylhexane-3,4-diol $\operatorname{syn}-(R, R)$-S2 and (3R,4S)-5,5-dimethyl-1-phenylhexane-3,4-diol anti-(R, S)-S2

$\operatorname{syn}-(R, R)-\mathbf{S} 2$

anti- $(R, S)-\mathbf{S 2}$

A 70:30 mixture of alcohols anti- $(R, S) \mathbf{- 1 9}$ and $\operatorname{syn}-(R, R) \mathbf{- 1 9}(13 \mathbf{m g}, 0.037 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in THF$ $(1 \mathrm{~mL})$ was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(9 \mathrm{mg}, 0.22 \mathrm{mmol}, 6.0 \mathrm{eq}$.$) in THF$ $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred and heated at $70^{\circ} \mathrm{C}$ for 1 h . Then, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and water $(1 \mathrm{~mL}), 2 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(2 \mathrm{~mL})$ and MgSO_{4} were added sequentially. The solids were removed by filtration. The filtrate was washed with water (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product which contained a 70:30 mixture of anti- $(R, S)-\mathbf{S} \mathbf{2}$ and $\operatorname{syn}-(R, R)-\mathbf{S} 2$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography on silica with 4:1-3:1 petrol-EtOAc as eluent gave diol syn-(R, R)-

S2 ($1.5 \mathrm{mg}, 18 \%, 99: 1$ er by CSP-HPLC) as a colourless oil, $R_{\mathrm{F}}\left(3: 1\right.$ petrol-EtOAc) $0.3 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 3.82(\mathrm{ddd}, J=8.0,5.0,1.0$ $\mathrm{Hz} 1 \mathrm{H}, \mathrm{CHOH}), 3.10(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.80(\mathrm{ddd}, J=14.010 .0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PhCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 2.70 (ddd, $J=14.0,9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.98 (br s, $2 \mathrm{H}, \mathrm{OH}$), 1.93 (dddd, $J=14.0$, $9.5,8.0,6.0 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{CH}$), 1.80 (dddd, $J=14.0,10.0,6.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 0.94 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8$ (ipso- Ph), $128.41(\mathrm{Ph}), 128.37(\mathrm{Ph}) 125.9(\mathrm{Ph}), 79.9$ $(\mathrm{CHOH}), 68.9(\mathrm{CHOH}), 38.5\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CMe}_{3}\right) 32.1\left(\mathrm{CH}_{2}\right), 26.2(\mathrm{CMe} 3)$; MS (ESI) m/z 245 $\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right] ;$ HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+}$245.1512, found $245.1505(+2.8$ ppm error); CSP-HPLC: Chiracel AD-H (98:2 Hexane-iPrOH, $1.0 \mathrm{mLmin}^{-1}$) (R, R)-S2 20.5 min , (S,S)-S2 22.2 min and diol $\operatorname{anti}-(R, S)$-S2 ($4.5 \mathrm{mg}, 55 \%$, er not determined) as a colourless oil, R_{F} (3:1 petrol-EtOAc) 0.2; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}$, Ph), 3.73 (ddd, $J=10.0,4.0,3.0 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{CHOH}$), $3.39(\mathrm{~d}, J=4.0 \mathrm{~Hz}, \mathrm{CHOH}$), 2.92 (ddd, $J=$ 14.010 .0 (9.5), $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 2.69 (ddd, $J=14.0,9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.96 (dddd, J $=14.0,9.5,7.0,3.0 \mathrm{~Hz} \mathrm{1H,CH}), 1.89-1.79(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}+\mathrm{OH}), 0.95\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1$ (ipso- Ph), $128.5(\mathrm{Ph}), 128.4(\mathrm{Ph}) 125.8(\mathrm{Ph}), 82.8(\mathrm{CHOH}), 72.0$ (CHOH), $34.3\left(\mathrm{CMe}_{3}\right), 33.9\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 26.7(\mathrm{CMe} 3) ; \mathrm{MS}(\mathrm{ESI}) m / z 245\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$, 100]; HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+}$245.1512, found 245.1514 (-0.6 ppm error).

5,5-Dimethyl-1-phenylhexane-3,4-diol syn-rac-S2 and anti-rac-S2

syn-rac-S2

anti-rac-S2

An 80:20 mixture of alcohols anti-rac-15 and syn-rac-15 (90 mg, $0.26 \mathrm{mmol}, 1.0$ eq.) in THF (4 mL) was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(60 \mathrm{mg}, 1.56 \mathrm{mmol}, 6.0$ eq.) in THF $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred and heated at $70^{\circ} \mathrm{C}$ for 1 h . Then, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and water $(2 \mathrm{~mL}), 2 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(4 \mathrm{~mL})$ and MgSO_{4} were added sequentially. The solids were removed by filtration. The filtrate was washed with water (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product which contained
an $80: 20$ mixture of anti-rac-S2 and syn-rac-S2 by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography on silica with 4:1-3:1 petrol-EtOAc as eluent gave diol syn-rac-S2 (9 $\mathrm{mg}, 16 \%$) as a colourless oil and diol anti-rac-S2 (28 mg, 49\%) as a colourless oil

(3R,4S) 4-Hydroxy-5-methyl-1-phenylhexan-3-yl N, N-diisopropylcarbamate (R, S)-20

(R,S)-20

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide anti-($\left(S, S_{\mathrm{s}}\right)-6(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and isobutyraldehyde ($46 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with 9:1-8:2 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave alcohol (R, S)-20 (46 $\mathrm{mg}, 70 \%, 99: 1$ er by CSP-HPLC) as a colourless oil, $R_{\mathrm{F}}(8: 2$ petrol-Et 2 O) 0.3; IR (film) 3389 (OH), 2923, 2889, 1648 (C=O), 1418, 1348, 1280, 1139, 1118, $1045 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.20-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 4.98(\mathrm{dt}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH})$, 4.10-3.89 (br m, 2H, NCH), 3.48 (dd, $J=7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}$), 2.78 (ddd, $J=14.0,10.5,5.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.64\left(\mathrm{ddd}, J=14.0,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.06$ (dtd, $J=14.5,10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.91 (dddd, $J=14.5,10.5,6.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.70 (oct, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $1.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NCHMe}), 0.99\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{Ce}_{2}\right)$, $0.91\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} M e_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3(\mathrm{C}=\mathrm{O}), 141.9$ (ipso$\mathrm{Ph}), 128.4(\mathrm{Ph}), 128.3(\mathrm{Ph}) 125.9(\mathrm{Ph}), 78.3(\mathrm{OCH}), 76.1(\mathrm{CHOH}), 46.0(\mathrm{br}, \mathrm{NCH}), 32.3\left(\mathrm{CH}_{2}\right)$, $31.0\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CHMe}_{2}\right), 21.5$ (br, NCHMe ${ }_{2}$), 20.5 (br, NCHMe ${ }_{2}$), 19.3 (Me), $18.4(\mathrm{Me})$; MS (ESI) $m / z 358\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 336\left[(\mathrm{M}+\mathrm{H})^{+}, 80\right]$; HRMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 358.2353, found 358.2347 (+1.5 ppm error); $[\alpha]_{\mathrm{D}}+21.22$ (c 0.40 in CHCl_{3}); CSP-HPLC: Chiracel OD (95:5 Hexane-iPrOH, $1.0 \mathrm{mLmin}^{-1}$) (R, S)-20 $5.8 \mathrm{~min},(S, R)$-20 7.8 min .

4-Hydroxy-5-methyl-1-phenylhexan-3-yl N, N-diisopropylcarbamate anti-rac-20 and syn-rac-20

anti-rac-20

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$. and sulfoxide anti-rac- 6 ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and isobutyraldehyde ($46 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with 9:1-8:2 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave alcohol anti-rac-20 (49 $\mathrm{mg}, 75 \%$) a colourless oil.

4-Hydroxy-1-phenyloctan-3-yl N, N-diisopropylcarbamate (R, S)-21 and (R, R)-21

(R, S) - 21

$(R, R)-21$

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide anti-($\left(S, S_{\mathrm{s}}\right)-6(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and valeraldehyde ($53 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5$ eq.) gave the crude product which contained a $90: 10$ mixture of (R, S)-21 and (R, R) - $\mathbf{2 1}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography on silica with 9:1-8:2 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave a 90:10 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of alcohols $(R, S)-\mathbf{2 1}$ and $(R, R)-\mathbf{2 1}(45 \mathrm{mg}, 65 \%$, each diastereoisomer 99:1 er by CSP:HPLC) as a colourless oil, $R_{\mathrm{F}}\left(8: 2\right.$ petrol- $\left.\mathrm{Et}_{2} \mathrm{O}\right) 0.3$; IR (film) 3399 (OH), 2923, 2878, 1647 $(\mathrm{C}=\mathrm{O}), 1428,1291,1239,1117,1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$, 7.20-7.16 (m, 3H, Ph), 4.87 (dt, $J=8.0,3.5 \mathrm{~Hz}, 0.9 \mathrm{H}, \mathrm{OCH}$), 4.85-4.80 (m, 0.1H, OCH), 4.06 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}), 3.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}), 3.69(\mathrm{dt}, J=9.0,3.5 \mathrm{~Hz}, 0.9 \mathrm{H}, \mathrm{CHOH}), 3.65-3.61(\mathrm{~m}, 0.1 \mathrm{H}$,
$\mathrm{CHOH}), 2.79-2.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.55-1.24(\mathrm{~m}$, $18 \mathrm{H}), 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for (R, S) - $\mathbf{2 1} \delta 156.2(\mathrm{C}=\mathrm{O})$, 141.6 (ipso-Ph), 128.4 (Ph), 128.3 (Ph) 126.0 (Ph), 78.6 (OCH), 73.9 (CHOH), 45.6 (br, NCH), $32.5\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CHMe}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 20.4$ (br, NCHMe $)$, $14.0(\mathrm{Me}) ; \mathrm{MS}(\mathrm{ESI}) m / z 372\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 350\left[(\mathrm{M}+\mathrm{H})^{+}, 30\right]$; HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 372.2509$, found 372.2493 (+4.3 ppm error); CSP-HPLC: Chiracel OD (99:1 Hexane-iPrOH, $1.0 \mathrm{mLmin}^{-1}$) (R, R)-21 $16.8 \mathrm{~min},(R, S)$ - $\mathbf{2 1} 19.3 \mathrm{~min},(S, S)-\mathbf{2 1} 19.3 \mathrm{~min}$, (S, R)-21 28.3 min .

4-Hydroxy-1-phenyloctan-3-yl N, N-diisopropylcarbamate anti-rac-21 and syn-rac-21

anti-rac-21

syn-rac-21

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$. and sulfoxide anti-rac-6 ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt for 1 min and valeraldehyde ($53 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5$ eq.) gave the crude product which contained a $90: 10$ mixture of $(R, S)-\mathbf{2 1}$ and $(R, R)-21$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography on silica with 9:1-8:2 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave a $90: 10$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of alcohols anti-rac-21 and syn-rac-21 ($37 \mathrm{mg}, 53 \%$) as a colourless oil.

1-Phenyloctane-3,4-diol anti-rac-S3 and syn-rac-S3

A 90:10 mixture of alcohols anti-rac-21 and syn-rac-21 ($30 \mathrm{mg}, 0.086 \mathrm{mmol}, 1.0$ eq.) in THF (1 $\mathrm{mL})$ was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(20 \mathrm{mg}, 0.52 \mathrm{mmol}, 6.0$ eq. $)$ in THF $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred and heated at $70^{\circ} \mathrm{C}$ for 1 h . Then, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and water $(1 \mathrm{~mL}), 2 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(2 \mathrm{~mL})$ and MgSO_{4} were added sequentially. The solids were removed by filtration. The filtrate was washed with water (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product which contained a 90:10 mixture of anti-rac-S3 and syn-rac-S3 by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography on silica with $3: 1$ petrol-EtOAc as eluent gave a $90: 10$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of diols anti-rac-S3 and syn-rac-S3 (17 mg, 89\%) as a colourless oil, R_{F} (3:1 petrol-EtOAc) $0.2 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, 3.65-3.60 (m, 1.8H, CHOH), 3.46-3.44 (m, 0.2H, CHOH), 2.93-2.83 (m, 1H, CH), 2.76-2.64 (m, $1 \mathrm{H}, \mathrm{CH}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.81-1.77(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}+\mathrm{OH}), 1.50-1.25(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}), 0.91(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for anti-rac-S3 $\delta 142.0$ (ipso- Ph), 128.6 (Ph), $128.5(\mathrm{Ph}) 126.2(\mathrm{Ph}), 74.5(\mathrm{CHOH}), 74.0(\mathrm{CHOH}), 32.9\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 28.2$ $\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 14.1(\mathrm{Me})$. Spectroscopic data for syn-rac-S3 consistent with those reported in the literature. ${ }^{12}$

This experiment enabled the relative stereochemistry of anti-rac-21 to be unequivocably established.

(3R)-5-Methyl-1-phenylhexan-3-ol (R)-22

(R)-22
$i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added dropwise to a stirred solution of sulfoxide $\operatorname{anti}-\left(S, S_{\mathrm{s}}\right)-6(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt under Ar. The resulting solution was stirred at rt for 1 min . Then, a solution of isobutylboronic acid pinacol ester ($107 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$, 2.5 eq .) in THF (1 mL) was added dropwise. The solution was stirred at rt for 30 min and then stirred and heated at $67^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $3 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(0.5 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}(0.25 \mathrm{~mL})$ were added sequentially. The resulting solution was stirred at rt for 2 h and then $2 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(7 \mathrm{~mL})$ was added. The two layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 95:5-9:1 petrol-EtOAc as eluent gave alcohol (R) - $22\left(26 \mathrm{mg}, 68 \%, 94: 6\right.$ er by CSP-HPLC) as a white solid, $\mathrm{mp} 44-45^{\circ} \mathrm{C}$ (lit., ${ }^{6} 45-47{ }^{\circ} \mathrm{C}$); $R_{\mathrm{F}}\left(8: 2\right.$ petrol- $\left.\mathrm{Et}_{2} \mathrm{O}\right) 0.3 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$, 7.23-7.18 (m, $3 \mathrm{H}, \mathrm{Ph}$), 3.76-3.70 (m, $1 \mathrm{H}, \mathrm{CHOH}$), 2.81 (ddd, $J=13.5,10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PhCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 2.69 (ddd, $J=13.5,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} H_{\mathrm{B}}$), 1.82-1.68 (m, 3H, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}+$ $\mathrm{CH}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}+\mathrm{OH}), 1.30-1.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.93\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{Ce}_{2}\right)$, $0.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe})$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2$ (ipso- Ph), 128.4 (4, $\mathrm{Ph}), 125.8(\mathrm{Ph}) 69.5(\mathrm{CHOH}), 46.8\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 24.8(\mathrm{CH}$ or Me$), 23.6(\mathrm{CH}$ or $\mathrm{Me})$, 22.2 (CH or Me); $[\alpha]_{\mathrm{D}}+16.0\left(c 0.55\right.$ in CHCl_{3}) $\left[\right.$ lit. ${ }^{6},[\alpha]_{\mathrm{D}}+16.00\left(c 0.70\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $(R)-$ 22 of 97:3 er)]; CSP-HPLC: Chiracel OD (98:2 Hexane-iPrOH, $1.0 \mathrm{mLmin}^{-1}$) (S) $\mathbf{- 2 2} 13.4 \mathrm{~min}$, $(R)-\mathbf{2 2} 22.2 \mathrm{~min}$. Spectroscopic data consistent with those reported in the literature. ${ }^{6}$
$n-\operatorname{BuLi}(0.23 \mathrm{~mL}$ of a 2.2 M solution in hexanes, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.$) was added dropwise to a$ stirred solution of sulfoxide $\operatorname{anti}-\left(S, S_{\mathrm{s}}\right)-\mathbf{6}\left(80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\right.$ eq.) in THF (8 mL) at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 min . Then, a solution of isobutylboronic pinacol ester ($107 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added dropwise. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then stirred and heated at $67^{\circ} \mathrm{C}$ for 16 h . The reaction mixture
was cooled to $0{ }^{\circ} \mathrm{C}$ and $3 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(0.5 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}(0.25 \mathrm{~mL})$ were added sequentially. The resulting solution was stirred at rt for 2 h and then $2 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(7 \mathrm{~mL})$ was added. The two layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 10 $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1 petrolEtOAc as eluent gave alcohol (R)-22 ($28 \mathrm{mg}, 72 \%, 99: 1$ er by CSP-HPLC) as a white solid, mp $47-48{ }^{\circ} \mathrm{C}$ (lit., $\left.{ }^{6} 45-47{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}+15.6\left(c 0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right)\left[\right.$ lit., ${ }^{6}[\alpha]_{\mathrm{D}}+16.00\left(c 0.70\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $(R) \mathbf{- 2 2}$ of 97:3 er)]; CSP-HPLC: Chiracel OD-H (98:2 Hexane-iPrOH, $1.0 \mathrm{mLmin}^{-1}$) (S)-22 12.9 $\min ,(R)-\mathbf{2 2} 21.4 \mathrm{~min}$. Spectroscopic data consistent with those reported in the literature. ${ }^{6}$

5-Methyl-1-phenylhexan-3-ol rac-22

rac-22
$i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added dropwise to a stirred solution of sulfoxide anti-rac-6 ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (8 mL) at rt under Ar. The resulting solution was stirred at rt for 1 min . Then, a solution of isobutylboronic acid pinacol ester ($107 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.$) in THF (1 \mathrm{~mL}$) was added dropwise. The solution was stirred at rt for 30 min and then stirred and heated at $67^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $3 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(0.5 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}(0.25 \mathrm{~mL})$ were added sequentially. The resulting solution was stirred at rt for 2 h and then $2 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(7 \mathrm{~mL})$ was added. The two layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 95:5-90:10 petrol-EtOAc as eluent gave alcohol rac-22 ($25 \mathrm{mg}, 65 \%$) as a white solid.

tert-Butyl 4-hydroxypiperidine-1-carboxylate S4

NaBH_{4} ($200 \mathrm{mg}, 7.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added to a stirred solution of N-Boc piperidin-4-one $(1.00 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in \mathrm{EtOH}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar. The resulting solution was allowed to warm to rt and stirred at rt for 4 h . Then, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(20 \mathrm{~mL})$ was added dropwise. The solvent was evaporated under reduced pressure and EtOAc (15 mL) was added. The two layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone as eluent gave 4-hydoxy N-Boc piperidine $\mathbf{S 4}$ ($984 \mathrm{mg}, 98 \%$) as a white solid, $\mathrm{mp} 66-68{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{13} 64.6-66.5{ }^{\circ} \mathrm{C}\right) ; R_{\mathrm{F}}\left(9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-Acetone) $0.2 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82-3.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{CHOH}\right), 2.97(\mathrm{ddd}, J=13.0,10.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}$), 2.67 (br s, $1 \mathrm{H}, \mathrm{OH}$), 1.83-1.78 (m, 2H, $\mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 1.46-1.37 (m, 2 H , $\left.\mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7(\mathrm{C}=\mathrm{O}), 79.5\left(\mathrm{CMe}_{3}\right)$, $67.4(\mathrm{CHOH}), 41.3\left(\mathrm{br}, \mathrm{NCH}_{2}\right), 34.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 28.3(\mathrm{CMe} 3)$. Spectroscopic data consistent with those reported in the literature. ${ }^{13}$

tert-Butyl 4-chloropiperidine-1-carboxylate 25

A solution of hexachloroethane ($7.05 \mathrm{~g}, 29.8 \mathrm{mmol}, 2.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added to a stirred solution of 4-hydroxy N-Boc piperidine $\mathbf{S 4}\left(3.00 \mathrm{~g}, 14.9 \mathrm{mmol}, 1.0\right.$ eq.) and $\mathrm{PPh}_{3}(7.82 \mathrm{~g}$, 29.8 mmol, 2.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ at rt under Ar . The resulting solution was stirred at rt for 16 h . The solvent was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $4: 1$ petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave N-Boc 4 -chloro piperidine $25(2.13 \mathrm{~g}, 67 \%)$ as a colourless oil, $R_{\mathrm{F}}\left(4: 1\right.$ petrol $\left.^{2}-\mathrm{Et}_{2} \mathrm{O}\right)$ 0.3; IR (film) 2974, 2932, $1696(\mathrm{C}=\mathrm{O}), 1477,1420,1365,1277,1169,1112,1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.20$ ($\mathrm{tt}, J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCl}$), $3.69\left(\mathrm{ddd}, J=13.0,7.0,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.29(\mathrm{ddd}, J=$ $13.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}$), 2.01 (ddt, $J=13.5,7.0,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 1.78 (dtd, $J=$ $\left.13.5,7.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6$ $(\mathrm{C}=\mathrm{O}), 79.7\left(\mathrm{CMe}_{3}\right), 56.9(\mathrm{CHCl}), 41.2\left(\mathrm{br}, \mathrm{NCH}_{2}\right), 34.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 28.3(\mathrm{CMe} 3) ; \mathrm{MS}(\mathrm{ESI})$ $m / z 244\left[\left({ }^{37} \mathrm{M}+\mathrm{Na}\right)^{+}, 10\right], 242\left[\left({ }^{35} \mathrm{M}+\mathrm{Na}\right)^{+}, 30\right], 166(30), 164$ (100); HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18}{ }^{35} \mathrm{ClNO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 242.0918$, found 242.0911 (+3.1 ppm error).
tert-Butyl ($1 R, 5 R$)-(p-tolylsulfinyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate syn - $\left(R, R, S_{\mathrm{s}}\right)-7$ and tert-Butyl (1S,5S)-(p-tolylsulfinyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate anti-(S, S, S_{s})7
(Scheme 9 and Table 3, Entry 1)

$\operatorname{ant} \dot{-}\left(S, S, S_{S}\right)-7$

Using general procedure $\mathrm{E}, s-\mathrm{BuLi}(1.70 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) ,$ N-Boc 4-chloro piperidine 25 ($219 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ eq.) and TMEDA ($256 \mathrm{mg}, 2.20 \mathrm{mmol}$, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ for 1 h and a solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}(647 \mathrm{mg}$, $2.20 \mathrm{mmol}, 2.2$ eq.) in THF (2 mL) gave the crude product. Purification by flash column chromatography on silica with $3: 2$ petrol-EtOAc $+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide syn$\left(R, R, S_{\mathrm{S}}\right)-7\left(129 \mathrm{mg}, 38 \%, 58: 42\right.$ er by CSP-HPLC) as a white solid, $\mathrm{mp} 163-166{ }^{\circ} \mathrm{C} ; R_{\mathrm{F}}(3: 2$ petrol-EtOAc) 0.3; IR $\left(\mathrm{CHCl}_{3}\right) 2975,2931,1703(\mathrm{C}=\mathrm{O}), 1492,1454,1393,1368,1257,1168$, 1083, $810 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.48\left(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.28(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), $3.47\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.84\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.28$ (br s, 1H, CH), 1.93-1.90 (m, 1H, CH), 1.77-1.74 (m, 2H, CH), 1.52 (br s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), 1.16-1.13 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) $\delta 155.0$ (br, $\mathrm{C}=\mathrm{O}$), 141.9 (ipso-Ar), 141.6 (ipso-Ar), 141.1 (ipso-Ar), 139.5 (ipso-Ar), 129.7 (br, Ar), 125.5 (Ar), 124.8 (Ar), 81.2 (br, $C \mathrm{Me}_{3}$), $61.2(\mathrm{NCS}(\mathrm{O}) \mathrm{Ar}), 61.1(\mathrm{NCS}(\mathrm{O}) \mathrm{Ar}), 52.3\left(\mathrm{br}, \mathrm{NCH}_{2}\right), 28.5\left(\mathrm{CMe}_{3}\right), 26.1$ (br, $\left.\mathrm{CH}_{2}\right), 23.7$ $\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 21.6(\mathrm{Me}), 11.9(\mathrm{CH}), 11.7(\mathrm{CH}) ; \mathrm{MS}(\mathrm{ESI}) m / z 344\left[(\mathrm{M}+\mathrm{Na})^{+}, 30\right], 322[(\mathrm{M}$ $\left.+\mathrm{H})^{+}, 100\right]$; HRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 344.1291$, found $344.1286(+1.5 \mathrm{ppm}$ error); CSP-HPLC: Chiralcel AD (90:10 Hexane-i-PrOH, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$) syn-(S, S, R_{S})-7 10.1 min , syn- $\left(R, R, S_{\mathrm{S}}\right)-711.5 \mathrm{~min}$ and sulfoxide anti- $\left(S, S, S_{\mathrm{S}}\right)-7(152 \mathrm{mg}, 45 \%, 70: 30$ er by CSP-HPLC $)$ as a colourless oil, $R_{\mathrm{F}}(3: 2$ petrol-EtOAc) 0.2; IR (film) 2977, 2932, 1696 (C=O), 1477, 1384, 1335, $1257,1168,1083,1048,810 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), $7.26\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 3.79-3.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 2.27-2.18 (m, 1H, CH), 2.05 (dtd, $J=8.0,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}$),
1.83-1.75 (m, 1H, CH), $1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}), 1.05-1.01(\mathrm{br} \mathrm{m}, 1 \mathrm{H}$, $\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5$ ($\mathrm{C}=\mathrm{O}$), 141.4 (ipso-Ar), 138.0 (ipso-Ar), 129.5 (Ar), $124.8(\mathrm{Ar}), 80.9\left(\mathrm{CMe}_{3}\right), 69.9$ (br, $\left.\mathrm{NCS}(\mathrm{O}) \mathrm{Ar}\right), 52.5$ (br, $\left.\mathrm{NCH}_{2}\right), 29.9$ (br, CH_{2}), 28.4 $\left(\mathrm{CMe}_{3}\right), 26.8\left(\mathrm{CH}_{2}\right), 24.3(\mathrm{br}, \mathrm{CH}), 21.3(\mathrm{Me}) ; \mathrm{MS}(\mathrm{ESI}) m / z 344\left[(\mathrm{M}+\mathrm{Na})^{+}, 40\right], 322\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 100]; HRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 344.1291$, found $344.1286(+1.3 \mathrm{ppm}$ error); CSP-HPLC: Chiralcel AD (90:10 Hexane-iPrOH, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$) anti- $\left(S, S, S_{\mathrm{s}}\right)-79.0 \mathrm{~min}$, anti$\left(R, R, R_{s}\right)-712.3 \mathrm{~min}$.
tert-Butyl (1R,5R)-(p-tolylsulfinyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate syn-(R,R,S)-7 and tert-Butyl (1S,5S)-(p-tolylsulfinyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate anti-(S, S, S_{s})7

(Table 3, Entry 2)
Using general procedure $\mathrm{F}, s-\mathrm{BuLi}(1.70 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.), N-Boc 4-chloro piperidine 25 ($219 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ eq.) and TMEDA ($256 \mathrm{mg}, 2.20 \mathrm{mmol}$, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ for 1 h and a solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}(647 \mathrm{mg}$, $2.20 \mathrm{mmol}, 2.2$ eq.) in THF (2 mL) gave the crude product. Purification by flash column chromatography on silica with $3: 2$ petrol-EtOAc $+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide syn$\left(R, R, S_{\mathrm{S}}\right)-7(122 \mathrm{mg}, 36 \%, 80: 20$ er by CSP-HPLC) as a white solid, CSP-HPLC: Chiralcel AD (90:10 Hexane-i-PrOH, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$) syn- $\left(S, S, R_{\mathrm{S}}\right)-710.7 \mathrm{~min}$, syn- $\left(R, R, S_{\mathrm{S}}\right)-712.3 \mathrm{~min}$ and sulfoxide anti-(S, S, S_{S})-7 ($157 \mathrm{mg}, 47 \%, 78: 22$ er by CSP-HPLC) as a colourless oil, CSP-HPLC: Chiralcel AD (90:10 Hexane-iPrOH, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$) anti- $\left(S, S, S_{\mathrm{s}}\right)-79.4 \mathrm{~min}, \operatorname{syn}-\left(R, R, R_{s}\right)-713.1$ \min.
(Table 3, Entry 3)
Using general procedure G, s - BuLi (1.70 mL of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.), N-Boc 4-chloro piperidine 25 ($219 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ eq.) and TMEDA ($256 \mathrm{mg}, 2.20 \mathrm{mmol}$, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and a solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}(647 \mathrm{mg}, 2.20 \mathrm{mmol}, 2.2$
eq.) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with $3: 2$ petrol- $\mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-7(132 \mathrm{mg}, 39 \%$, 89:11 er by CSP-HPLC) as a white solid, CSP-HPLC: Chiralcel AD (90:10 Hexane-i-PrOH, 1.0 $\left.\mathrm{mL} \mathrm{min}^{-1}\right) \operatorname{syn}-\left(S, S, R_{\mathrm{S}}\right)-713.2 \mathrm{~min}$, syn-(R, R, S_{S})-7 15.2 min and sulfoxide anti-($\left.S, S, S, S_{\mathrm{S}}\right)$-7 (146 $\mathrm{mg}, 44 \%, 88: 12$ er by CSP-HPLC) as a colourless oil, CSP-HPLC: Chiralcel AD (90:10 Hexane$\left.i \operatorname{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}\right)$ anti- $\left(S, S, S_{\mathrm{s}}\right)-711.8 \mathrm{~min}$, syn- $\left(R, R, R_{s}\right)-716.1 \mathrm{~min}$.
(Table 3, Entry 4)
Using general procedure G, s - $\operatorname{BuLi}(1.70 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) ,$ N-Boc 4-chloro piperidine $25(219 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ eq.) and (-)-sparteine ($504 \mathrm{mg}, 2.20$ $\mathrm{mmol}, 2.2$ eq.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and a solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}(647 \mathrm{mg}, 2.20 \mathrm{mmol}$, 2.2 eq.) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with 3:2 petrol-EtOAc $+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-7(88 \mathrm{mg}, 27 \%$, 96:4 er by CSP-HPLC) as a white solid, CSP-HPLC: Chiralcel AD (90:10 Hexane- i-PrOH, 1.0 $\left.\mathrm{mL} \mathrm{min}^{-1}\right) \operatorname{syn}-\left(S, S, R_{\mathrm{S}}\right)-710.2 \mathrm{~min}$, syn- $\left(R, R, S_{\mathrm{S}}\right)-711.6 \mathrm{~min}$ and sulfoxide anti- $\left(S, S, S_{\mathrm{S}}\right)-7(78 \mathrm{mg}$, 24%, 89:11 er by CSP-HPLC) as a colourless oil, CSP-HPLC: Chiralcel AD (90:10 Hexane$\left.i \operatorname{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}\right)$ anti- $\left(S, S, S_{\mathrm{s}}\right)-78.7 \mathrm{~min}, \operatorname{syn}-\left(R, R, R_{s}\right)-711.9 \mathrm{~min}$.
(Table 3, Entry 5)
Using general procedure $\mathrm{G}, s-\operatorname{BuLi}(0.85 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $1.10 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) ,$ N-Boc 4-chloro piperidine $25(110 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and (+$)-sparteine surrogate (213 mg , $1.10 \mathrm{mmol}, 2.2$ eq. $)$ in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and a solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right) \mathbf{- 3}(324 \mathrm{mg}, 1.10$ mmol, 2.2 eq.) in THF (3 mL) gave the crude product. Purification by flash column chromatography on silica with $3: 2$ petrol-EtOAc $+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide syn$\left(R, R, S_{\mathrm{S}}\right)-7$ ($42 \mathrm{mg}, 26 \%, 99: 1$ er by CSP-HPLC) as a white solid, CSP-HPLC: Chiralcel AD (90:10 Hexane-i- $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$) syn- $\left(S, S, R_{\mathrm{S}}\right)-79.6 \mathrm{~min}$, $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-710.9 \mathrm{~min}$ and sulfoxide anti-($\left(S, S, S_{\mathrm{S}}\right)-7(43 \mathrm{mg}, 27 \%, 93: 7$ er by CSP-HPLC) as a colourless oil, CSP-HPLC: Chiralcel AD (90:10 Hexane-iPrOH, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$) anti- $\left(S, S, S_{\mathrm{s}}\right)-78.6 \mathrm{~min}$, syn- $\left(R, R, R_{s}\right)-711.6$ \min.
(Table 3, Entry 6)
Using general procedure G, s - BuLi (1.70 mL of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.), N-Boc 4-chloro piperidine $\mathbf{2 5}(219 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and diamine $(R, R) \mathbf{- 1 2}(683 \mathrm{mg}, 2.20$
$\mathrm{mmol}, 2.2$ eq. $)$ in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and a solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}(647 \mathrm{mg}, 2.20 \mathrm{mmol}$, 2.2 eq.) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with $3: 2$ petrol- $\mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-7(163 \mathrm{mg}, 51 \%$, 99:1 er by CSP-HPLC) as a white solid, $[\alpha]_{\mathrm{D}}-43.7$ (c 0.65 in CHCl_{3}); CSP-HPLC: Chiralcel AD (90:10 Hexane-i- $\mathrm{PrOH}, 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$) syn- $\left(S, S, R_{\mathrm{S}}\right)-79.9 \mathrm{~min}$, $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-711.5 \mathrm{~min}$ and sulfoxide anti-(S, S, S_{S})-7 ($80 \mathrm{mg}, 25 \%, 87: 13$ er by CSP-HPLC) as a colourless oil, $[\alpha]_{\mathrm{D}}+64.6(c$ 0.9 in CHCl_{3}); CSP-HPLC: Chiralcel AD (90:10 Hexane-iPrOH, $1.0 \mathrm{~mL} \mathrm{~min} \mathrm{mi}^{-1}$) anti- $\left(S, S, S_{\mathrm{s}}\right)-7$ $8.7 \mathrm{~min}, \operatorname{syn}-\left(R, R, R_{s}\right)-712.4 \mathrm{~min}$.
(Table 3, Entry 7)
Using general procedure $\mathrm{G}, s-\mathrm{BuLi}$ (1.70 mL of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.), N-Boc 4-chloro piperidine $25(219 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and diamine (S, S$)-12 ($683 \mathrm{mg}, 2.20$ mmol, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and a solution of Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}(647 \mathrm{mg}, 2.20 \mathrm{mmol}$, 2.2 eq.) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with $3: 2$ petrol-EtOAc $+1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-7(38 \mathrm{mg}, 12 \%$, 89:11 er by CSP-HPLC) as a white solid, $[\alpha]_{\mathrm{D}}-43.2$ (c 0.7 in CHCl_{3}); CSP-HPLC: Chiralcel AD (90:10 Hexane-i-PrOH, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$) syn- $\left(S, S, R_{\mathrm{S}}\right)-712.2 \mathrm{~min}$, syn- $\left(R, R, S_{\mathrm{S}}\right)-714.2 \mathrm{~min}$ and sulfoxide anti-(S, S, S_{S})-7 (174 mg, $54 \%, 87: 13$ er by CSP-HPLC) as a colourless oil, $[\alpha]_{\mathrm{D}}+86.1(c$ 0.7 in CHCl_{3}); CSP-HPLC: Chiralcel AD (90:10 Hexane-iPrOH, 1.0 mL min) anti- $\left(S, S, S, S_{\mathrm{s}}\right)-7$ $8.1 \mathrm{~min}, \operatorname{syn}-\left(R, R, R_{s}\right)-711.4 \mathrm{~min}$.
tert-Butyl 1-(p-tolylsulfinyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate syn-rac-7 and anti-rac7

syn-rac-7

anti-rac-7

Using General procedure E, s - $\mathrm{BuLi}(2.11 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $2.75 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) ,$ N-Boc 4-chloro piperidine 25 ($275 \mathrm{mg}, 1.25 \mathrm{mmol}, 1.0$ eq.) and TMEDA ($319 \mathrm{mg}, 2.75 \mathrm{mmol}$,
2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ and methyl p-toluenesulfinate $\mathbf{S} \mathbf{1}(468 \mathrm{mg}, 2.75 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) gave the$ crude product. Purification by flash column chromatography on silica with 3:2 petrol-EtOAc + $1 \% \mathrm{Et}_{3} \mathrm{~N}$ as eluent gave sulfoxide syn-rac-7 (142 mg, 35\%) as a white solid, mp $161-163{ }^{\circ} \mathrm{C}$ and sulfoxide anti-rac-7 (144 mg, 36\%) as a colourless oil.

Investigating the Inherent Enantioselectivity for the Lithiation-Trapping of \boldsymbol{N}-Boc 4-chloro piperidine 25

tert-Butyl (1S,5R)-(phenylcarbamoyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate ($\boldsymbol{S}, \boldsymbol{R}$)-35

$(S, R)-35$

Using general procedure $\mathrm{E}, s-\mathrm{BuLi}(1.69 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) ,$ N-Boc 4-chloro piperidine 25 ($219 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ eq.) and (-)-sparteine ($516 \mathrm{mg}, 2.20$ mmol, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ and phenylisocyanate ($262 \mathrm{mg}, 2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with $98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave amide (S, R)-35 ($283 \mathrm{mg}, 94 \%$, 56:44 er by CSP-HPLC) as a pale yellow solid, CSP-HPLC: Chiracel OD (90:10 Hexane-iPrOH, $1.0 \mathrm{mLmin}^{-1}$) (R, S) - $\mathbf{3 5} 7.2 \mathrm{~min},(S, R)-3513.6 \mathrm{~min}$. Full characterisation data is presented later.
tert-Butyl (1R,5S)-(phenylcarbamoyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate (R, S)-35

(R, S) - 35

Using general procedure $\mathrm{E}, s-\mathrm{BuLi}(1.51 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $1.96 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) ,$ N-Boc 4-chloro piperidine 25 ($194 \mathrm{mg}, 0.89 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and (+)-sparteine surrogate (381 mg , $1.96 \mathrm{mmol}, 2.2$ eq.) in $\mathrm{Et}_{2} \mathrm{O}(5.5 \mathrm{~mL})$ and phenylisocyanate ($233 \mathrm{mg}, 1.96 \mathrm{mmol}, 2.2 \mathrm{eq}$.) gave
the crude product. Purification by flash column chromatography on silica with 98:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave amide $(R, S) \mathbf{- 3 5}(212 \mathrm{mg}, 79 \%, 54: 46$ er by CSP-HPLC) as a pale yellow solid, CSP-HPLC: Chiracel OD (90:10 Hexane-iPrOH, $1.0 \mathrm{mLmin}^{-1}$) (R, S) - $\mathbf{3 5} 7.4 \mathrm{~min},(S, R)$-35 14.8 min . Full characterisation data is presented later.

Using general procedure $\mathrm{E}, s-\mathrm{BuLi}(1.35 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $1.76 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) ,$ N-Boc 4-chloro piperidine $\mathbf{2 5}(175 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.0$ eq. $)$ and diamine $(S, S)-\mathbf{1 2}(547 \mathrm{mg}, 1.76$ mmol, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL}$) and phenylisocyanate ($124 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.3$ eq.) gave the crude product. Purification by flash column chromatography on silica with $98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave amide $(R, S)-\mathbf{3 5}$ ($178 \mathrm{mg}, 74 \%, 67: 33$ er by CSP-HPLC) as a pale yellow solid, $) ;[\alpha]_{\mathrm{D}}$ +45.5 (c 1.1 in CHCl_{3}); CSP-HPLC: Chiracel OD ($90: 10$ Hexane- $i \mathrm{PrOH}, 1.0 \mathrm{mLmin}^{-1}$) (R, S) - 35 $7.3 \mathrm{~min},(S, R)-3514.3 \mathrm{~min}$. Full characterisation data is presented later.

tert-Butyl 3-(hydroxymethyl)-1-[(4-methylphenyl)sulfanyl]-2-azabicyclo[3.1.0]hexane-2carboxylate ($1 R, 5 R$)-28

Trifluoroacetic anhydride ($318 \mu \mathrm{~L}, 2.25 \mathrm{mmol}, 3.0$ eq.) was added dropwise to a stirred suspension of sulfoxide syn-(R, R, S_{S})-7 ($240 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{NaI}(225 \mathrm{mg}, 1.50$ mmol, 2.0 eq.) in acetone (9 mL) at $-40^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at -40 ${ }^{\circ} \mathrm{C}$ for 10 min . Then, saturated $\mathrm{Na}_{2} \mathrm{SO}_{3(\mathrm{aq})}(5 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(5 \mathrm{~mL})$ were added sequentially and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x $10 \mathrm{~mL})$ The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1-8:2 petrol-EtOAc as eluent gave sulfide $28(228 \mathrm{mg}, 99 \%)$ as a pale yellow oil, R_{F} (8:2 petrol-EtOAc) 0.4; IR (film) 2948, 2912, 2877, 1656 (C=O), 1557, 1552, 1348, 1278, 912, 732 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 3.52-3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 2.11-2.00(m, 1H, CH), 1.82-1.72 (m,
$2 \mathrm{H}, \mathrm{CH}), 1.63(\mathrm{dd}, J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.13(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}$) ; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 155.5(\mathrm{C}=\mathrm{O})$, 137.3 (ipso- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}$), 132.1 (ipso$\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 132.0(\mathrm{Ar}), 129.5(\mathrm{Ar}), 80.0\left(\mathrm{CMe}_{3}\right), 53.7(\mathrm{NC}), 51.2\left(\mathrm{NCH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.6$ $\left(\mathrm{CMe}_{3}\right), 28.4(\mathrm{CH}), 26.8\left(\mathrm{CH}_{2}\right), 21.2(\mathrm{Me}) ; \mathrm{MS}(\mathrm{ESI}) m / z 328\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 306\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 25]; HRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$328.1347, found 328.1347 (0.0 ppm error); $[\alpha]_{\mathrm{D}}-45.8$ ($c 0.6$ in CHCl_{3}).
tert-Butyl 3-(hydroxymethyl)-1-[(4-methylphenyl)sulfanyl]-2-azabicyclo[3.1.0]hexane-2carboxylate cis-(1R,3S,5R)-29

S5

s - $\mathrm{BuLi}(0.75 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $0.98 \mathrm{mmol}, 1.3 \mathrm{eq}$.) was added dropwise to a stirred solution of sulfide 28 ($228 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and (+)-sparteine surrogate (191 mg , $0.98 \mathrm{mmol}, 1.3$ eq. $)$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 5 min . Then, CO_{2} was bubbled through the solution for 10 min and the resulting solution allowed to warm to rt. Water $(5 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(10 \mathrm{~mL})$ were added and the two layers were separated. The aqueous layer was acidified (pH 1) with $2 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product which contained a $92: 8$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of diastereoisomeric acids $\mathbf{S 5}$ which required no further purification: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.28\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), 4.55 (br s, $0.92 \mathrm{H}, \mathrm{NCH}$), 4.21 (dd, $J=10.0,5.0 \mathrm{~Hz}, 0.08 \mathrm{H}, \mathrm{NCH}$), 2.68 (br s, $0.08 \mathrm{H}, 1 \mathrm{H}, \mathrm{CH}$), 2.54-2.50 (br m, $0.92 \mathrm{H}, 1 \mathrm{H}, \mathrm{CH}$), 2.34 (s, $2.76 \mathrm{H}, \mathrm{Me}$), 2.33 ($\mathrm{s}, 0.24, \mathrm{Me}$), 2.07 (dd, $\left.J=13.0,4.5 \mathrm{~Hz}, 0.08 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.99\left(\mathrm{dd}, J=13.0,7.0 \mathrm{~Hz}, 0.92 \mathrm{H}, \mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.78-1.76(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 1.47 (br s, $9 \mathrm{H}, \mathrm{CMe}_{3}$). Borane dimethyl sulfide complex ($77 \mu \mathrm{~L}, 0.82 \mathrm{mmol}, 1.3 \mathrm{eq}$.) was added dropwise to a stirred solution of the crude acids $\mathbf{S 5}$ ($218 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ under Ar. After gas
evolution ceased, the resulting solution was stirred and heated at $66^{\circ} \mathrm{C}$ for 1 h . Then, the solution was cooled to rt and $\mathrm{MeOH}(5 \mathrm{~mL})$ was added dropwise. The solvent was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1-8:2 petrol-EtOAc as eluent gave alcohol cis-($1 R, 3 S, 5 R$)-29 (211 mg, 84% over two steps) as a colourless oil, $R_{\mathrm{F}}(8: 2$ petrol-EtOAc) 0.3 ; IR (film) $3315(\mathrm{OH}), 2892,2877,1688$ $(\mathrm{C}=\mathrm{O}), 1565,1488,1258,912,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), $7.14\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$), 5.32 (br s, $1 \mathrm{H}, \mathrm{OH}$), 4.03-3.97 (m, $1 \mathrm{H}, \mathrm{NCH}$), 3.52-3.42 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), $2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.18-2.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.64-1.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})$, 1.57 (s, 9H, CMe_{3}), 1.33-1.25 (m, 1H, CH), 1.16-1.14 (m, 1H, CH); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.6(\mathrm{C}=\mathrm{O})$, 138.1 (ipso- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}$), 133.1 (Ar), 131.2 (ipso- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), 129.8 (Ar), 81.1 $\left(\mathrm{CMe}_{3}\right), 70.4(\mathrm{NCH}), 65.0\left(\mathrm{CH}_{2} \mathrm{OH}\right), 57.0(\mathrm{NC}), 34.2\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CMe}_{3}\right), 25.7$ (CH), $21.1(\mathrm{Me}) ; \mathrm{MS}(\mathrm{ESI}) m / z 358\left[(\mathrm{M}+\mathrm{Na})^{+}, 90\right], 336\left[(\mathrm{M}+\mathrm{H})^{+}, 40\right], 280(100) ;$ HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$358.1447, found 358.1443 (+1.1 ppm error); [$\left.\alpha\right]_{\mathrm{D}}-139.8$ (c 0.7 in CHCl_{3}).
tert-Butyl 3-(hydroxymethyl)-1-[(4-methylphenyl)sulfanyl]-2-azabicyclo[3.1.0]hexane-2carboxylate cis-rac-29 and tert-Butyl 3-(hydroxymethyl)-1-[(4-methylphenyl)sulfanyl]-2-azabicyclo[3.1.0]hexane-2-carboxylate trans-rac-29

s-BuLi (3.61 mL of a 1.3 M solution in hexanes, $4.69 \mathrm{mmol}, 1.3 \mathrm{eq}$.) was added dropwise to a stirred solution of sulfide rac-28 ($1.10 \mathrm{~g}, 3.61 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and TMEDA (701 \mu \mathrm{~L}, 4.69 \mathrm{mmol}$, 1.3 eq.) in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min . Then, CO_{2} was bubbled through the solution for 10 min and the resulting solution allowed to warm to rt. Water $(5 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(10 \mathrm{~mL})$ were added and the two layers were separated. The aqueous layer was acidified (pH 1) with $2 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ $10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product which contained a 68:32 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy)
of diastereoisomeric acids $\mathbf{S 5}$ which required no further purification. Borane dimethyl sulfide complex ($0.36 \mathrm{~mL}, 3.72 \mathrm{mmol}, 1.3 \mathrm{eq}$.) was added dropwise to a stirred solution of the crude acids $\mathbf{S 5}$ ($1.00 \mathrm{~g}, 2.86 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (20 mL) at $0^{\circ} \mathrm{C}$ under Ar. After gas evolution ceased, the resulting solution was stirred and heated at $66^{\circ} \mathrm{C}$ for 1 h . Then, the solution was cooled to rt and $\mathrm{MeOH}(5 \mathrm{~mL}$) was added dropwise. The solvent was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1-8:2 petrol-EtOAc as eluent gave alcohol cis-rac-29 ($615 \mathrm{mg}, 51 \%$ over two steps) as a colourless oil and trans-rac-29 ($258 \mathrm{mg}, 21 \%$ over two steps) as a colourless oil, R_{F} (8:2 petrolEtOAc) 0.2; IR (film) 3312 (OH), 2901, 2896, 2867, 1698 (C=O), 1495, 1487, 1305, 1132, 915, $730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), 3.88-3.82 (m, $1 \mathrm{H}, \mathrm{NCH}$), $3.30\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}\right.$), 3.25-3.23 (m, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}$), $2.97\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right) 2.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.76-1.64(\mathrm{~m}, 3 \mathrm{H}$, CH), $1.57\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.04(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.0$ $(\mathrm{C}=\mathrm{O}), 138.8\left(\right.$ ipso $\left.-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}\right), 134.5(\mathrm{Ar}), 130.5\left(\right.$ ipso $\left.-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 129.8$ (Ar$), 81.3\left(\mathrm{CMe}_{3}\right), 66.5$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 64.7(\mathrm{NCH}), 55.5(\mathrm{NC}), 29.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 28.4(\mathrm{CMe} 3), 27.4(\mathrm{CH}), 21.2(\mathrm{Me})$; MS (ESI) $m / z 358\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 336\left[(\mathrm{M}+\mathrm{H})^{+}, 30\right]$, 280 (100); HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 358.1447$, found 358.1449 (-0.5 ppm error).

tert-Butyl 3-(hydroxymethyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate cis-(1S,3S,5R)-30

cis 30

Raney ${ }^{\circledR}$-Nickel $2400(1.5 \mathrm{~mL}$ of a 50% suspension in water) was added dropwise to a stirred solution of alcohol ($1 R, 3 S, 5 R$)-29 ($211 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 1:2 THF-EtOH (6 mL) at rt under Ar. The resulting solution was stirred at rt for 5 h . Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and MgSO_{4} were added and the solids were removed by filtration through Celite ${ }^{\circledR}$. The filtrate was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1-8:2 petrol-acetone as eluent gave alcohol cis-($1 S, 3 S, 5 R$)-30 ($98 \mathrm{mg}, 73 \%$) as a colourless oil, $R_{\mathrm{F}}\left(8: 2\right.$ petrol-acetone) $0.3 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.32-$
4.28 (br m, 1H, CH), $3.51-3.43(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}+\mathrm{OH}), 2.46$ (dddd, $J=13.5,11.0,6.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 1.58-1.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.50-1.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 0.80(\mathrm{dtd}, \mathrm{J}=9.0$, $6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $0.43-0.40$ (br m, $1 \mathrm{H}, \mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) δ 156.6 (br, $\mathrm{C}=\mathrm{O}$), $80.6\left(\mathrm{CMe}_{3}\right), 80.3\left(\mathrm{CMe}_{3}\right), 67.6\left(\mathrm{br}, \mathrm{NCHCH}_{2} \mathrm{OH}\right), 54.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 38.8(\mathrm{NCH})$, $37.4\left(\mathrm{CH}_{2}\right)$, $32.0(\mathrm{CH}), 30.6\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CMe}_{3}\right), 28.4\left(\mathrm{CMe}_{3}\right), 16.9\left(\mathrm{CH}_{2}\right), 14.7\left(\mathrm{CH}_{2}\right)$; MS (ESI) $m / z 236\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 213\left[(\mathrm{M}+\mathrm{H})^{+}, 40\right] ;$ HRMS m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 236.1263, found 236.1263 (0.0 ppm error); $[\alpha]_{\mathrm{D}}+6.6$ (c 0.5 in CHCl_{3}). This compound has been reported in the literature ${ }^{14 a}$ but characterisation data were not disclosed. Through a personal communication with Professor Hannessian, ${ }^{14 \mathrm{~b}}$ the following optical rotation data was provided: $[\alpha]_{\mathrm{D}}+12.0$ ($c 0.75$ in CHCl_{3}). Our spectroscopic data were also consistent with those provided by Professor Hannessian. ${ }^{14 \mathrm{~b}}$

2-tert-Butyl (1S,5R)-1-methyl-2-azabicyclo[3.1.0]hexane-1,2-dicarboxylate (1S,5R)-32

$(S, R)-32$

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in $\mathrm{THF}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-7(65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq., $99: 1 \mathrm{er})$ in THF (8 mL) at rt for 1 min and methyl chloroformate ($39 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with 9:1 petrol-EtOAc as eluent gave ester (S,R)-32 (43 $\mathrm{mg}, 89 \%, 99: 1$ er by CSP-HPLC) as a colourless oil, R_{F} (9:1 petrol-EtOAc) 0.3 ; IR $\left(\mathrm{CDCl}_{3}\right)$ 2979, 1732 ($\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}$), 1682 ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), 1529, 1444, 1368, 1164, 908, 881, $732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.79$ (ddd, $\left.J=11.0,9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.73$ (s, $3 \mathrm{H}, \mathrm{OMe}$), $3.50\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.25(\mathrm{ddt}, J=13.0,9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.96$ (dd, $J=9.0,5.5, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.02(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5\left(\mathrm{CO}_{2} \mathrm{Me}\right) 155.5\left(\mathrm{NCO}_{2} \mathrm{CMe}_{3}\right), 80.0\left(\mathrm{CMe}_{3}\right)$, $52.1(\mathrm{OMe}), 50.2\left(\mathrm{NCH}_{2}\right), 47.5(\mathrm{NC}), 31.0\left(\mathrm{br}, \mathrm{CH}_{2}\right), 28.4(\mathrm{CH}), 28.3\left(\mathrm{CMe}_{3}\right), 26.4\left(\mathrm{br}, \mathrm{CH}_{2}\right)$; MS (ESI) $m / z 264$ [(M + Na) ${ }^{+}$, 100], 186 (20), 142 (30); HRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}(\mathrm{M}+$ $\mathrm{Na})^{+}$264.1203, found 264.1206 (+1.3 ppm error); $[\alpha]_{\mathrm{D}}-121.05$ (c 0.20 in CHCl_{3}); CSP-HPLC: Chiracel OD (99:1 Hexane-iPrOH, $\left.1.0 \mathrm{mLmin}^{-1}\right)(S, R)-\mathbf{3 2} 13.0 \mathrm{~min},(R, S)-\mathbf{3 2} 15.4 \mathrm{~min}$.

2-tert-Butyl 1-methyl-2-azabicyclo[3.1.0]hexane-1,2-dicarboxylate rac-32

rac-32

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.15 \mathrm{~mL}$ of a 2.0 M solution in $\mathrm{THF}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and sulfoxide syn-rac-7 ($65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.,) in THF (8 mL) at rt for 1 min and methyl chloroformate ($23 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with 9:1 petrol-EtOAc as eluent gave ester rac-32 (24 mg, 50\%) as a colourless oil.
tert-Butyl (1S,5R)-1-(prop-2-en-1-yl)-2-azabicyclo[3.1.0]hexane-2-carboxylate (S,R)-33

(S, R) - $\mathbf{3 3}$
$i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added dropwise to a stirred solution of sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-7(65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq. $)$ in THF $(8 \mathrm{~mL})$ at rt for 1 min at rt under Ar. The resulting solution was stirred at rt for 1 min . Then, a solution of $\mathrm{CuBr}^{2} \mathrm{SMe}_{2}(8 \mathrm{mg}, 20 \mathrm{~mol} \%, 0.2$ eq.) in THF (1 mL) was added dropwise. The solution was stirred at rt for 10 min . Then, allyl bromide ($63 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.5$ eq.) was added dropwise and the resulting solution was stirred at rt for 2 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(7 \mathrm{~mL})$ was added and the two were layers separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $95: 5$ petrol-EtOAc as eluent gave allylated pyrrolidine (S, R) - $\mathbf{3 3}(31 \mathrm{mg}, 69 \%)$ as a colourless oil, $R_{\mathrm{F}}\left(95: 5\right.$ petrol-EtOAc) 0.3 ; IR $\left(\mathrm{CDCl}_{3}\right) 2941,1685$ $(\mathrm{C}=\mathrm{O}), 1519,1434,1378,1164,1062,910,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78$ (dtd, J $\left.=14.0,7.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.10-5.01\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 3.62(\mathrm{ddd}, J=11.0,9.5,6.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $3.38\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right.$), 3.21 (br s, $1 \mathrm{H}, \mathrm{CH}$), 2.13-2.00 (m, 2H, CH), 1.82-1.75 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.40-1.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.91(\mathrm{dd}, J=8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $0.67(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.0(\mathrm{C}=\mathrm{O}), 135.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$,
$116.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 79.3\left(\mathrm{br}, \mathrm{CMe}_{3}\right), 50.0\left(\mathrm{br}, \mathrm{NCH}_{2}\right), 46.7(\mathrm{NC}), 37.5\left(\mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}=\right), 28.5\left(\mathrm{CMe}_{3}\right)$, $25.9\left(\mathrm{CH}_{2}\right), 23.3(\mathrm{CH}), 21.8\left(\mathrm{CH}_{2}\right) ;$ MS (ESI) $m / z 246\left[(\mathrm{M}+\mathrm{Na})^{+}, 70\right], 168(100) ;$ HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$246.1466, found 246.1465 (-0.5 ppm error); $[\alpha]_{\mathrm{D}}+2.4(c 0.45$ in CHCl_{3}); CSP-HPLC: Chiracel AD-H (99.5:0.5 Hexane-iPrOH, $0.3 \mathrm{mLmin}^{-1}$) (R, S) - 3311.0 min , (S,R)-33 11.8 min .
tert-Butyl 1-(prop-2-en-1-yl)-2-azabicyclo[3.1.0]hexane-2-carboxylate rac-33

rac-33
$i-\mathrm{PrMgCl}(0.15 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added dropwise to a stirred solution of sulfoxide syn-rac-7 ($65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) in THF (8 mL) at rt for 1 min at rt under Ar. The resulting solution was stirred at rt for 1 min . Then, a solution of $\mathrm{CuBr} . \mathrm{SMe}_{2}(8 \mathrm{mg}, 20 \mathrm{~mol} \%, 0.2 \mathrm{eq}$.) in THF (1 mL) was added dropwise. The solution was stirred at rt for 10 min . Then, allyl bromide ($38 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added dropwise and the resulting solution was stirred at rt for 2 h. Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(7 \mathrm{~mL})$ was added and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 95:5 petrol-EtOAc as eluent gave allylated pyrrolidine rac-33 (26 $\mathrm{mg}, 58 \%$) as a colourless oil.

tert-Butyl (1R,5R)-1-benzyl-2-azabicyclo[3.1.0]hexane-2-carboxylate $(\boldsymbol{R}, \boldsymbol{R})$-34

(R, R) $\mathbf{- 3 4}$
$i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added to a stirred solution of sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{s}}\right)-7(65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq} ., 99: 1 \mathrm{er})$ in THF (8 mL) at rt under Ar. The resulting solution was stirred at rt for 1 min . Then, a solution of $\mathrm{CuBr} . \mathrm{SMe}_{2}(8$ $\mathrm{mg}, 0.04 \mathrm{mmol}, 0.2 \mathrm{eq}$.$) in THF (0.5 \mathrm{~mL}$) and benzyl bromide ($89 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was
added sequentially and the solution was stirred at rt for 2 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq) }}(7 \mathrm{~mL})$ was added and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $4: 1$ petrol$\mathrm{Et}_{2} \mathrm{O}$ as eluent gave benzylated pyrrolidine $(R, R)-34(35 \mathrm{mg}, 64 \%, 99: 1$ er by CSP-HPLC) as a colourless oil, $R_{\mathrm{F}}\left(4: 1\right.$ petrol- $\left.\mathrm{Et}_{2} \mathrm{O}\right) 0.2$; $\mathrm{IR}\left(\mathrm{CDCl}_{3}\right) 2985,2810,1679(\mathrm{C}=\mathrm{O}), 1559,1487,1378$, 1201, 1164, 908, $732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.22-7.19(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ph}$), $3.76\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$), $3.42-3.16$ (br m, $2 \mathrm{H}, \mathrm{CH}$), 2.57 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.99 $(\operatorname{tdd}, J=14.0,7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.50-1.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.50(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), 0.98 (dd, $\left.J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right) 0.73(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.9(\mathrm{C}=\mathrm{O})$, 139.4 (ipso- Ph), $129.4(\mathrm{Ph}), 128.2(\mathrm{Ph}), 126.2(\mathrm{Ph}), 79.4\left(\mathrm{CMe}_{3}\right), 48.4$ (br, NCH_{2}), 43.5 (br, NC), $41.0(\mathrm{br} \mathrm{PhCH} 2), 32.6(\mathrm{br}, \mathrm{CH}), 28.6\left(\mathrm{CMe}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right)$; MS (ESI) $m / z 296\left[(\mathrm{M}+\mathrm{Na})^{+}, 70\right], 218(100) ;$ HRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$ 296.1621, found 296.1611 (+3.2 ppm error); $[\alpha]_{\mathrm{D}}-13.6$ (c 0.2 in CHCl_{3}); CSP-HPLC: Chiracel OD (99:1 Hexane-iPrOH, $\left.1.0 \mathrm{mLmin}^{-1}\right)(R, R)$ - $\mathbf{3 4} 5.6 \mathrm{~min},(S, S)-\mathbf{3 4} 6.6 \mathrm{~min}$.

tert-Butyl 1-benzyl-2-azabicyclo[3.1.0]hexane-2-carboxylate rac-34

rac-34
$i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added to a stirred solution of sulfoxide syn-rac-7 ($65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq} ., 99: 1 \mathrm{er}$) in THF (8 mL) at rt under Ar. The resulting solution was stirred at rt for 1 min . Then, a solution of $\mathrm{CuBr} . \mathrm{SMe}_{2}(8 \mathrm{mg}, 0.04$ mmol, 0.2 eq.) in THF (0.5 mL) and benzyl bromide ($89 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.5$ eq.) was added sequentially and the solution was stirred at rt for 2 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(7 \mathrm{~mL})$ was added and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $4: 1$ petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave benzylated pyrrolidine rac-34 (32 mg, 59\%) as a colourless oil.
tert-Butyl (1S,5R)-(phenylcarbamoyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate (S,R)-35

$(S, R)-35$

Using general procedure $\mathrm{D}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in $\mathrm{THF}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{s}}\right)-7(65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq., $99: 1 \mathrm{er})$ in THF $(8 \mathrm{~mL})$ at rt for 1 min and phenylisocyanate ($60 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with $98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave amide $(S, R)-\mathbf{3 5}(31 \mathrm{mg}$, $67 \%, 99: 1$ er by CSP-HPLC) as a pale yellow solid, mp $102-103{ }^{\circ} \mathrm{C} ; R_{\mathrm{F}}\left(98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) 0.2$; IR $\left(\mathrm{CDCl}_{3}\right) 3408(\mathrm{NH}), 2979,1689(\mathrm{C}=\mathrm{O}), 1682(\mathrm{C}=\mathrm{O}), 1529,1444,1368,1164,908,732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.30(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Ph}$), $7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}), 3.75$ (ddd, $J=11.5,9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $3.66\left(\mathrm{ddd}, J=11.5,8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right.$), 2.24 (ddt, $J=13.0,9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 2.17-2.12 (m, 1H,CH), 2.07 (dd, $J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.94 (dddd, $J=13.0,8.5,6.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.02(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 168.6 (PhNCO) $156.9\left(\mathrm{NCO}_{2} \mathrm{CMe}_{3}\right)$, 137.8 (ipso- Ph), 128.9 (Ph), 123.9 (Ph), 119.3 (Ph), 81.2 $\left(\mathrm{CMe}_{3}\right), 51.3\left(\mathrm{NCH}_{2}\right), 50.6(\mathrm{NC}), 31.1(\mathrm{CH}), 28.1\left(\mathrm{CMe}_{3}\right), 26.4\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{ESI})$ $m / z 325\left[(\mathrm{M}+\mathrm{Na})^{+}, 30\right], 303\left[(\mathrm{M}+\mathrm{H})^{+}, 100\right] ;$ HRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 325.1523, found 325.1523 (-0.2 ppm error);); $[\alpha]_{\mathrm{D}}-58.6$ (c 0.7 in CHCl_{3}); CSP-HPLC: Chiracel OD (90:10 Hexane-iPrOH, $\left.1.0 \mathrm{mLmin}^{-1}\right)(R, S)$ - $\mathbf{3 5} 7.4 \mathrm{~min},(S, R)-\mathbf{3 5} 14.5 \mathrm{~min}$.
tert-Butyl 1-(phenylcarbamoyl)-2-azabicyclo[3.1.0]hexane-2-carboxylate rac-35

Using general procedure $\mathrm{D}, s-\mathrm{BuLi}(1.69 \mathrm{~mL}$ of a 1.3 M solution in hexanes, $2.20 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) ,$ N-Boc 4-chloro piperidine $25(219 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ eq.) and TMEDA ($255 \mathrm{mg}, 2.20 \mathrm{mmol}$, 2.2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ and phenylisocyanate ($262 \mathrm{mg}, 2.20 \mathrm{mmol}, 2.2$ eq.) gave the crude
product. Purification by flash column chromatography on silica with $98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ - $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave amide rac-35 (290 mg, 96\%) as a pale yellow solid.

2-tert-Butyl (1S,5R)-1-phenyl-2-azabicyclo[3.1.0]hexane-2-carboxylate (1S,5R)-36

Using general procedure $\mathrm{H}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-7$ ($65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) in THF (8 mL) and $\mathrm{ZnCl}_{2}(0.12 \mathrm{~mL}$ of a 1.0 M solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{mmol}, 0.6 \mathrm{eq}.\right), \mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq}),. t-$ $\mathrm{Bu}_{3} \mathrm{PH}^{2} \mathrm{BF}_{4}$ ($3.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.06$ eq.) and bromobenzene ($39 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with $98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ petrol as eluent gave arylated pyrrolidine $(1 S, 5 R) \mathbf{- 3 6}(35 \mathrm{mg}, 68 \%, 99: 1$ er by CSP-HPLC) as a colourless oil, $R_{\mathrm{F}}\left(98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-petrol) 0.3; IR $\left(\mathrm{CDCl}_{3}\right) 2874,2791,1681(\mathrm{C}=\mathrm{O}) 1540,1521$, $1444,1368,908,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.21-7.16(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ph}), 3.90\left(\mathrm{ddd}, J=11.5,9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.61(\mathrm{ddd}, J=11.5,9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}$), $2.32(\mathrm{ddt}, J=12.5,9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.97$ (dddd, $J=12.5,9.0,6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 1.81 (dd, $J=9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.62-1.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.22\left(\mathrm{br} \mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.02(\mathrm{t}, J$ $=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7(\mathrm{C}=\mathrm{O}$), 133.6 (ipso- Ph), $132.7(\mathrm{Ph})$, $127.9(\mathrm{Ph}), 125.9(\mathrm{Ph}), 79.4\left(\mathrm{CMe}_{3}\right), 50.1\left(\mathrm{NCH}_{2}\right), 49.7(\mathrm{NC}), 30.3(\mathrm{NCCH}), 28.2\left(\mathrm{CMe}_{3}\right), 26.7$ $\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{ESI}) m / z 282\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 204$ (30); HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 282.1465$, found $282.1470\left(-2.1 \mathrm{ppm}\right.$ error); $[\alpha]_{\mathrm{D}}+8.2\left(c 0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; CSP-HPLC: Chiracel AD-H (99:1 Hexane-iPrOH, $0.5 \mathrm{mLmin}^{-1}$) ($1 S, 5 R$)-36 $8.5 \mathrm{~min},(1 S, 5 R)-36$ 10.0 min .

tert-Butyl 1-phenyl-2-azabicyclo[3.1.0]hexane-2-carboxylate rac-36

rac-36

Using general procedure $\mathrm{H}, i-\mathrm{PrMgCl}(0.15 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and sulfoxide syn-rac-7 ($65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) in THF (8 mL) and $\mathrm{ZnCl}_{2}(0.12 \mathrm{~mL}$ of a 1.0 M solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{mmol}, 0.6 \mathrm{eq}.\right), \mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq}),. t-\mathrm{Bu}_{3} \mathrm{PH}^{2} \mathrm{BF}_{4}$ ($3.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.06 \mathrm{eq}$.) and bromobenzene ($22 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.7$ eq.) gave the crude product. Purification by flash column chromatography on silica with $98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrol as eluent gave arylated pyrrolidine rac-36 (20 mg, 55\%) as a colourless oil.

tert-Butyl 1-[2-methoxyphenyl]-2-azabicyclo[3.1.0]hexane-2-carboxylate (1S,5R)-37

(1S,5R)-37

Using general procedure $\mathrm{H}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide syn- $\left(R, R, S_{\mathrm{S}}\right)-7\left(65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\right.$ eq.) in THF (8 mL) and $\mathrm{ZnCl}_{2}(0.12 \mathrm{~mL}$ of a 1.0 M solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{mmol}, 0.6 \mathrm{eq}.\right), \mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq}),. t-$ Bu_{3} PH.BF 4 ($3.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.06$ eq.) and methyl 2-bromoanisole ($45 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.20$ eq.) gave the crude product. Purification by flash column chromatography on silica with 7:3 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave arylated pyrrolidine ($1 S, 5 R$)-37 (39 mg, 68%) as a colourless oil, R_{F} (7:3 petrol- $\left.\mathrm{Et}_{2} \mathrm{O}\right) ~ 0.2$; $\mathrm{IR}\left(\mathrm{CDCl}_{3}\right) 2875,2782,1685(\mathrm{C}=\mathrm{O}), 1421,1444,1368,913,742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{brd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.22$ (td, $J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), 6.88 (br t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), 6.83 (br d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), 3.97 (td, $J=12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 3.84 (s, 3H, OMe), 3.60-3.53 (br m, $1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}$), 2.37 (dddd, $J=12.5,7.5,4.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.60-1.53$ (m, 2H, CH), 1.22 (br s, 9H, CMe_{3}), 0.90 (t, $J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8(\mathrm{C}=\mathrm{O})$, 155.5 (ipso- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$), 131.6 (Ar), 128.7 (Ar), 128.2 (ipso-Ar), 119.6 (Ar), 110.1 (Ar), $79.0\left(\mathrm{CMe}_{3}\right), 55.5$ (OMe), 50.5
$\left(\mathrm{NCH}_{2}\right), 46.8(\mathrm{NC}), 28.3\left(\mathrm{CMe}_{3}\right), 27.3(\mathrm{br}, \mathrm{CH}), 26.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 312[(\mathrm{M}+$ $\mathrm{Na})^{+}, 100$], 234 (70), $190(30)$; HRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$321.1572, found 312.1570 (-0.5 ppm error); $[\alpha]_{\mathrm{D}}-6.9$ (c 0.65 in CHCl_{3}); CSP-HPLC: Chiracel AD-H (99:1 Hexane-iPrOH, $\left.0.5 \mathrm{mLmin}^{-1}\right)(1 S, 5 R)-\mathbf{3 7} 7.5 \mathrm{~min},(1 R, 5 S)-\mathbf{3 7} 8.3 \mathrm{~min}$.

tert-Butyl 1-[2-methoxyphenyl]-2-azabicyclo[3.1.0]hexane-2-carboxylate rac-37

Using general procedure $\mathrm{H}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide syn-rac-7 ($65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) in THF (8 mL) and $\mathrm{ZnCl}_{2}(0.12 \mathrm{~mL}$ of a 1.0 M solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{mmol}, 0.6 \mathrm{eq}.\right), \mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq}),. t-\mathrm{Bu}_{3} \mathrm{PH}^{2} \mathrm{BF}_{4}$ ($3.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.06 \mathrm{eq}$.) and methyl 2-bromoanisole ($26 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.7$ eq.) gave the crude product. Purification by flash column chromatography on silica with 7:3 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave arylated pyrrolidine rac-37 (19 mg, 48\%) as a colourless oil.
tert-Butyl 1-[2-(methoxycabronyl)phenyl]-2-azabicyclo[3.1.0]hexane-2-carboxylate (1S,5R)38

$(1 S, 5 R)-38$

Using general procedure $\mathrm{H}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5$ eq. $)$, sulfoxide $\operatorname{syn}-\left(R, R, S_{\mathrm{S}}\right)-7\left(65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0\right.$ eq.) in THF (8 mL), $\mathrm{ZnCl}_{2}(0.12 \mathrm{~mL}$ of a 1.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{mmol}, 0.6$ eq.), $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq}),. t-\mathrm{Bu}_{3} \mathrm{PH} . \mathrm{BF}_{4}(3.5$ $\mathrm{mg}, 0.012 \mathrm{mmol}, 0.06 \mathrm{eq}$.) and methyl 2-bromobenzoate ($51 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with 7:3 petrol- $-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave arylated pyrrolidine $(1 S, 5 R)-\mathbf{3 8}(47 \mathrm{mg}, 74 \%)$ as a colourless oil, $R_{\mathrm{F}}\left(7: 3\right.$ petrol- $\left.\mathrm{Et}_{2} \mathrm{O}\right)$
0.1; IR (CDCl_{3}) 2874, $1726\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}\right), 1679(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 1532,1454,1268,908,732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56\left(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}\right), 7.38(\mathrm{br} \mathrm{t}, J=8.0$ $\mathrm{Hz} 1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}$), 7.32-7.25 (m, 2H, Ar), 3.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.76 (dt, $J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 3.37-3.30 (br m, $1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}$), 2.58-2.49 (m, $1 \mathrm{H}, \mathrm{CH}$), $2.00(\mathrm{dtd}, J=12.0,9.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.79-1.74 (m, 1H, CH), 1.81 (dd, $J=9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.07 (br s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), $0.90(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 155.9$ $\left(\mathrm{NCO}_{2} \mathrm{CMe}_{3}\right), 134.4$ (ipso-Ar), 132.1 (Ar), 130.5 (br, Ar), 128.9 (Ar), 128.8 (Ar), 126.5 (Ar), $79.4\left(\mathrm{CMe}_{3}\right), 52.0(\mathrm{OMe}), 48.7(\mathrm{NC}), 48.6\left(\mathrm{NCH}_{2}\right), 30.0(\mathrm{CH}), 27.9\left(\mathrm{CMe}_{3}\right), 25.6\left(\mathrm{CH}_{2}\right), 18.5$ $\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{ESI}) m / z 340\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 318\left[(\mathrm{M}+\mathrm{H})^{+}, 40\right], 262(40), 218(40) ;$ HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 340.1518$, found 340.1519 (+0.4 ppm error); $[\alpha]_{\mathrm{D}}-46.4$ (c 1.00 in CHCl_{3}); CSP-HPLC: Chiracel AD-H (99:1 Hexane-iPrOH, $1.0 \mathrm{mLmin}^{-1}$) $(1 S, 5 R)-389.7 \mathrm{~min}$, $(1 R, 5 S)$ - $\mathbf{3 8} 15.8 \mathrm{~min}$.
tert-Butyl 1-[2-(methoxycabronyl)phenyl]-2-azabicyclo[3.1.0]hexane-2-carboxylate rac-38

Using general procedure $\mathrm{H}, i-\mathrm{PrMgCl}(0.15 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$. and sulfoxide syn-rac-7 ($65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) in THF (8 mL) and $\mathrm{ZnCl}_{2}(0.12 \mathrm{~mL}$ of a 1.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{mmol}, 0.6$ eq.) , $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq}),. t-\mathrm{Bu}_{3} \mathrm{PH}^{2} \mathrm{BF}_{4}$ ($3.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.06 \mathrm{eq}$.) and methyl 2-bromobenzoate ($30 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.7 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with 7:3 petrol- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave arylated pyrrolidine rac-38 ($32 \mathrm{mg}, 72 \%$) as a colourless oil.

2-tert-Butyl (1S,5R)-1-(thiophen-3-yl)-2-azabicyclo[3.1.0]hexane-2-carboxylate (1S,5R)-39

Using general procedure $\mathrm{H}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide syn- $\left(R, R, S_{\mathrm{S}}\right)-7(65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq. $)$ in THF $(8 \mathrm{~mL})$ and $\mathrm{ZnCl}_{2}(0.12 \mathrm{~mL}$ of a 1.0 M solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{mmol}, 0.6 \mathrm{eq}.\right), \mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq}),. t-$ $\mathrm{Bu}_{3} \mathrm{PH} . \mathrm{BF}_{4}$ ($3.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.06$ eq.) and 3-bromothiophene ($23 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with 99:1-98:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave arylated pyrrolidine ($1 S, 5 R$) $\mathbf{- 3 9}$ ($38 \mathrm{mg}, 72 \%$) as a colourless oil, R_{F} (98:2 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) 0.5$; IR $\left(\mathrm{CDCl}_{3}\right) 2910,2874,1675(\mathrm{C}=\mathrm{O}), 1555,1532,1268,908,732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22\left(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 6.98(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz} 1 \mathrm{H}$, H^{4}), $6.94\left(\mathrm{dd}, J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 3.86\left(\mathrm{ddd}, J=11.5,9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.55(\mathrm{ddd}$, $J=11.5,9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}$), 2.34-2.25 (m, 1H, CH), 1.93 (dddd, $J=13.0,9.0,6.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.68-1.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.28\left(\mathrm{br} \mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.04\left(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 156.2$ ($\mathrm{C}=\mathrm{O}$), 132.6 (ipso-Ar), 126.4 (Ar), 125.0 (br, Ar), 118.7 (Ar), $79.4\left(\mathrm{CMe}_{3}\right), 49.9(\mathrm{NC}), 46.6\left(\mathrm{NCH}_{2}\right), 30.8(\mathrm{br}, \mathrm{CH}), 28.2\left(\mathrm{CMe}_{3}\right), 26.5\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right)$; MS (ESI) $m / z 288\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 210(40) ;$ HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$ 288.1029, found 288.1027 (+0.6 ppm error); $[\alpha]_{\mathrm{D}}-42.0$ (c 0.5 in CHCl_{3}); CSP-HPLC: Chiracel OD-H (99:1 Hexane- $\left.i \operatorname{PrOH}, 1.0 \mathrm{mLmin}^{-1}\right)(S, R)-397.7 \mathrm{~min},(R, S)-398.6 \mathrm{~min}$.

2-tert-Butyl 1-(thiophen-3-yl)-2-azabicyclo[3.1.0]hexane-2-carboxylate rac-39

Using general procedure $\mathrm{H}, i-\mathrm{PrMgCl}(0.25 \mathrm{~mL}$ of a 2.0 M solution in THF, $0.50 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sulfoxide syn-rac-7 ($65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.) in THF (8 mL) and $\mathrm{ZnCl}_{2}(0.12 \mathrm{~mL}$ of a 1.0 M solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{mmol}, 0.6 \mathrm{eq}.\right), \mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05 \mathrm{eq}),. t-\mathrm{Bu}_{3} \mathrm{PH}^{2} \mathrm{BF}_{4}$
($3.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.06$ eq.) and 3-bromothiophene ($23 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) gave the crude product. Purification by flash column chromatography on silica with 99:1-98:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave arylated pyrrolidine rac-39 ($33 \mathrm{mg}, 62 \%$) as a colourless oil.

2 Additional Information

2.1 Proof of Configuration of Sulfoxides anti-(S,S $\left.S_{s}\right)-6$ and $\operatorname{syn}-\left(R, S_{s}\right)-6$

1. For the lithiation-trapping of O-alkyl carbamate $\mathbf{8}$, the sense of induction using $s-\mathrm{BuLi}$ and $(-)$-sparteine, ${ }^{4,15,16}(+)$-sparteine surrogate ${ }^{4}$ and diamines $(R, R)-\mathbf{1 2}$ and $(S, S)-\mathbf{1 2}{ }^{5}$ is wellprecedented.
2. Inversion of configuration at sulfur when trapping with Andersen's sulfinate is well documented. ${ }^{7,17,18}$
3. (S)-Isopropyl p-tolyl sulfoxide (S)-14 was isolated as the expected product of a sulfoxide \rightarrow magnesium exchange reaction. This indicates a double inversion from Andersen's Sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}$ thus confirming the configuration at sulfur in anti- $\left(S, S_{\mathrm{s}}\right)-\mathbf{6}$ and $\operatorname{syn}-\left(R, S_{\mathrm{s}}\right)-$ 6. The optical rotation for $(S)-\mathbf{1 4}\left([\alpha]_{\mathrm{D}}-194.2\right.$ (c 1.0 in EtOH) $\left(\right.$ lit., ${ }^{10}[\alpha]_{\mathrm{D}}-187$ (c 2.4 in $\mathrm{EtOH})$) is in accordance with that reported in the literature. ${ }^{10}$

4. Two known products have been synthesized from anti-($\left.S, S_{\mathrm{s}}\right) \mathbf{- 6}$. Optical rotations for (R) -$13\left([\alpha]_{\mathrm{D}}-17.8\left(c 0.55\right.\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\right.$ lit., ${ }^{2}[\alpha]_{\mathrm{D}}-17.3\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for $(R)-\mathbf{1 3}$ of 97:3 er)) and $(R)-\mathbf{2 2}\left([\alpha]_{\mathrm{D}}+15.59\left(c 0.65\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right)\left(\right.$ lit., ${ }^{6}[\alpha]_{\mathrm{D}}+16.00\left(c 0.70\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $(R)-\mathbf{2 2}$ of $97: 3$ er)) are in accordance with those reported in the literature.

(R)-13

(R)-22

2.2 Proof of configuration of Sulfoxides $\operatorname{syn}-\left(R, R, S_{\mathrm{s}}\right)-7$ and anti-($\left.S, S, S_{\mathrm{s}}\right)-7$

1. For the lithiation-trapping of N-Boc 4-chloro piperidine $\mathbf{2 5}$ the sense of induction using s BuLi and (-)-sparteine has been established. ${ }^{19,20}$ In addition, the sense of induction in the lithiation-trapping of N -Boc piperidine is also known. ${ }^{4,5,20,21}$
2. Inversion of configuration at sulfur when trapping with Andersen's sulfinate $\left(S_{\mathrm{s}}\right)-\mathbf{3}$ is well precedented. ${ }^{7,17,18}$
3. Known alcohol cis- $\mathbf{3 0}$ has been synthesised from anti- $\left(S, S_{\mathrm{s}}\right)-\mathbf{6}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for alcohol cis- $\mathbf{3 0}$ match with those provided by Professor Hannessian and are different to those of alcohol trans-30. ${ }^{14 b}$ The optical rotation for cis-30 $\left([\alpha]_{\mathrm{D}}+6.64\right.$ (c 0.50 in CHCl_{3}) is in accordance with that provided by Professor Hannessian: $[\alpha]_{\mathrm{D}}+12.00$ (c 0.75 in CHCl_{3}). ${ }^{14 \mathrm{~b}}$

$3{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR Spectra and CSP-HPLC Data

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$\left(S_{S}\right)-3$
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(R)-13
(
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(S) -14

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(R)-16

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(R) - 17

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$(R, S)-18$

$(R, R)-18$
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(R, S) $\mathbf{- 1 9}$

$(R, R)-19$
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

antı-(R,S)-S2
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(R, S)-20
(
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

anti-rac-S3

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(R)-22

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

trans-29

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$(S, R)-32$
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$(S, R)-33$
(
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$(S, R)-35$
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(1S,5R)-36
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}
(

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

(

CSP-HPLC for anti-rac-6

anti-6

CSP-HPLC for anti-(S, $\left.S_{\mathrm{s}}\right)$-6 (99:1 er)

CSP-HPLC for syn-rac-6

CSP-HPLC for $\operatorname{syn}-\left(R, S_{\mathrm{s}}\right)-6$ (99:1 er)

CSP-HPLC for rac-13

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	Ret Time [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\operatorname{mid} U^{\star} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\text { a }}{6} \end{gathered}$
1	10.021		0.2471	.43925e4	887.89490	49.8141
2	11.418		0.2804	.44999e4	781.7666	50.185

CSP-HPLC for (R)-13 (99:1 er)

rac-13

CSP-HPLC for $\mathrm{rac}-\mathbf{1 6}$

CSP-HPLC for (R)-16 (99:1 er)

$$
\begin{aligned}
& \text { (R)-16 }
\end{aligned}
$$

CSP-HPLC for rac-17

rac-17

(R) $\mathbf{- 1 7}$

CSP-HPLC for (S)-17 (99:1 er)

CSP-HPLC for anti-rac-18 and syn-rac-18 (92:8 dr by ${ }^{1} \mathrm{H}$ NMR spectroscopy)

anti-rac-18

syn-rac-18

CSP-HPLC for (R, S)-18 (99:1 er) and $(R, R)-\mathbf{1 8}$ (99:1 er) (96:4 dr by ${ }^{1} \mathrm{H}$ NMR spectroscopy)

(R, S) - $\mathbf{1 8}$

$(R, R)-\mathbf{1 8}$

CSP-HPLC for syn-rac-S2

CSP-HPLC for $\operatorname{syn}-(R, R)$-S2 (99:1 er)

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area 8
1	20.518		0.5337	3198.96875	99.90102	98.4435
2	22.242		0.4659	50.58067	1.80945	1.5565

syn-rac-S2

syn-(R, R)- $\mathbf{S 2}$

CSP-HPLC for $\mathrm{rac}-\mathbf{2 0}$

CSP-HPLC for (R, S)-20 (99:1 er)

rac-20

(R, S)-20

CSP-HPLC for rac-21 (90:10 dr by ${ }^{1} \mathrm{H}$ NMR spectroscopy)

ant-rac-21

syn-rac-21

CSP-HPLC for (R, S)-21 (99:1 er) and (R, S)-21 (99:1 er) ($90: 10 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy)

CSP-HPLC for $\mathrm{rac}-\mathbf{2 2}$

rac-22

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area 8
1	13.457		0.3582	3.67200 e 4	1633.98254	48.3567
2	22.212	VBA	0.5683	3.92157 e 4	1078.31128	51.6433

CSP-HPLC for (R)-22 (99:1 er)

(R)-22

CSP-HPLC for anti-rac-7

CSP-HPLC for anti-(S,S, $\left.S_{\mathrm{s}}\right)$-7 (93:7 er)

$\operatorname{anti}\left(S, S, S_{S}\right)-7$

CSP-HPLC for rac - 32

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{* s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	13.390		0.6068	3.14704 e 4	766.75201	50.4332
2	15.503	VV	0.6242	3.09298 e 4	739.13617	49.5668

CSP-HPLC for ($1 S, 5 R$)-32 (99:1 er)

$(S, R)-32$

CSP-HPLC for rac-33

$(S, R)-33$

CSP-HPLC for rac-34

CSP-HPLC for ($1 R, 5 R$)-34 (99:1 er)

CSP-HPLC for rac-35

CSP-HPLC for ($1 S, 5 R$)-35 (99:1 er)

CSP-HPLC for rac-36

rac-36

CSP-HPLC for rac-37

rac-37

CSP-HPLC for ($1 S, 5 R$)-37 (99:1 er)

CSP-HPLC for rac-38

rac-38

$(1 S, 5 R)-\mathbf{3 8}$

CSP-HPLC for rac -39

(1S,5R)-39

4 References for Supporting Information

(1) Bredt, J. Justus Liebigs Annalen der Chemie 1924, 437, 1.
(2) Carbone, G.; O'Brien, P.; Hilmersson, G. r. J. Am. Chem. Soc. 2010, 132, 15445.
(3) Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2007, 46, 7491.
(4) O'Brien, P.; Dearden, M. J.; Firkin, C. R.; Hermet, J. P. R. J. Am. Chem. Soc. 2002, 124, 11870.
(5) Stead, D.; O'Brien, P.; Sanderson, A. Org. Lett. 2008, 10, 1409.
(6) Webster, M. P.; Partridge, B. M.; Aggarwal, V. Organic Syntheses 2011, 88.
(7) Blakemore, P. R.; Marsden, S. P.; Vater, H. D. Org. Lett. 2006, 8, 773.
(8) Hajipour, A. R.; Falahati, A. R.; Ruoho, A. E. Tetrahedron Lett. 2006, 47, 2717.
(9) Burchat, A. F.; Chong, J. M.; Nielson, N. Organomet. Chem. 1997, 281.
(10) Fernandez, I.; Khiar, N.; Llera, J. M.; Alcudia, F. J. Org. Chem. 1992, 57, 6789.
(11) Maitro, G.; Vogel, S.; Prestat, G.; Madec, D.; Poli, G. Org. Lett. 2006, 8, 5951.
(12) Vedrenne, E.; Wallner, O. A.; Vitale, M.; Schmidt, F.; Aggarwal, V. K. Org. Lett. 2009, 11, 165.
(13) Chang, D.; Feiten, H.-J. r.; Engesser, K.-H.; van Beilen, J. B.; Witholt, B.; Li, Z. Org. Lett. 2002, 4, 1859.
(14) (a) Hanessian, S.; Reinhold, U.; Gentile, G. Angew. Chem. Int. Ed. 1997, 36, 1881.26. (b) Hanessian, S. unpublished results.
(15) Hoppe, D.; Hense, T. Angew. Chem. Int. Ed. 1997, 36, 2283.
(16) Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2007, 46, 7333.
(17) Andersen, K. K.; Gaffield, W.; Papanikolaou, N. E.; Foley, J. W.; Perkins, R. I. J. Am. Chem. Soc. 1964, 86, 5637.
(18) Solladié, G.; Somny, F.; Colobert, F. Tetrahedron: Assymmetry 1997, 8, 801.
(19) Park, Y. S.; Beak, P. Tetrahedron 1996, 52, 12333.
(20) Bailey, W. F.; Beak, P.; Kerrick, S. T.; Ma, S.; Wiberg, K. B. J. Am. Chem. Soc. 2002, 124, 1889 .
(21) Stead, D.; Carbone, G.; O'Brien, P.; Campos, K. R.; Coldham, I.; Sanderson, A. J. Am. Chem. Soc. 2010, 132, 7260.

