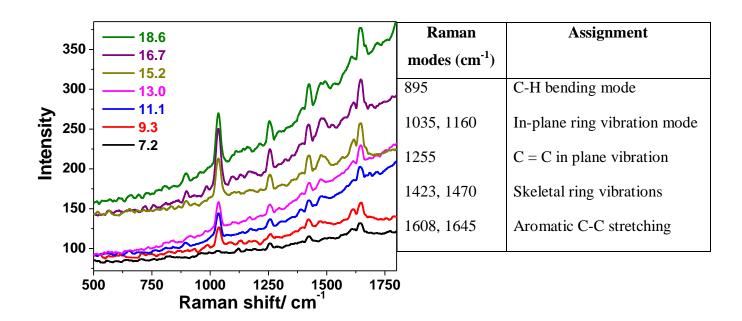
Resonance Raman Detection and Estimation in the Aqueous Phase using Water Dispersible Cyclodextrin: Reduced-Graphene Oxide Sheets

Bharathi Konkena and Sukumaran Vasudevan*

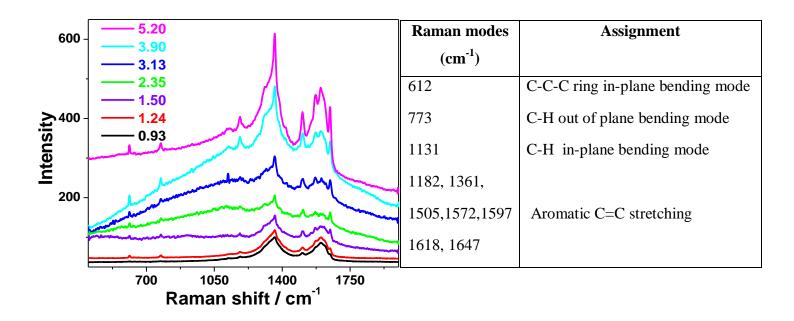
Department of Inorganic and Physical Chemistry

Indian Institute of Science, Bangalore 560012,

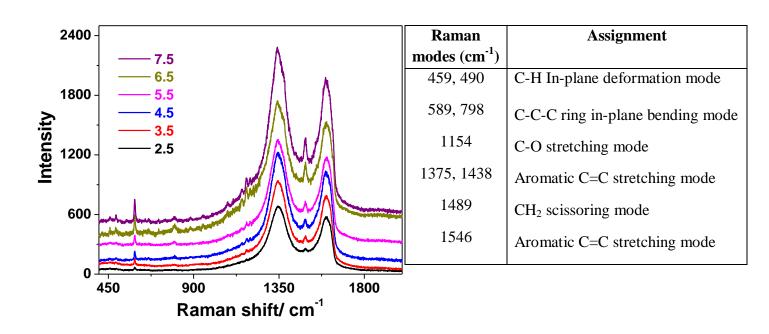

INDIA

Supporting Information

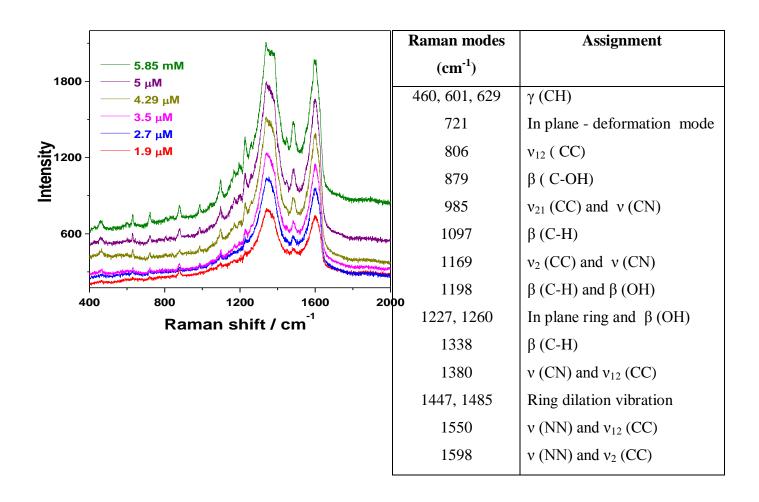
CONTENTS:


- S1. Resonance Raman spectra of aqueous Pyrene solutions of differing concentrations on addition of β -CD: *r*GO.
- S2. Resonance Raman spectra of aqueous Rhodamine-6G solutions of differing concentrations on addition of β-CD: *r*GO.
- S3. Resonance Raman spectra of aqueous Nile Red solutions of differing concentrations on addition of β-CD: *r*GO.
- S4. Resonance Raman spectra of aqueous Sudan Red solutions of differing concentrations on addition of β-CD: *r*GO.
- S5. Resonance Raman spectra of aqueous azobenzene solutions of differing concentrations on addition of β -CD: *r*GO.
- S6. Comparison of the resonance Raman spectra of β -CD: *r*GO in the absence and presence of dye molecules.

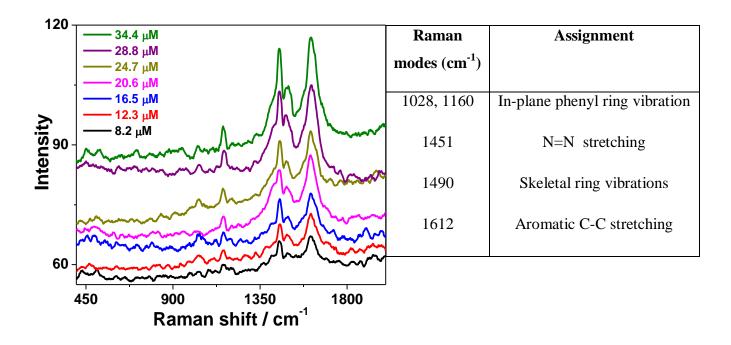
S1. Resonance Raman spectra of aqueous Pyrene solutions of differing concentrations on addition of β -CD: *r*GO.


Figure S1. Resonance Raman ($\lambda = 325$ nm) spectra of pyrene aqueous solutions of differing concentrations in the presence of β -CD: *r*GO. Each of the spectra were recorded after addition of 0.0625 mg of β -CD: *r*GO per each ml of the pyrene solution. The concentrations (μ M) are indicated in the figure. The assignments of the Raman bands of pyrene¹ are indicated in the table.

S2. Resonance Raman spectra of aqueous Rhodamine-6G solutions of differing concentrations on addition of β -CD: *r*GO.


Figure S2. Resonance Raman ($\lambda = 514$ nm) spectra of Rhodamine-6G aqueous solutions of differing concentrations in the presence of β -CD: *r*GO. Each of the spectra were recorded after addition of 0.0625 mg of β -CD: *r*GO per each ml of the Rhodamine-6G solution. The concentrations (μ M) are indicated in the figure. The assignments of the Raman bands of Rhodamine 6G² are indicated in the table.

S3. Resonance Raman spectra of aqueous Nile Red solutions of differing concentrations on addition of β -CD: *r*GO.


Figure S3. Resonance Raman ($\lambda = 514$ nm) spectra of Nile Red aqueous solutions of differing concentrations in the presence of β -CD: *r*GO. Each of the spectra were recorded after addition of 0.0625 mg of β -CD: *r*GO per each ml of the Nile Red solution. The concentrations (μ M) are indicated in the figure. The assignments of the Raman bands of Nile Red³ are indicated in the table.

S4. Resonance Raman spectra of aqueous Sudan Red solutions of differing concentrations on addition of β-CD: *r*GO.

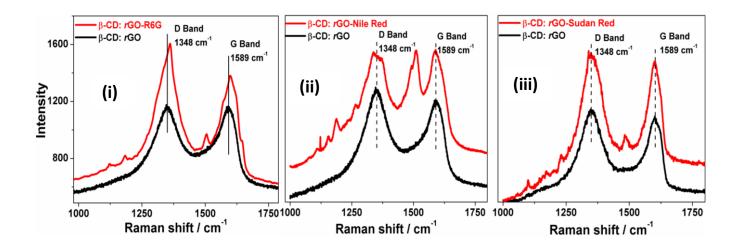


Figure S4. . Resonance Raman ($\lambda = 514$ nm) spectra of Sudan Red aqueous solutions of differing concentrations in the presence of β -CD: *r*GO. Each of the spectra were recorded after addition of 0.0625 mg of β -CD: *r*GO per each ml of the Sudan Red solution. The concentrations (μ M) are indicated in the figure. The assignments of the Raman bands of Sudan red⁴ are indicated in the table.

S5. Resonance Raman spectra of aqueous azobenzene solutions of differing concentrations on addition of β -CD: *r*GO.

Figure S5. Resonance Raman ($\lambda = 325$ nm) spectra of *trans* azobenzene aqueous solutions of differing concentrations in the presence of β -CD: *r*GO. Each of the spectra were recorded after addition of 0.0625 mg of β -CD: *r*GO per each ml of the azobenzene solution. The concentrations (μ M) are indicated in the figure. The assignments of the Raman bands of azobenzene⁵ are indicated in the table.

S6. Comparison of the resonance Raman spectra of β -CD: *r*GO in the absence and presence of dye molecules.

Figure S6. Comparison of the resonance Raman spectra of β -CD: *r*GO in the absence (black line) and presence of the dye molecule (red line). The concentration of β -CD: *r*GO is 0.0625mg/mL (i) β -CD: *r*GO-Nile Red inclusion complex. The concentration of Nile Red used for the measurements is 6.5µM. (ii) β -CD: *r*GO-Sudan Red inclusion complex. The concentration of Sudan Red used for the measurements is 3.5µM. (iii) R6G adsorbed on β -CD: *r*GO. The concentration of R6G used for the measurements is 0.93µM.

REFERENCES

- (1) Jones, C. M.; Asher, S. A. J. Chem. Phys. 1988, 89, 2649.
- (2) Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. J. Am. Chem. Soc. 2009, 131, 9890.
- (3) Charan, S.; Chien, F.-C.; Singh, N.; Kuo, C.-W.; Chen, P. Chem. Eur. J, 2011, 17, 5165.
- (4) Xiaofang, Z.; Fang, Y.; Zhang, P. X. Trends in Applied Sci. Res. 2006, 1, 155.
- (5) Barker, I. K.; Fawcett, V.; Long, D. A. J. Raman Spectrosc. 1987, 18, 71.