SUPPORTING INFORMATION

Antioxidant and Anti-inflammatory Meroterpenoids from the Brown Alga Cystoseira usneoides

Carolina de los Reyes,[†] Hanaa Zbakh,^{‡,§} Virginia Motilva,[‡] and Eva Zubía^{†,*}

[†]Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real (Cádiz), Spain

[‡]Departamento de Farmacología, Facultad de Farmacia, 41012 Sevilla, Spain [§]Department of Biology, Faculty of Sciences, University Abdelmalek Essâadi, 93030 Tetouan, Morocco

- **S1** ¹H NMR spectrum (600 MHz, CD_3OD) of cystodione A (1)
- S2 13 C NMR spectrum (150 MHz, CD₃OD) of cystodione A (1)
- **S3** ¹H NMR spectrum (600 MHz, CD_3OD) of cystodione B (2)
- S4 13 C NMR spectrum (125 MHz, CD₃OD) of cystodione B (2)
- **S5** ¹H NMR spectrum (600 MHz, CD_3OD) of cystodione C (3)
- **S6** 13 C NMR spectrum (150 MHz, CD₃OD) of cystodione C (**3**)
- **S7** ¹H NMR spectrum (600 MHz, CD_3OD) of cystodione D (4)
- **S8** 13 C NMR spectrum (150 MHz, CD₃OD) of cystodione D (4)
- **S9** ¹H NMR spectrum (600 MHz, CD_3OD) of cystodione E (5)
- **S10** 13 C NMR spectrum (150 MHz, CD₃OD) of cystodione E (5)
- **S11** ¹H NMR spectrum (500 MHz, CD_3OD) of cystodione F (6)
- **S12** 13 C NMR spectrum (125 MHz, CD₃OD) of cystodione F (6)
- **S13** ¹H NMR spectrum (500 MHz, CDCl₃) of 6-*cis*-amentadione-1'-methyl ether (7)
- **S14** ¹³C NMR spectrum (125 MHz, CDCl₃) of 6-*cis*-amentadione-1'-methyl ether (7)
- **S15** ¹H NMR spectrum (500 MHz, CDCl₃) of amentadione-1'-methyl ether (8)
- **S16** ¹H NMR spectrum (500 MHz, CDCl₃) of amentadione-1'-methyl ether (8)
- **S17** ¹H NMR spectrum (600 MHz, CD_3OD) of usneoidone Z (11)
- **S18** 13 C NMR spectrum (150 MHz, CD₃OD) of usneoidone Z (11)
- **S19** ¹H NMR spectrum (500 MHz, $CDCl_3$) of usneoidone Z (11)
- **S20** 13 C NMR spectrum (125 MHz, CDCl₃) of usneoidone Z (11)
- S21 ¹H NMR spectrum (500 MHz, CD₃OD) of compound 12
- S22 ¹³C NMR spectrum (125 MHz, CD₃OD) of compound 12
- **S23** ¹H NMR spectrum (500 MHz, CDCl₃) of 11-hydroxyamentadione-1'-methyl ether (**12**)
- S24 ¹³C NMR spectrum (150 MHz, CDCl₃) of 11-hydroxyamentadione-1'-methyl ether (12)
- S25 Table T1. HMBC and COSY correlations observed for compounds 1, 2, 3, and 4
- S26 Table T2. HMBC and COSY correlations observed for compounds 5, 6, 11, and 12
- S27 Table T3. NMR data reported for usneoidones and NMR data of compounds 11 and 12

S2.- ¹³C NMR spectrum of cystodione A (1) in CD_3OD

S3.- ¹H NMR spectrum of cystodione B (2) in CD_3OD

S4.- ¹³C NMR spectrum of cystodione B (2) in CD_3OD

S5.- ¹H NMR spectrum of cystodione C (3) in CD_3OD

S6.- ¹³C NMR spectrum of cystodione C (**3**) in CD_3OD

S11.- ¹H NMR spectrum of cystodione F (6) in CD_3OD

S12.- ¹³C NMR spectrum of cystodione F (6) in CD_3OD

S13.-¹H NMR spectrum of 6-*cis*-amentadione-1'-methyl ether (7) in CDCl₃

S14.- ¹³C NMR spectrum of 6-*cis*-amentadione-1'-methyl ether (7) in CDCl₃

S15.- ¹H NMR spectrum of amentadione-1'-methyl ether (8) in CDCl₃

S16.- ¹³C NMR spectrum of amentadione-1'-methyl ether (8) in CDCl₃

S17.- ¹H NMR spectrum of usneoidone Z (11) in CD_3OD

S18.- ¹³C NMR spectrum of usneoidone Z (11) in CD_3OD

S19.- ¹H NMR spectrum of usneoidone Z (11) in $CDCI_3$

S20.- ¹³C NMR spectrum of usneoidone Z (**11**) in CDCl₃

S21.- ¹H NMR spectrum of 11-hydroxyamentadione-1'-methyl ether (**12**) in CD_3OD

S22.- ¹³C NMR spectrum of 11-hydroxyamentadione-1'-methyl ether (**12**) in CD₃OD

S23.- ¹H NMR spectrum of 11-hydroxyamentadione-1'-methyl ether (**12**) in CDCl₃

S24.- ¹³C NMR spectrum of 11-hydroxyamentadione-1'-methyl ether (12) in CDCl₃

Proton	1		2		3		4	
	HMBC	COSY	HMBC	COSY	HMBC	COSY	HMBC	
1 2 2	C-2,C-3,C-1',C-2',C-3' C-1,C-3,C-4,C-20,C-2'	H-2 H-1	C-2,C-3,C-1',C-2',C-3' C-1,C-3,C-4,C-20,C-2'	H-2 H-1	C-3,C-1',C-3' C-3,C-14,C-2'	H-2 H-1	C-2,C-3,C-1',C-2',C-3' C-1,C-3,C-4,C-14,C-2'	H-2 H-1
3 4	C-2,C-3,C-5,C-6,C-20	a:H-4b b:H-4a	C-2,C-3,C-5,C-6,C-20	a:H-4b b:H-4a	C-2,C-3,C-5,C-14	a:H-4b b:H-4a	C-2,C-3,C-5,C-6,C-14	a:H-4a b:H-4b
5 6 7	C-5,C-8,C-19	H-19	C-5,C-8,C-19	H-8,H-19	C-5,C-8,C-13	H-13	C-5,C-8,C-13	H-8,H-13
8	C-6,C-7,C-9,C-10,C-19	a:H-9 b:H-9	C-6,C-7,C-9,C-10,C-19	H-6,H-9	C-9	H-9	C-6,C-7,C-9,C-10,C-13	H-6,H-9
9 10	C-10 C-9	H-8a,H8b,H-10a,H-10b a:H-9,H-10b,H-11 b:H-9,H-10a,H-11	C-7,C-8,C-10,C-11 C-8,C-9,C-11,C-12,C-18	H-8,H-10a,H-10b a:H-9,H-10b,H-11 b:H-9.H-10a.H-11	C-7,C-8,C-10,C-11 C-8,C-9,C-11	H-8,H-10 H-9	C-7,C-8,C-10,C-11 C-8,C-9,C-11	H-8,H-10 H-9
11 12	C-10,C-12	H-10a,H-10b,H-18	C-9,C-10,C-12,C-18	H-10a,H-10b,H-18	C-11		C-11	
13 14 15	C-12,C-15 C-12,C-15,C-16,C-17	H-14 H-13	C-12,C-14,C-15 C-12,C-13,C-15,C-16,C-17	H-14 H-13	C-6,C-7,C-8 C-2,C-3,C-4	H-6	C-6,C-7,C-8 C-2,C-3,C-4	H-6
16 17 18 19 20	C-14,C-15,C-17 C-14,C-15,C-16 C-10,C-11,C-12 C-6,C-7,C-8 C-2,C-3,C-4	H-11 H-6	C-14,C-15,C-17 C-14,C-15,C-16 C-10,C-11,C-12 C-6,C-7,C-8 C-2,C-3,C-4	H-11 H-6				
1 2' 3'	C-1,C-1',C-4',C-5'	Н-5'	C-1,C-1',C-4',C-5'	H-5'	C-1,C-1',C-5'	H-5'	C-1,C-1',C-4',C-5'	H-5'
4 5' 6'	C-1',C-3',C-4',6'-CH ₃	Н-3'	C-1',C-3',C-4',6'-CH ₃	H-3'	C-1',C-3'	H-3'	C-1',C-3',C-4',6'-CH ₃	H-3'
6'-CH ₃ -OCH ₃	C-1',C-5',C-6' C-1'		C-1',C-5',C-6' C-1'		C-1',C-5',C-6' C-1'		C-1',C-5',C-6' C-1'	

Table T1. HMBC and COSY correlations observed for compoun	ds 1-4 ^a
---	----------------------------

a) Spectra recorded in CD₃OD, 600 MHz

Proton	5 ^a		6 ^b		11 ^c		12 ^c	
	HMBC	COSY	HMBC	COSY	HMBC	COSY	HMBC	COSY
1	C-2,C-3,C-1',C-2',C-3'	H-2	C-2,C-3,C-1',C-2',C-3'	H-2	C-2,C-3,C-1',C-2',C-3'	H-2	C-2,C-3,C-1',C-2',C-3'	H-2
2	C-1,C-4,C-20	H-1,H-4,H-20	C-1,C-4,C-20	H-1,H-4,H-20	C-1,C-4,C-20	H-1,H-20	C-1,C-4,C-20	H-1,H-20
3								
4	C-2,C-3,C-5,C-6,C-20	H-2,H-20	C-2,C-3,C-5,C-6,C-20	H-2,H-20	C-2,C-3,C-5,C-20	a:H-4b	C-2,C-3,C-5,C-20	a:H-4b
-						b:H-4a		b:H-4a
5	0.50.90.10	11.10	0 5 0 9 0 10	11 0 11 10	0 5 0 9 0 10	11.10	0.5.0.0.10	11.10
0	0-5,0-8,0-19	H-19	C-5,C-8,C-19	H-8,H-19	C-5,C-8,C-19	H-19	C-5,C-8,C-19	H-19
8	C-6 C-7 C-9 C-10 C-19	a·H-8h H-9a H-9h	C-6 C-7 C-9 C-10 C-19	H-6 H-9a H-9b	C-6 C-7 C-9 C-10 C-19	a·H-8h H-9h	C-6 C-7 C-9 C-10 C-19	a·H-8h H-9a H-9h
0	0 0,0 7,0 7,0 10,0 17	b:H-8a,H-9a,H-9b	0 0,0 7,0 7,0 10,0 17	11 0,11 94,11 90	0 0,0 7,0 7,0 10,0 17	b:H-8a,H-9a,H-9b	0 0,0 7,0 7,0 10,0 17	b:H-8a,H-9a,H-9b
9	C-10	a:H-8a,H-8b,H-9b,H-10a	C-10	a:H-8,H-9b,H-10a	a:C-8,C-10	a:H-8b,H-9b,H-10a,H-10b	C-8,C-10	a:H-8a,H-8b,H-9b,H-10
		b:H-8a,H-8b,H-9a,		b:H-8,H-9a		b:H-8a,H-8b,H-9a,		b:H-8a,H-8b,H-9a,H-10
		H-10a,H-10b				H-10a,H-10b		
10	C-8,C-9,C-11,C-12,C-18	a:H-9a,H-9b,H-10b	C-8,C-11,C-12,C-18	a:H-9a,H-10b	a:C-9	a:H-9a,H-9b,H-10b	C-8,C-12	a:H-9a,H-9b
		b:H-9b,H-10a		b:H-10a	b:C-9,C-11,C-12	b:H-9a,H-9b,H-10a		b:H-9a,H-9b
11								
12	C 11 C 12 C 14 C 15		C 12 C 14 C 15	TT 14	C 12 C 14 C 15	11.14	C 12 C 14 C 15	TT 14
15	C-11,C-12,C-14,C-15	a:H-130,H-14 b:H 13a H 14	C-12,C-14,C-15	H-14	C-12,C-14,C-15	H-14	C-12,C-14,C-15	H-14
14	C-17	H-13a H-13b	C-16 C-17	H-13a H-13b	C-12 C-15	H-13	C-12 C-13 C-15 C-16 C-17	H-13
15	0-17	11-150,11-150	C-10,C-17	11-150,11-150	0-12,0-15	11-15	C-12,C-15,C-15,C-10,C-17	11-15
16	C-14.C-15.C-17		C-14.C-15.C-17		C-14.C-15.C-17		C-14.C-15.C-17	
17	C-14,C-15,C-16		C-14,C-15,C-16		C-14,C-15,C-16		C-14,C-15,C-16	
18	C-10,C-11,C-12		C-10,C-11,C-12		C-10,C-11,C-12		C-10,C-11,C-12	
19	C-6,C-7,C-8	H-6	C-6,C-7,C-8	H-6	C-6,C-7,C-8	H-6	C-6,C-7,C-8	H-6
20	C-2,C-3,C-4	H-2,H-4	C-2,C-3,C-4	H-2,H-4	C-2,C-3,C-4	H-2	C-2,C-3,C-4	H-2
1'								
2'								
3'	C-1,C-1',C-4',C-5'		C-1,C-1',C-4',C-5'		C-1,C-1',C-4',C-5'	H-5'	C-1,C-1',C-5'	H-5'
4					012022	11.27		11.2
5	$C-1^{\circ}, C-3^{\circ}, C-4^{\circ}, 6^{\circ}-CH_3$		C-1,C-3,C-4,6,-CH ₃		C-1 [*] ,C-3 [*]	H-3	C-1',C-3',C-4',6'-CH ₃	H-3
0 6' CH.	C 1' C 5' C 6'		C 1' C 5' C 6'		C 1' C 5' C 6'		$C \downarrow C 5 C 6$	
0 -CH3	C_{-1}^{-1} , C_{-5}^{-0} , C_{-0}^{-1}		C_{-1}^{-1} , C_{-5}^{-0} , C_{-0}^{-1}		C-1',C-5',C-0		$C_{-1}^{-1}, C_{-3}^{-0}, C_{-0}^{-0}$	
11-OH			C 1		C-11			
15-OH					C-17			
4'-OH					C-3'.C-5'			
· · · ·		600) (11						

Table T2. HMBC and COSY correlations observed for compounds 5, 6, 11 and 12

a) Recorded in CD₃OD, 600 MHz
b) Recorded in CD₃OD, 500 MHz
c) Recorded in CDCl₃, 500 MHz

Position	Usneoidone Z ^a		11 ^{b,c}		Usneoidone E ^a		12 ^{c,d}	
	δ _C	$\delta_{\rm H}$, m (<i>J</i> in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$, m (J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$, m (J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$, m (J in Hz)
1	27.62, CH ₂	3.37, d (6.8)	27.3, CH ₂	3.41, dd (16.4, 7.5)	28.18, CH ₂	3.39, d (7.3)	27.6, CH ₂	3.41, dd (15.7, 7.3)
				3.33, dd (16.4, 7.5)				3.37, dd (15.7, 6.8)
2	127.62, CH	5.34, t (6.8)	127.4, CH	5.34, br t (7.8)	128.01, CH	5.42, t (7.3)	127.6, CH	5.42, br t (7.3)
3	131.03, C		131.2, C		130.63, C		131.1, C	
4	58.40, CH ₂	3.12, s	54.6, CH ₂	3.24, d (15.9)	55.29, CH ₂	3.16, s	55.1, CH ₂	3.19, d (15.7)
				3.10, d (15.9)				3.15, d (15.7)
5	200.07, C		200.3, C		200.41, C		200.8, C	
6	123.96, CH	6.09, s	124.0, CH	6.09, <i>br</i> s	122.90, CH	6.12, s	123.6, CH	6.11, <i>br</i> s
7	160.41, C		160.7, C		158.84, C		158.0, C	
8	34.45, CH ₂		34.5, CH ₂	2.67, ddd (11.2, 11.2, 4,4)	40.93, CH ₂	2.0-2.2	40.5, CH ₂	2.18, m
				2.09, ddd (11.2, 11.2, 5.9)				2.00, m
9	22.82, CH ₂		22.9, CH ₂	1.59, m	21.16, CH ₂		20.8, CH ₂	1.64, m
				1.09, m				1.09, m
10	38.61, CH ₂		38.5, CH ₂	1.95, ddd (14.3, 11.2, 3.9)	38.10, CH ₂	1.6-1.8	37.3, CH ₂	1.71, m
				1.86, m				
11	78.59, C		78.6, C		78.25, C		78.3, C	
12	203.27, C		203.2, C		202.93, C		202.6, C	
13	119.33, CH	6.86, d (15.6)	119.1, CH	6.88, d (15.2)	118.41, CH	6.60, d (15.1)	117.8 CH	6.58, d (15.2)
14	155.75, CH	7.16, d (15.6)	155.8, CH	7.15, d (15.2)	156.26, CH	7.20, d (15.1)	156.4, CH	7.20, d (15.2)
15	71.41, C		71.6, C		71.20, C		71.6, C	
16	28.50, CH ₃	1.40, s	29.5°, CH ₃	1.356, s	29.30, CH ₃	1.44, s	$29.3^{\rm f}, {\rm CH}_3$	1.45, s
17	29.52, CH ₃	1.36, s	28.3°, CH ₃	1.40, s	29.30, CH ₃	1.40, s	28.9 ^t , CH ₃	1.40, s
18	26.13, CH ₃	1.36, s	26.3, CH ₃	1.361, s	25.10, CH ₃	1.36, s	25.3, CH ₃	1.36, s
19	25.42, CH ₃	1.85, s	25.5, CH ₃	1.85, d (1.5)	19.27, CH ₃	2.00, s	19.4 CH ₃	1.99, d (1.2)
20	16.60, CH ₃	1.67, s	16.5, CH ₃	1.65, <i>br</i> s	16.55, CH ₃	1.70, s	16.6, CH ₃	1.70, <i>br</i> s
1'	149.96, C		149.6, C		149.83, C		149.8, C	
2'	134.20, C		133.6, C		134.44, C		134.2, C	
3'	113.66, CH	6.63, d (2.9)	113.4, CH	6.65, d (2.9)	114.04, CH	6.57, d (2.3)	113.5, CH	6.56, d (2.9)
4'	152.48, C		152.6, C		152.44, C		152.3, C	
5'	115.57, CH	6.54, d (2.9)	115.4, CH	6.54, d (2.9)	115.72, CH	6.53, d (2.3)	115.5, CH	6.52, d (2.9)
6'	131.94, C		131.9, C		131.74, C		131.9, C	
6'-CH ₃	16.16, CH ₃	2.24, s	16.2, CH ₃	2.25, s	16.21, CH ₃	2.24, s	16.2, CH ₃	2.25, s
-OCH ₃	60.35, CH ₃	3.68, s	60.3, CH ₃	3.68, s	60.41, CH ₃	3.68, s	60.4, CH ₃	3.68, s
11-OH				4.18, s				4.13, s
15-OH				4.08, <i>br</i> s				2.91, <i>br</i> s
4'-OH				7.23, <i>br</i> s				6.68, <i>br</i> s

Table T3. NMR data reported for usneoidones and NMR data of compounds 11 and 12

a) Data from Urones, J. G.; Basabe, P.; Marcos, I. S.; Pineda, J.; Lithgow, A. M.; Moro, R. F.; Brito Palma, F. M. S.; Araújo, M. E. M.; Grávalos, M. D. G. a) Data noni crones, 5: 0., Dasace, 1., Marcos, 1. S., Fineda, S., Enigow *Phytochemistry* 1992, *31*, 179-182.
b) Recorded in CDCl₃; ¹H at 500 MHz, ¹³C at 125 MHz.
c) Assignments aided by COSY, HSQC, HMBC, and NOESY experiments.
d) Recorded in CDCl₃; ¹H at 500 MHz, ¹³C at 150 MHz.

e,f) Values with the same superscript in the same column can be interchanged.