Supporting Informations

A Copper Catalyzed Synthesis of 3-Aroylindoles via a sp³ C-H Bond Activation Followed by C-C and C-O Bond Formation

Anupal Gogoi, Srimanta Guin, Saroj Kumar Rout and Bhisma K. Patel*

Department of Chemistry, Indian Institute of Technology Guwahati

Email: patel@iitg.ernet.in

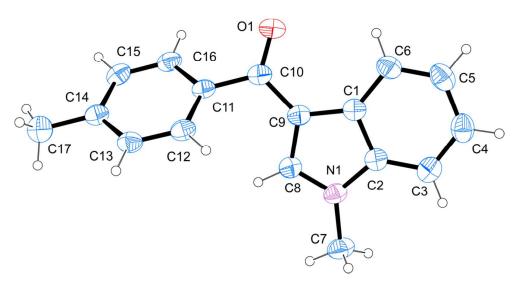
List of Contents

1.	General information	SI
2.	Crystallographic Description	S1 - S2
3.	General Procedure and Screening Condition	S3
4.	Spectral data of all compounds	S4 - S10
5.	Spectra of all compounds	S11 - S29

General information:

All the reagents were commercial grade and used without purification. Organic extracts were dried over anhydrous sodium sulphate. Solvents were removed in a rotary evaporator under reduced pressure. Silica gel (60-120 mesh size) was used for the column chromatography. Reactions were monitored by TLC on silica gel 60 F₂₅₄ (0.25mm). NMR spectra were recorded in CDCl₃ with tetramethylsilane as the internal standard for ¹H NMR (300 MHz and 400 MHz) CDCl₃ solvent as the internal standard for ¹³C NMR (75 MHz and 100 MHz). HRMS spectra were recorded using ESI mode. IR spectra were recorded in KBr or neat.

Crystallographic Description:


Crystal data were collected with Bruker Smart Apex-II CCD diffractometer using graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å) at 298 K. Cell parameters were retrieved using SMART ^[a] software and refined with SAINT ^[a] on all observed reflections. Data reduction was performed with the SAINT software and corrected for Lorentz and polarization effects. Absorption corrections were applied with the program SADABS^[b]. The structure was solved by direct methods implemented in SHELX-97^[c] program and refined by full-matrix least-squares methods on F2. All non-hydrogen atomic positions were located in difference

Fourier maps and refined anisotropically. The hydrogen atoms were placed in their geometrically generated positions. Colourless crystals were isolated in rectangular shape from methanol at room temperature.

- a. SMART V 4.043 Software for the CCD Detector System; Siemens Analytical Instruments Division: Madison, WI, 1995.
- SAINT V 4.035 Software for the CCD Detector System; Siemens Analytical Instruments Division: Madison, WI, 1995.
- c. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.

Crystallographic description of (1-Methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (1'b):

C₁₇H₁₅NO, crystal dimensions 0.41 x 0.35 x 0.26 mm, $M_r = 249.30$, Monoclinic, space group P21/n, a = 11.1536(9), b = 7.2700(6), c = 16.7473(14) Å, $\alpha = 90^{\circ}$, $\beta = 101.080(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 1332.67(19) Å³, Z = 4, $\rho_{calcd} = 1.242$ mg/m³, $\mu = 0.077$ mm⁻¹, F(000) = 528.0, reflection collected / unique = 3304 / 1785, refinement method = full-matrix least-squares on F^2 , final R indices [$I > 2\sigma(I)$]: $R_1 = 0.0493$, $wR_2 = 0.1117$, R indices (all data): $R_1 = 0.0872$, $wR_2 = 0.1201$, goodness of fit = 0.997. CCDC-917715 for (1-Methyl-1H-indol-3-yl)(p-tolyl)methanone (**1'b**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

(1-Methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (1'b)

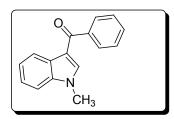

General procedure for the synthesis of (1-Methyl-1H-indol-3-yl)(phenyl)methanone (1'a): To a solution of N, N-dimethyl-2-(phenylethynyl) aniline (1a) (110.65 mg, 0.5 mmol) in DMSO (2 mL) was added CuBr (7.17 mg, 0.05 mmol), followed by TBHP 70 % wt in water (215 μ l, 1.5 mmol) and the resultant mixture was put into a preheated oil bath (80 °C) for 3.5 h. The resultant reaction mixture was admixed with water (5 mL) and the product was extracted with ethyl acetate (2 x 20 mL). The organic phase was dried over anhydrous sodium sulphate and concentrated in vacuo. The crude product was purified over a column of silica gel and eluted with (9:1 hexane / ethyl acetate to give (1-methyl-1H-indol-3-yl)(phenyl)methanone (1'a) (90.58 mg, 77 % yield).

Table S1. Screening of Reaction Condition

Entry	Catalyst (mol %)	Solvent	Oxidant (equiv)	Temp (°C)	Yield (%) ^a			
1	CuBr (10)	Toluene	5-6 M decane	80	45			
			solution of TBHP (1)					
2	CuBr (10)	Toluene	70% aq TBHP (1)	80	55			
3	CuBr (10)	Toluene	70% aq TBHP (2)	80	62			
4	CuBr (10)	Toluene	70% aq TBHP (3)	80	70			
5	$CuBr_2$ (10)	Toluene	70% aq TBHP (3)	80	58			
6	CuCl (10)	Toluene	70% aq TBHP (3)	80	55			
7	CuI (10)	Toluene	70% aq TBHP (3)	80	68			
8	$Cu(OAc)_2(10)$	Toluene	70% aq TBHP (3)	80	40			
9	$CuCl_2$ (10)	Toluene	70% aq TBHP (3)	80	25			
10	CuBr (5)	Toluene	70% aq TBHP (3)	80	52			
11	CuBr (10)	DMSO	70% aq TBHP (3)	80	77			
12	CuBr (10)	<i>o</i> xylene	70% aq TBHP (3)	80	66			
13	CuBr (10)	dioxane	70% aq TBHP (3)	80	62			
14	CuBr (10)	DMF	70% aq TBHP (3)	80	25			
15	CuBr (10)	THF	70% aq TBHP (3)	80	10			
16	CuBr (10)	DMSO	70% aq TBHP (3)	100	60			
17	CuBr (10)	DMSO	70% aq TBHP (3)	60	43			
18	nil	DMSO	70% aq TBHP (3)	80	0			
19	CuBr (10)	DMSO	Nil	80	0			
20	$Pd(OAc)_2$ (10)	DMSO	70% aq TBHP (3)	80	35			
21	$CoCl_2(10)$	DMSO	70% aq TBHP (3)	80	50			
22	FeCl ₃ (10)	DMSO	70% aq TBHP (3)	80	45			
^a Isolalated yield.								

Spectral Data

(1-Methyl-1*H*-indol-3-yl)(phenyl)methanone (1'a):

¹H NMR (400 MHz, CDCl₃): δ (ppm) 3.82 (s, 3H), 7.31–7.38 (m, 3H), 7.44–7.53 (m, 3H), 7.78–7.81 (m, 2H), 8.40–8.42 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 33.7, 109.8, 115.8, 122.9, 123.8, 127.4, 128.5, 128.9, 131.3,132.4, 137.7, 138.1, 141.1, 191.1; IR (KBr): 2923, 2851, 1621, 1575, 1524, 1465, 1368, 1233, 1155, 1124, 1070, 872, 746, 716 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₃NO (MH⁺) 236.1070; found 236.1065.

(1-Methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (1'b):

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.42 (s, 3H), 3.83 (s, 3H), 7.27 (d, 2H, J = 7.6 Hz), 7.31–7.35 (m, 3H), 7.52 (s, 1H), 7.72 (d, 2H, J = 8.0 Hz), 8.38–8.40 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.7, 33.7, 109.8, 115.9, 122.8, 122.9, 123.7, 127.4, 129.0, 129.1, 137.7, 137.8, 138.3, 141.7, 190.9; IR (KBr): 2925, 2851, 1731, 1619, 1523, 1465, 1369, 1230, 1123, 1070, 875, 771, 776 cm⁻¹; HRMS (ESI): calcd. for C₁₇H₁₅NO (MH⁺) 250.1226; found 250.1224.

(4-Tert-butylphenyl)(1-methyl-1*H*-indol-3-yl)methanone (1'c):

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.36 (s, 9H), 3.84 (s, 3H), 7.32–7.36 (m, 3H), 7.48 (d, 2H, J = 8.4 Hz), 7.56 (s, 1H), 7.76 (d, 2H, J = 8.4 Hz), 8.41-8.43 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 29.9, 31.4, 35.1, 109.8, 115.9, 122.8, 123.0, 123.8, 125.4, 127.5, 128.9, 137.7, 138.0, 138.3, 154.8, 190.9; IR (KBr):2963, 1689, 1612, 1524, 1464, 1367, 1268, 1235, 1185, 1125, 881, 745, 709 cm⁻¹; HRMS (ESI): calcd. for C₂₀H₂₁NO (MH⁺) 292.1696; found 292.1699.

(1-Methyl-1*H*-indol-3-yl) (4-nitrophenyl) methanone (1'd):

¹H NMR (300 MHz, CDCl₃): δ (ppm) 3.87 (s, 3H), 7.35–7.40 (m, 3H), 7.49 (s, 1H), 7.91–7.93(m, 2H), 8.30–8.32(m, 2H), 8.38–8.40 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 33.7, 109.9, 115.3, 122.6, 123.3, 123.6, 124.2, 126.8, 126.9, 127.6, 128.5, 129.4, 137.7, 138.1, 146.3, 149.1, 188.4; IR (KBr): 2915, 2853, 1734, 1592, 1381, 1244, 1172, 1076, 982, 832, 742, 716 cm⁻¹; Anal. calcd for $C_{16}H_{12}N_2O_3$: C 68.56, H 4.32, N 9.99; found C 68.52, H 4.25, N 9.90.

(1,5-Dimethyl-1*H*-indol-3-yl)(phenyl)methanone (2'a):

$$H_3C$$
 N
 CH_3

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.51 (s, 3H) 3.81 (s, 3H), 7.18 (d, 1H, J = 8.4 Hz), 7.24–7.27 (m, 1H), 7.45–7.49 (m, 3H), 7.53 (d, 1H, J = 7.6 Hz), 7.80 (d, 2H, J = 8.0 Hz), 8.257–8.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.7, 33.6, 109.4, 115.2, 122.5, 125.3, 127.5, 128.3, 128.7, 131.0, 132.5, 136.1, 138.2, 141.2, 190.9; IR (KBr): 2924, 2852, 1627, 1522, 1361, 1268, 1237, 1117, 741 cm⁻¹; HRMS (ESI): calcd. for C₁₇H₁₅NO (MH⁺) 250.1226; found 250.1221.

(1,5-Dimethyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (2'b):

$$H_3C$$
 CH_3
 CH_3

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.44 (s, 3H), 2.51 (s, 3H), 3.81 (s, 3H), 7.17 (d, 1H, J = 8.4 Hz), 7.26–7.29 (m, 3H), 7.48 (s, 1H), 7.72 (d, 2H, J = 8.0 Hz), 8.24–8.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.5, 21.6, 33.5, 109.4, 115.2, 122.4, 125.1, 127.6, 128.9, 129.0, 132.3, 136.0, 137.9, 138.3, 141.5, 190.8; IR (KBr): 3027, 2921, 1618, 1523, 1484, 1458, 1237, 1141, 1119, 1064, 845, 787, 738 cm⁻¹; HRMS (ESI): calcd. for C₁₈H₁₇NO (MH⁺) 264.1383; found 264.1381.

(4-Tert-butylphenyl)(1,5-Dimethyl-1*H*-indol-3-yl)methanone (2'c):

$$H_3C$$
 N
 CH_3

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.37 (s, 9H), 2.51(s, 3H), 3.81 (s, 3H), 7.17 (d, 1H, J = 9.6 Hz), 7.25 (d, 1H, J = 8.4 Hz), 7.48–7.51 (m, 3H), 7.76 (d, 2H, J = 8.4 Hz), 8.28 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.7, 31.4, 33.6, 35.1, 109.4, 115.3, 122.6, 125.2, 125.3, 127.6, 128.7, 132.4, 136.1, 138.1, 138.4, 154.5, 190.8; IR (KBr): 2961, 2852, 1621, 1524, 1461, 1363, 1237, 1190, 1144, 1106, 1064, 848, 831, 709 cm⁻¹; HRMS (ESI): calcd. for C₂₁H₂₃NO (MH⁺) 306.1852; found 306.1862.

(1,5,6-Trimethy-l*H*-indol-3-yl)(phenyl)methanone (3'a):

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.39 (s, 3H), 2.40 (s, 3H), 3.78 (s, 3H), 7.12 (s, 1H), 7.40 (s, 1H), 7.43–7.51 (m, 3H), 7.77–7.79 (m, 2H), 8.19 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 20.3, 20.8, 33.6, 110.1, 115.3, 122.9, 125.6, 128.3, 128.8, 131.0, 131.9, 133.0, 136.7, 137.6, 141.3, 191.0; IR (KBr): 2928, 2851, 1624, 1523, 1465, 1363, 1262, 1240, 1119, 1064, 982, 842, 739, 716 cm⁻¹; HRMS (ESI): calcd. for C₁₈H₁₇NO (MH⁺) 264.1383; found 264.1376.

(1,5,6-Trimethy-l*H*-indol-3-yl)(*p*-tolyl)methanone (3'b):

$$O$$
 CH_3
 H_3C
 CH_3

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.41 (s, 3H), 2.42 (s, 3H), 2.44 (s, 3H), 3.80 (s, 3H), 7.14 (s, 1H), 7.27 (d, 2H, J = 10 Hz), 7.43 (s, 1H), 7.72 (d, 2H, J = 8.0 Hz), 8.20 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 20.2, 20.7, 21.6, 33.5, 110.0, 115.2, 122.7, 125.5, 128.8, 128.9, 131.6, 132.8, 136.5, 137.3, 138.4, 141.3, 190.7; IR (KBr): 2923, 2857, 1618, 1525, 1470, 1363, 1256, 1240, 1177, 1116, 982, 836, 768 cm⁻¹; HRMS (ESI): calcd. for C₁₉H₁₉NO (MH⁺) 278.1539; found 278.1530.

(4-Tert-butylphenyl)(1,5,6-trimethyl-1*H*-indol-3-yl)methanone (3'c):

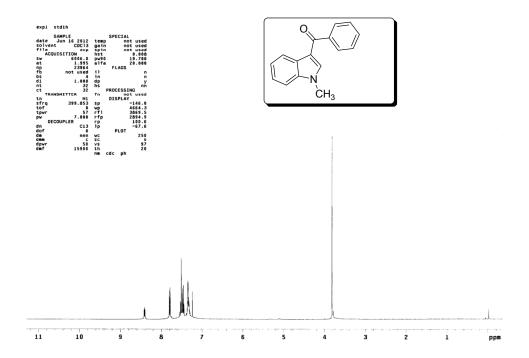
$$H_3C$$
 H_3C
 CH_3

¹H NMR (400 MHz, CDCl₃): δ (ppm)1.37 (s, 9H), 2.41 (s, 3H), 2.42 (s, 3H), 3.79 (s, 3H), 7.14 (s, 1H), 7.45 (s, 1H), 7.49 (d, 2H, J = 8.4 Hz), 7.76 (d, 2H, J = 8.4 Hz), 8.23 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 20.2, 20.8, 31.3, 33.5, 34.9, 110.0, 115.1, 122.8, 125.2, 125.5, 128.6, 131.6, 132.8, 136.5, 137.4, 138.4, 154.4, 190.7; IR (KBr): 2962, 2847, 1620, 1519, 1462, 1356, 1252, 1235, 1170, 1112, 978, 834, 765 cm⁻¹; Anal. calcd for C₂₂H₂₅NO: C 82.72, H 7.89, N 4.38; found C 82.65, H 7.95, N 4.30.

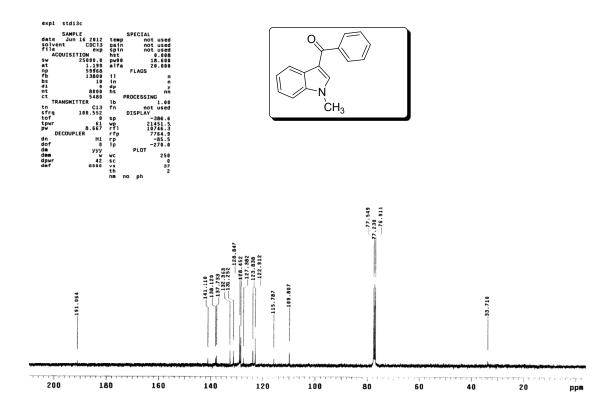
(5-Bromo-1-methyl-1*H*-indol-3-yl)(phenyl)methanone (4'a):

¹H NMR (400 MHz, CDCl₃): δ (ppm) 3.82 (s, 3H), 7.22 (d, 1H, J = 8.8 Hz), 7.42 (d, 1H J = 8.8 Hz), 7.45–7.50 (m, 3H), 7.53 (d, 1H, J = 7.2Hz), 7.77 (d, 2H, J = 8.4 Hz), 8.58 (d, 1H, J = 1.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 33.9, 111.3, 115.2, 116.6, 125.4, 126.8, 128.5, 128.7, 128.9, 131.5, 136.4, 138.6, 140.7, 190.6; IR (KBr): 3055, 2928, 1612, 1575, 1527, 1470, 1446, 1365, 1235, 1190, 1079, 1023, 803, 717, 699, 670 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₂BrNO (MH⁺) 314.0175; found 314.0179.

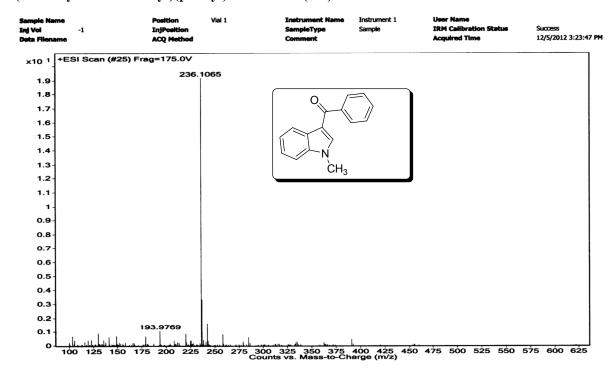
(5-Bromo-1-methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (4'b):

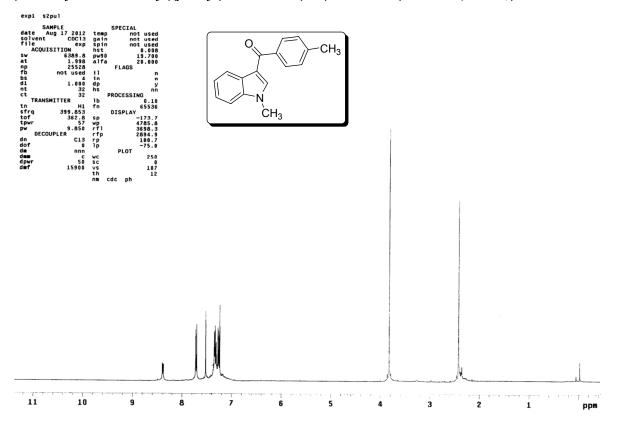

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.42 (s, 3H), 3.81 (s, 3H), 7.21 (d, 1H, J = 8.4 Hz), 7.27 (d, 2H, J = 8.0 Hz), 7.40–7.43 (m, 1H), 7.50 (s, 1H), 7.69 (d, 2H, J = 8.4 Hz), 8.57 (d, 1H, J = 1.6Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.6, 33.8, 111.2, 115.1, 116.3, 125.3, 126.5, 128.8, 129.1, 129.4, 136.2, 137.8, 138.3, 141.9, 190.3; IR (KBr): 2924, 2857, 1616, 1602, 1523, 1470, 1446, 1365, 1235, 1179, 1079, 1034, 883, 806, 763, 740 cm⁻¹; HRMS (ESI): calcd. for C₁₇H₁₄BrNO (MH⁺) 328.0332; found 328.0338.

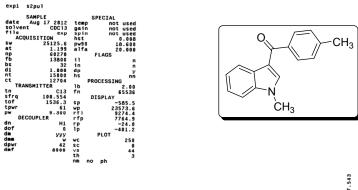
(4-Tert-butylphenyl)(5-bromo-1-methyl-1*H*-indol-3-yl)methanone (4'c):

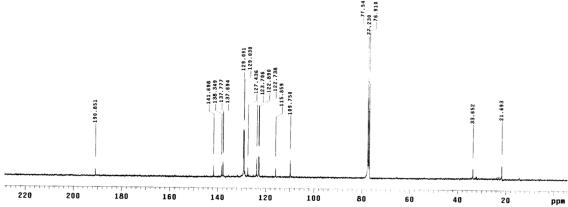

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.36 (s, 9H), 3.81 (s, 3H), 7.21 (d, 1H J = 8.4 Hz), 7.40–7.43 (m, 1H), 7.48 (d, 2H, J = 8.4 Hz), 7.53 (s, 1H), 7.73 (d, 2H, J = 8.4 Hz), 8.59 (d, 1H, J = 2.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 31.4, 33.9, 35.2, 111.2, 115.3, 116.6, 125.5, 126.7, 128.6, 128.8, 130.3, 133.8, 136.4, 137.9, 138.5, 155.1, 190.5; IR (KBr): 2961, 2853, 1626, 1524, 1463, 1364, 1267, 1235, 1105, 886, 798, 741, 709 cm⁻¹; HRMS (ESI): calcd. for C₂₀H₂₀BrNO (MH⁺) 370.0801; found 370.0809.

SPECTRA

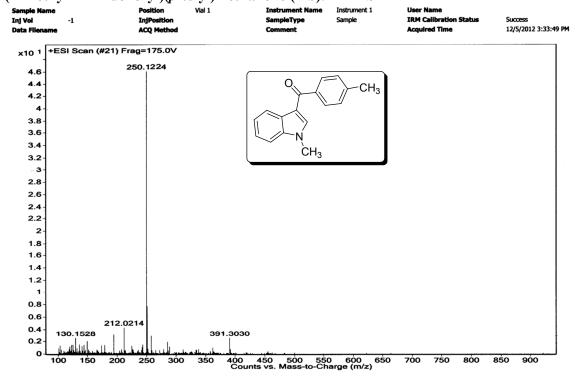

(1-Methyl-1*H*-indol-3-yl)(phenyl)methanone (1'a): ¹H NMR (400 MHz, CDCl₃)


(1-Methyl-1*H*-indol-3-yl)(phenyl)methanone (1'a): ¹³C NMR (100 MHz, CDCl₃)

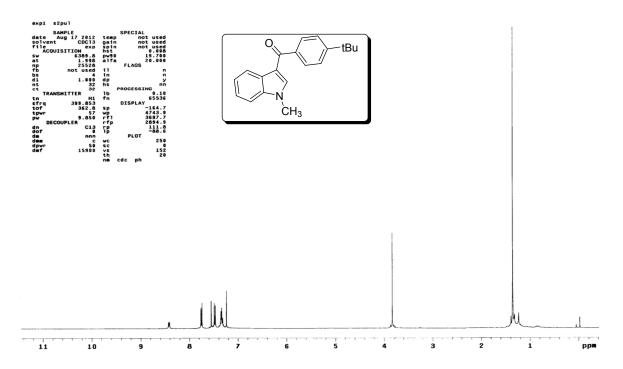

(1-Methyl-1*H*-indol-3-yl)(phenyl)methanone (1'a): HRMS

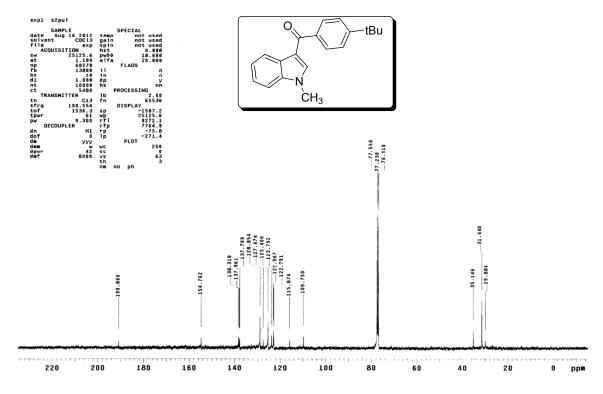


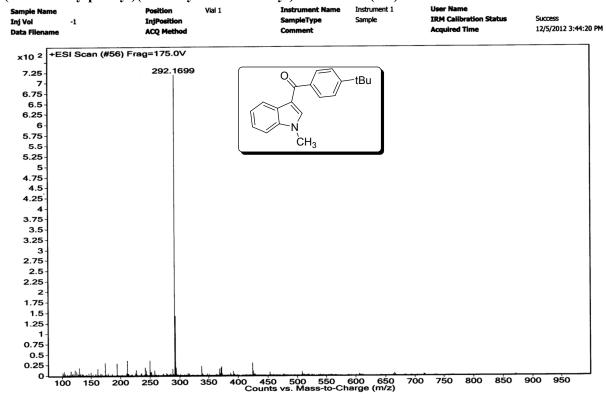
(1-Methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (1'b): ¹H NMR (400 MHz, CDCl₃)

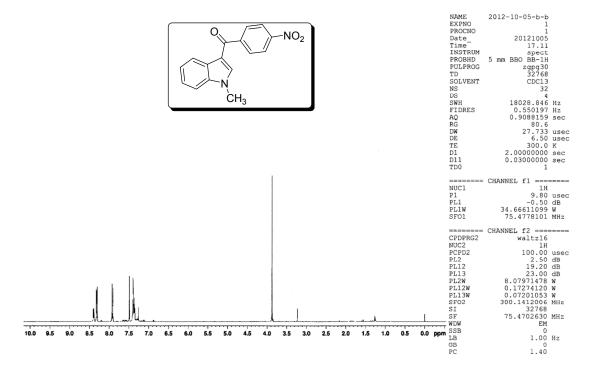


(1-Methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (1'b): ¹³C NMR (100 MHz, CDCl₃)

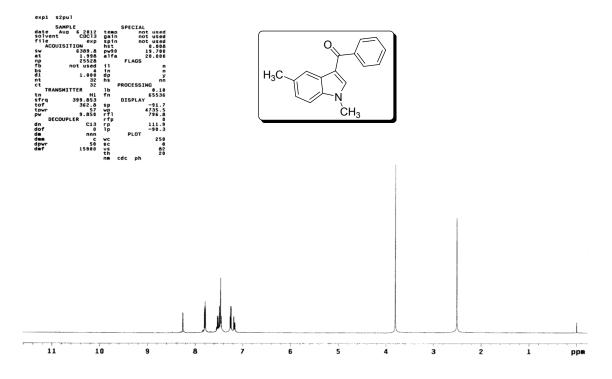


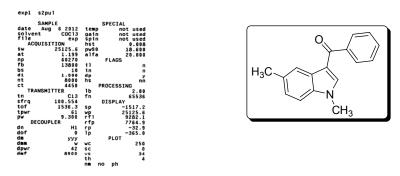

(1-Methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (1'b): HRMS

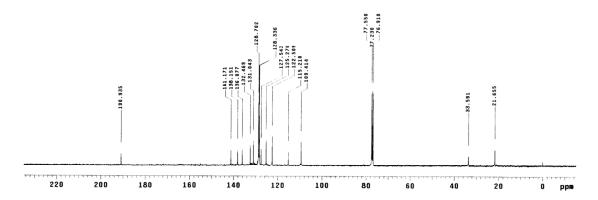

(4-Tert-butylphenyl)(1-methyl-1H-indol-3-yl)methanone (1'c): ¹H NMR (400 MHz, CDCl₃)


(4-Tert-butylphenyl)(1-methyl-1H-indol-3-yl)methanone (1'c): $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃)

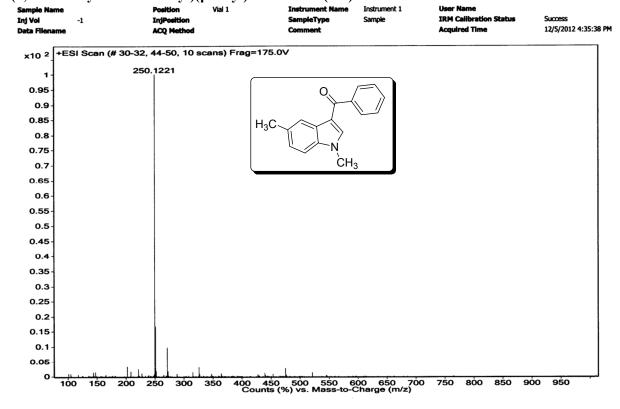
(4-Tert-butylphenyl)(1-methyl-1*H*-indol-3-yl)methanone (1'c): HRMS


(1-Methyl-1*H*-indol-3-yl)(4-nitrophenyl) methanone (1'd): ¹H NMR (300 MHz, CDCl₃)

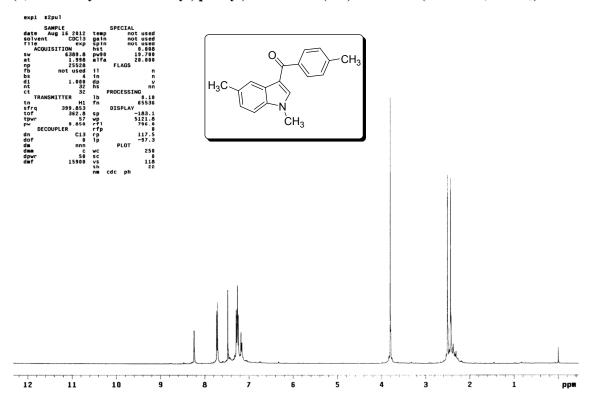

(1-Methyl-1*H*-indol-3-yl)(4-nitrophenyl) methanone (1'd): ¹³C NMR (75 MHz, CDCl₃)

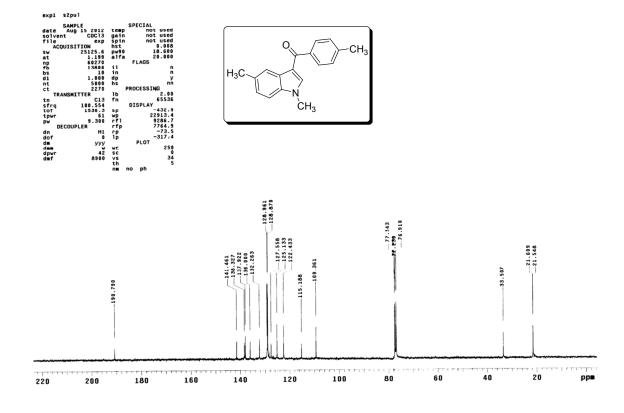


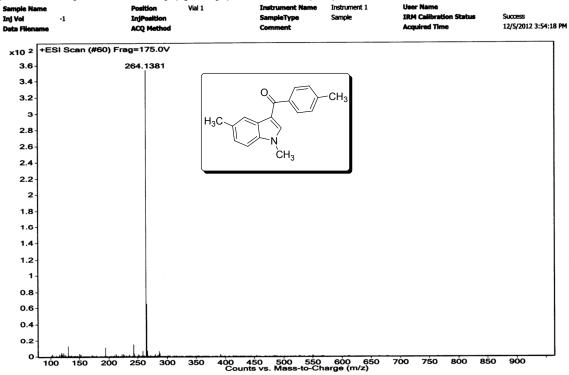
(1,5-Dimethyl-1*H*-indol-3-yl)(phenyl)methanone (2'a): ¹H NMR (400 MHz, CDCl₃)

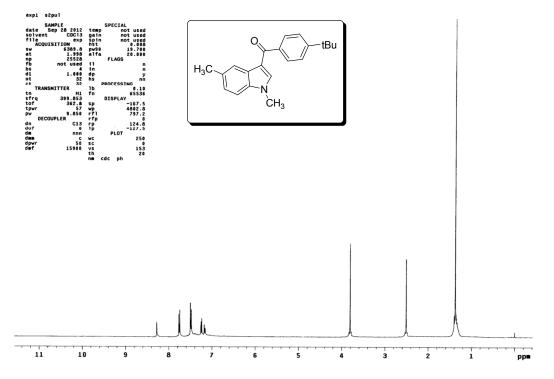


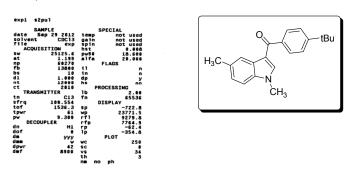
(1,5-Dimethyl-1*H*-indol-3-yl)(phenyl)methanone (2'a): ¹³C NMR (100 MHz, CDCl₃)

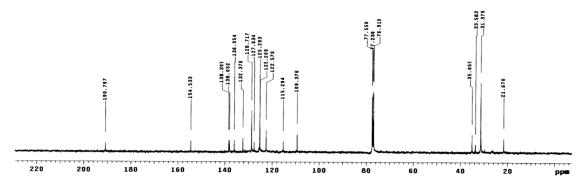



(1,5-Dimethyl-1*H*-indol-3-yl)(phenyl)methanone (2'a): HRMS

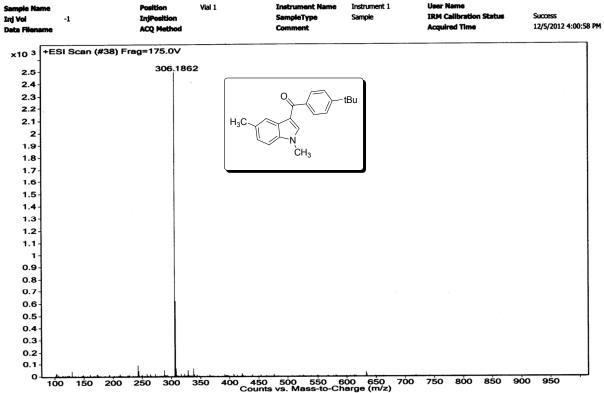

(1,5-Dimethyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (2'b): ¹H NMR (400 MHz, CDCl₃)


(1,5-Dimethyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (2'b): ¹³C NMR (100 MHz, CDCl₃)

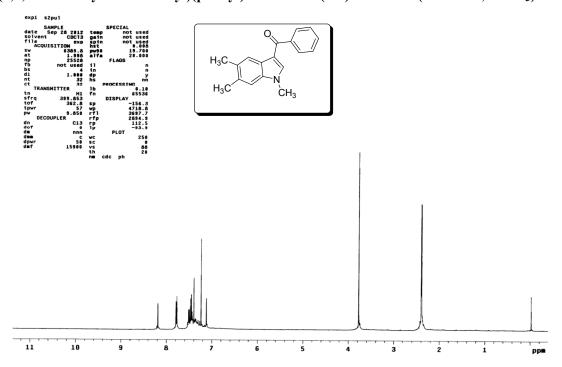

(1,5-Dimethyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (2'b): HRMS

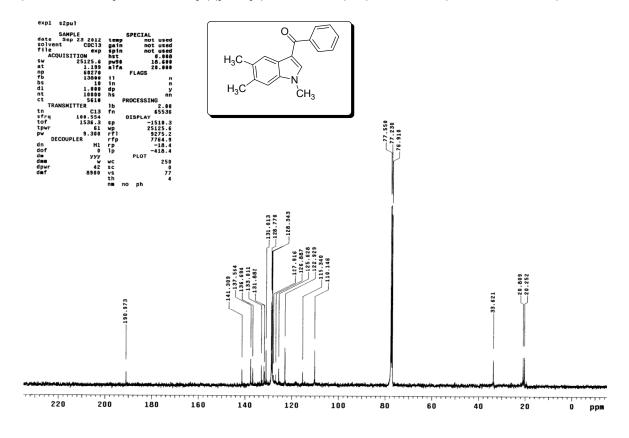


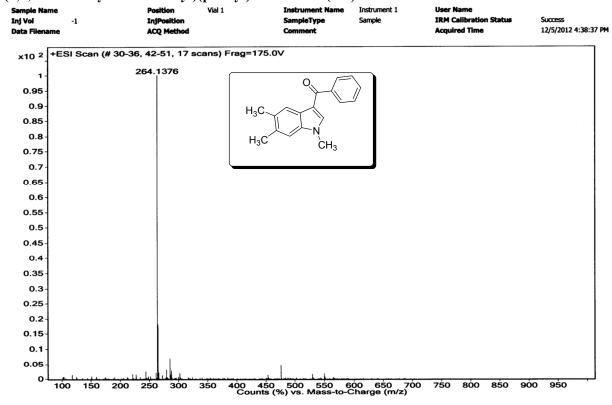
(4-Tert-butylphenyl)(1,5-Dimethyl-1*H*-indol-3-yl)methanone (2'c): ¹H NMR (400 MHz, CDCl₃)



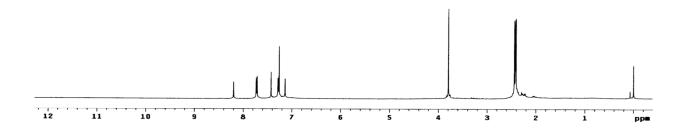
(4-Tert-butylphenyl)(1,5-Dimethyl-1H-indol-3-yl)methanone (2°c): 13 C NMR (100 MHz, CDCl₃)



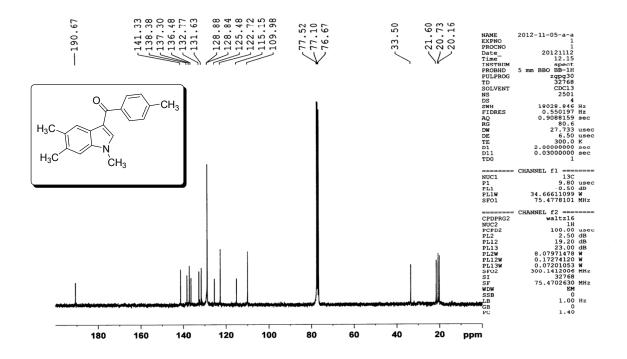

(4-Tert-butylphenyl)(1,5-Dimethyl-1*H*-indol-3-yl)methanone (2'c): HRMS


(1,5,6-Trimethy-l*H*-indol-3-yl)(phenyl)methanone (3'a): ¹H NMR (400 MHz, CDCl₃)

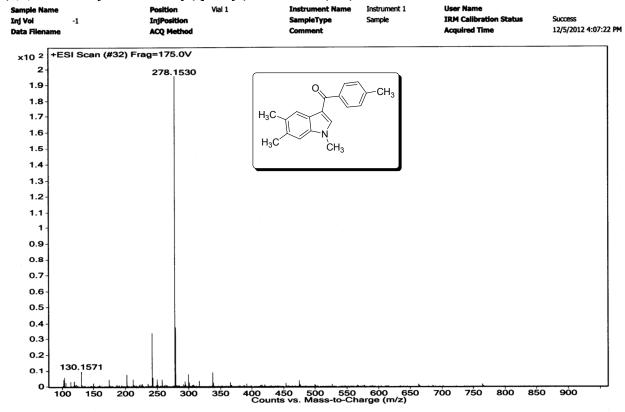
(1,5,6-Trimethy-lH-indol-3-yl)(phenyl)methanone (3'a): ¹³C NMR (100 MHz, CDCl₃)

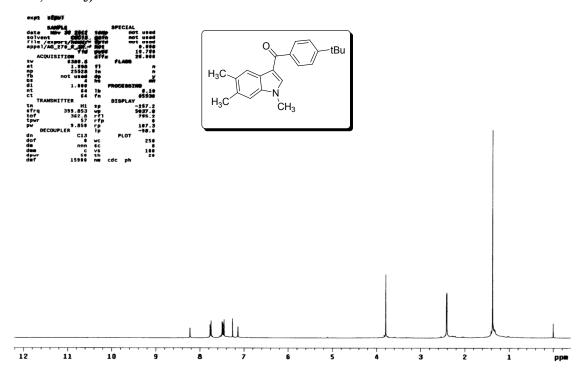


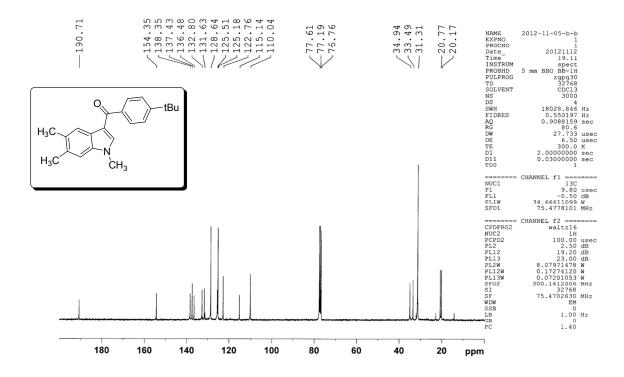
(1,5,6-Trimethy-lH-indol-3-yl)(phenyl)methanone (3'a): HRMS

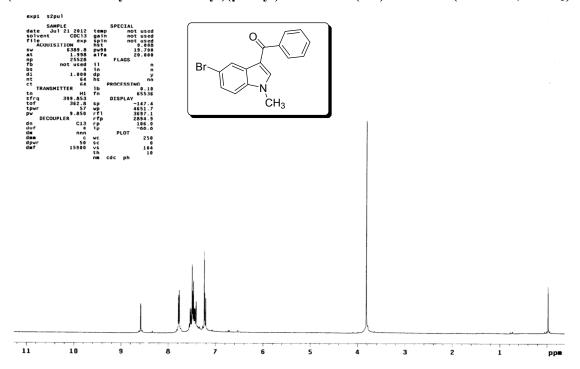


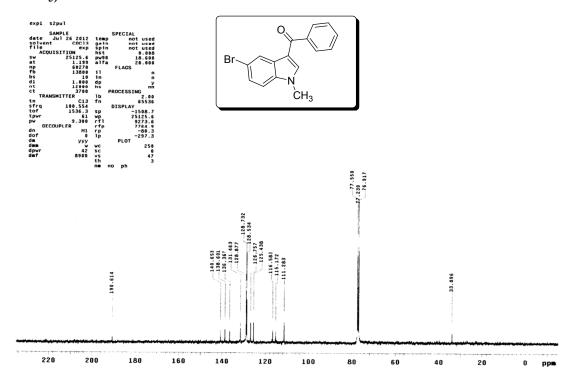
(1,5,6-Trimethy-l*H*-indol-3-yl)(*p*-tolyl)methanone (3'b): ¹H NMR (400 MHz, CDCl₃)

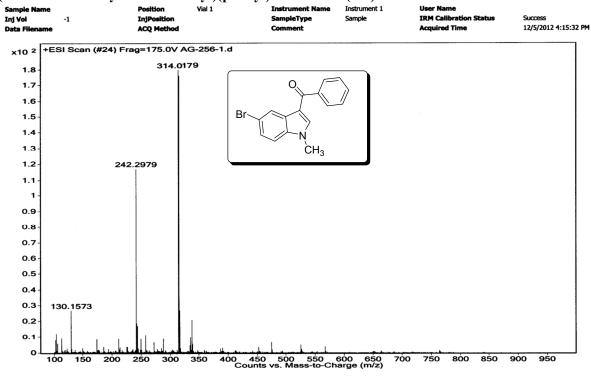


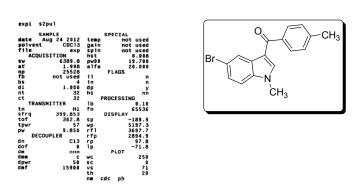

(1,5,6-Trimethy-l*H*-indol-3-yl)(*p*-tolyl)methanone (3'b): ¹³C NMR (75 MHz, CDCl₃)

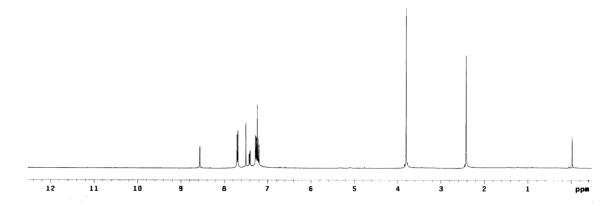

(1,5,6-Trimethy-I*H*-indol-3-yl)(*p*-tolyl)methanone (3'b): HRMS


(4-Tert-butylphenyl)(1,5,6-trimethyl-1H-indol-3-yl)methanone (3'c): ¹H NMR (400 MHz, CDCl₃)

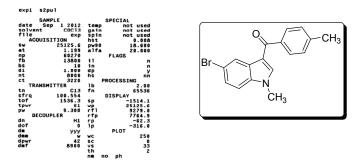

(4-Tert-butylphenyl)(1,5,6-trimethyl-1*H*-indol-3-yl)methanone (3'c): ¹³C NMR (75 MHz, CDCl₃)

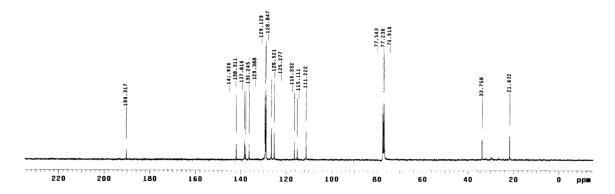

(5-Bromo-1-methyl-1*H*-indol-3-yl)(phenyl)methanone (4'a): ¹H NMR (400 MHz, CDCl₃)

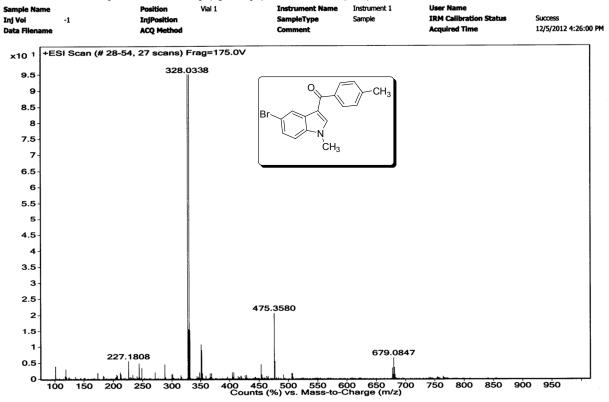

(5-Bromo-1-methyl-1H-indol-3-yl)(phenyl)methanone (4'a): $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃)



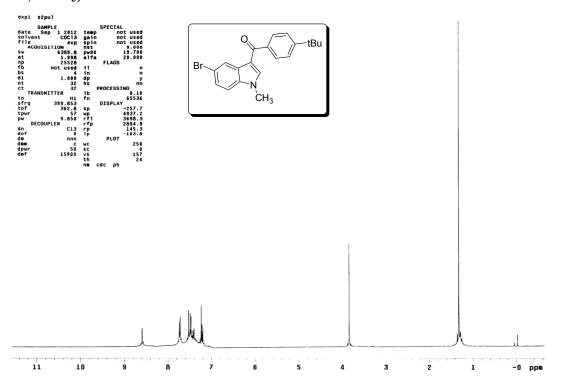
(5-Bromo-1-methyl-1*H*-indol-3-yl)(phenyl)methanone (4'a): HRMS

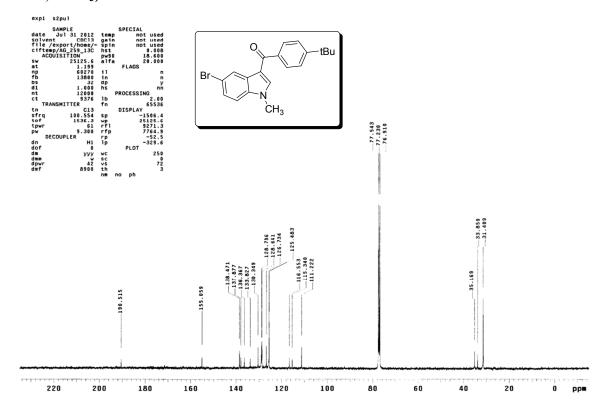


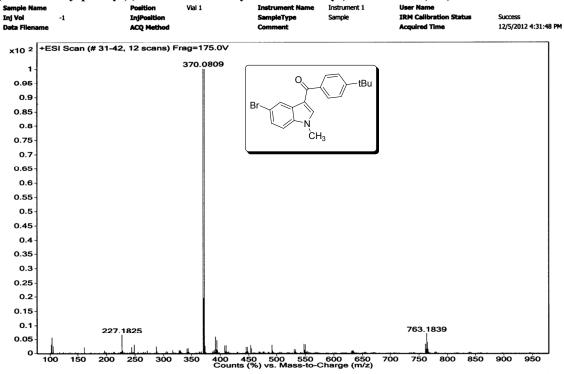

(5-Bromo-1-methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (4'b): ¹H NMR (400 MHz, CDCl₃)



(5-Bromo-1-methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (4'b): ¹³C NMR (100 MHz, CDCl₃)




(5-Bromo-1-methyl-1*H*-indol-3-yl)(*p*-tolyl)methanone (4'b): HRMS


(4-Tert-butylphenyl) (5-bromo-1-methyl-1 $\!H\!$ -indol-3-yl) methanone (4'c): $^1\!H$ NMR (400 MHz, CDCl₃)

(4-Tert-butylphenyl) (5-bromo-1-methyl-1H-indol-3-yl) methanone (4'c): $^{13}{\rm C~NMR}$ (100 MHz, CDCl₃)

(4-Tert-butylphenyl)(5-bromo-1-methyl-1*H*-indol-3-yl)methanone (4'c): HRMS

