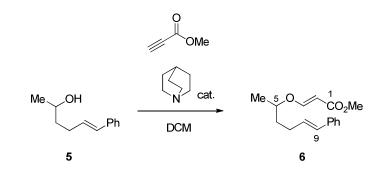
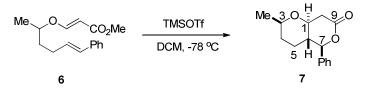
Total Synthesis of (-)-Blepharocalyxin D and Analogues


Benjamin D. Cons, Adam J. Bunt, Christopher D. Bailey and Christine L. Willis* School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK Chris.willis@bristol.ac.uk

General Experimental

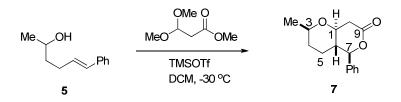
All commercially available compounds were used without further purification. Anhydrous solvents were obtained by passing through a modified Grubbs system of alumina columns, manufactured by Anhydrous Engineering. Routine monitoring of reactions was performed using precoated Merck-Keiselgel 60 F_{254} aluminium backed TLC plates. The spots were visualised by UV_{254} light and/or dipping the plates in potassium permanganate, phosphomolybdic acid or vanillin solutions followed by heating. All air or moisture sensitive reactions were carried out in flame-dried glassware under a positive pressure of nitrogen using standard syringe/septa techniques. Flash column chromatography¹ was performed using silica gel (obtained from Fluorochem Ltd. or Sigma-Aldrich) as the adsorbent. Petroleum ether is of the 40-60 °C boiling point range.

Melting points were determined on an electrothermal apparatus and are uncorrected. Infrared spectra were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer in the solid or liquid state. ¹H and ¹³C-NMR spectra were recorded using either Jeol ECP 400 (¹H: 400 MHz; ¹³C: 101 MHz); a Jeol Lambda 300 (¹H: 300 MHz; ¹³C: 76 MHz); a Varian 400 (¹H: 400 MHz; ¹³C: 101 MHz). ¹H and ¹³C NMR spectra were referenced to the residual *protio* solvent. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) are in Hertz (Hz) and are reported to the nearest half integer. DEPT 135, COSY and HSQC NMR spectra were recorded on a VG Autospec mass spectrometer. Electrospray (ESI) mass spectra were recorded on a VG Quattro mass spectrometer. Methane was the ionisation gas used for chemical ionisation.

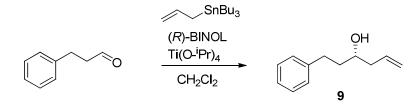

Experimental Procedures

Methyl (2E, 8E)-5-methyl-9-phenyl-4-oxanona-2,8-dienoate 6

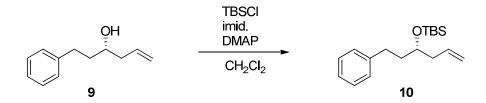
Methyl propiolate (0.23 mL, 2.59 mmol, 1.2 eq.) in dry DCM (20 mL) was added dropwise over a period of 3 h to a solution of alcohol **5** (380 mg, 2.16 mmol, 1.0 eq.) and quinuclidine (9 mg, cat.) in dry DCM (15 mL) at room temperature under nitrogen. Upon complete addition the reaction was stirred for 5 h before addition of a 5% v/v aqueous solution of acetic acid (5 mL). The solution was stirred vigorously for 0.5 h and the layers were separated. The aqueous phase was extracted with DCM (2 x 25 mL). The combined organic phases were washed with a saturated aqueous solution of NaHCO₃ (30 mL), dried over MgSO₄ and the solvent was removed *in vacuo*. Purification by flash column chromatography eluting with 5% EtOAc in petrol gave *enol-ether* **6** (330 mg, 59%); v_{max} (neat)/cm⁻¹ 2980, 2949, 1737, 1241, 1211, 1132, 1046, 750; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.31 (3H, d, *J* 6.5, CH₃), 1.70 (1H, dddd, *J* 14.0, 9.0, 7.0, 5.0, 6-*H*H), 1.86 (1H, m, 6-H*H*), 2.22-2.36 (2H, m, 7-H₂), 3.71 (3H, s, OCH₃), 4.12 (1H, m, 5-H), 5.27 (1H, d, *J* 12.5, 2-H), 6.18 (1H, dt, *J* 15.5 and 7.0, 8-H), 6.41 (1H, br d, *J* 15.5, 9-H), 7.19-7.24 (1H, m, Ar-H), 7.28-7.36 (4H, m, Ar-H), 7.56 (1H, d, *J* 12.5, 3-H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 20.0 (CH₃), 28.7 (C-7), 35.8 (C-6), 51.0 (OCH₃), 79.0 (C-5), 96.9 (C-2), 126.0 (2 x C-Ar), 127.1 (C-Ar), 128.5 (2 x C-Ar), 129.1 (C-8), 130.8 (C-9), 137.4 (C-Ar), 162.1 (C-3), 168.5 (C-1); Found (CI) 261.1495 [MH]⁺ (C₁₆H₂₁O₃ requires 261.490)


(±)-(1 α , 6 β)-3 β -Methyl-7 β -phenyl-2,8-dioxabicyclo[4.4.0]decan-9-one 7

Method 1


TMSOTf (0.42 mL, 2.30 mmol, 2.0 eq.) was added dropwise to a stirred solution of enol-ether **6** (300 mg, 1.15 mmol, 1.0 eq.) in dry DCM (20 mL) at -78 °C under argon. After 1.5 h the reaction was quenched with saturated aqueous NaHCO₃ (20 mL) and the layers were separated. The aqueous phase was extracted with DCM (3 x 30 mL), dried over MgSO₄ and the solvent was removed *in vacuo*. Recrystallisation from EtOAc gave *lactone* **7** (195 mg, 69%) as a colorless crystalline solid; M.p. 160-162 °C; v_{max} (neat)/cm⁻¹ 2977, 2941, 2919, 2882, 1730, 1084; δ_{H} (500 MHz, CDCl₃) 1.21 (3H, d, *J* 6.5, CH₃), 1.23-1.28 (2H, m, 4-*H*H and 5-*H*H), 1.44 (1H, m, 4-H*H* or 5-H*H*), 1.65-1.72 (2H, m, 4-H*H* or 5-H*H* and 6-H), 2.66 (1H, dd, *J* 18.0 and 11.0, 10-H_{ax}), 3.11 (1H, dd, *J* 18.0 and 6.0, 10-H_{eq}), 3.55 (1H, m, 3-H), 3.65 (1H, ddd, *J* 11.0, 10.0 and 6.0, 1-H), 4.82 (1H, d, *J* 10.5, 7-H), 7.28-7.30 (2H, m, Ar-H), 7.36-7.41 (3H, m, Ar-H); δ_{C} (125 MHz, CDCl₃) 21.6 (CH₃), 25.3 and 32.4 (C-4 and C-5), 37.5 (C-10), 43.5 (C-6), 73.7 and 74.1 (C-1 and C-3), 84.5 (C-7), 127.1 (2 x C-Ar), 128.6 (2 x C-Ar), 128.9 (C-Ar), 136.9 (C-Ar), 169.4 (C-9); Found (CI) 247.1379 [MH]⁺ (C₁₅H₁₉O₃) requires 247.1334; Elemental Analysis Calc. (%) for C₁₅H₁₈O₃: C 73.15, H 7.37, Found C 72.98, H 7.09.

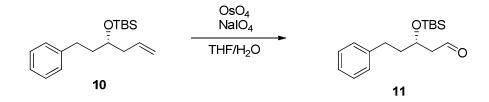
Method 2


TMSOTf (0.39 mL, 2.19 mmol, 2.0 eq.) was added dropwise to a stirred solution of alcohol **5** (193 mg, 1.1 mmol, 1.0 eq.) and methyl 3,3-dimethoxypropionate (0.46 mL, 3.29 mmol, 3 eq.) in dry DCM (15 mL) at -30 °C under nitrogen. After 1 h saturated aqueous NaHCO₃ (15 mL) was added and the phases were separated. The aqueous phase was extracted with DCM (2 x 15 mL) and the combined organic phases were dried over MgSO₄ and the solvent removed *in vacuo*. Purification by flash column chromatography eluting with 10-40% EtOAc in petrol gave lactone **7** (182 mg, 67%) as a colorless crystalline solid; spectroscopic data as above.

(S)-1-Phenylhex-5-en-3-ol 9

Titanium isopropoxide (1.1 ml, 1.08 g, 3.80 mmol) was added dropwise to a suspension of (*R*)-1,1'-bi-2naphthol (1.09 g, 3.80 mmol) and 4Å molecular sieve powder in CH₂Cl₂ (75 ml) under N₂ turning the suspension bright red. The resulting suspension was refluxed for 1 h before cooling to room temperature. 3-Phenylpropanal (5 ml, 5.09 mg, 37.97 mmol) was added and stirred for 10 minutes. The reaction was cooled to -78 °C and allyltributyltin (12.8 ml, 13.83 mg, 41.77 mmol) was added slowly. After stirring for 10 minutes the reaction was placed in a -20 °C freezer under N₂ for 80 h. The mixture was warmed to room temperature and saturated aqueous sodium hydrogen carbonate (8 ml) was added and reaction was stirred for 1 hr. MgSO₄ was added and stirred for 10 minutes, then filtered and the resulting red solution was concentrated *in vacuo*. The crude material was purified by column chromatography using 5% ethyl acetate in petroleum ether 40-60 as the eluent to yield alcohol **9** as a yellow oil (5.53 g, 31.39 mmol, 83% yield). [α]²⁵_D -25.0 (*c*. 2.0 CHCl₃) lit [α]²⁵_D -30 (*c*. 2.0, CHCl₃) $\delta_{\rm H}$ (CHCl₃, 400MHz) 1.61 – 1.67 (1H, br s, OH), 1.76 – 1.84 (2H, m, 4-H₂), 2.19 (1H, m, 2-HH), 2.34 (1H, m, 2-HH), 2.69 (1H, m, 1-HH), 2.82 (1H, m, 1-HH), 3.68 (1H, m, 3-H), 5.16 (2H, m, 6-H₂), 5.83 (1H, m, 5-H), 7.15 – 7.34 (5H, m, Ar). δ_c (CHCl₃, 100MHz) 32.2 (C-2), 38.5 (C-1), 42.2 (C-4), 70.0 (C-3), 118.5 (C-6), 126.0, 128.5, 128.6, 134.7 (C-5), 142.2 (*i*-Ar). Spectroscopic data in accordance with literature data.¹

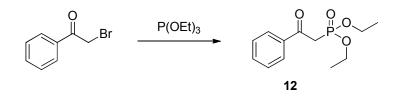
(S)- 3-tert-Butyldimethylsilyloxy-1-phenylhex-5-ene 10



Alcohol **9** (1.28 g, 7.30 mmol) was dissolved in anhydrous CH₂Cl₂ (15 ml) and *tert*butyldimethylsilylchloride (1.31 g, 8.75 mmol), imidazole (1.49 g, 21.86 mmol) and 4-DMAP (90 mg, 0.73 mmol) were added and stirred at room temperature for 16 h under N₂. Water (20 ml) was added and the mixture was extracted with CH₂Cl₂ (2 x 20 ml). The combined organic fractions were dried over MgSO₄ and concentrated *in vacuo* then purified by column chromatography using 1% ethyl acetate in petroleum ether 40-60 as the eluent to yield silyl ether **10** as a yellow oil (1.66 g, 5.72 mmol, 78% yield). $[\alpha]_D^{21}$ -9.0 (*c*. 1.0 CHCl₃) δ_H (400 MHz, CDCl₃) 0.06 (3H, s, CH₃Si), 0.07 (3H, s, CH₃Si), 0.92 (8H, s, (CH₃)₃CSi), 1.69 – 1.83 (2H, m, 2-H₂), 2.28 (2H, t, *J* 6, 4-H₂), 2.59 (1H, m, 1-*H*H), 2.72 (1H, m, 1-H*H*),

3.77 (1H, quin, *J* 6.0 3-H), 4.93 – 5.15 (2H, m, 6-H₂), 5.74 (1H, m, 5-H), 7.16 – 7.21 (3H, m), 7.24 – 7.31 (2H, m); δ_C (CHCl₃, 100MHz) -4.3 (CH₃CSi), -4.5 (CH₃CSi), 18.1 ((CH₃)₃CSi), 25.9 ((CH₃)₃CSi), 31.8 (C-1), 38.7 (C-2), 41.9 (C-4), 71.6 (C-3), 116.8 (C-6), 125.6, 128.3, 128.4, 135.1 (C-4), 142.6 (*i*-Ar).

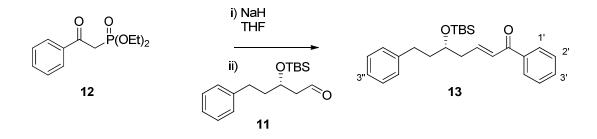
Spectroscopic data in accordance with literature data.²


(S)- 3-tert-Butyldimethylsilyloxy-5-phenyl-pentanal 11

Silyl ether **174** (581 mg, 2 mmol) was dissolved in a THF/H₂O mixture (1:1, 40 ml) and sodium periodate (1.93 g, 9 mmol) and osmium tetroxide (1 crystal) were added and the reaction was stirred under N₂ for 3 hrs. Water (30 ml) was added and mixture was extracted with ethyl acetate (3 x 40 ml). The combined organic fractions were dried over MgSO₄ and concentrated *in vacuo*. The crude material was purified by column chromatography using 2% ethyl acetate in petroleum ether 40-60 as the eluent to yield aldehyde **173** as a yellow oil (475 mg, 1.62 mmol, 81% yield). $[\alpha]_D^{20}$ +5.0 (*c*. 1.0 CHCl₃) δ_H (400 MHz, CDCl₃) 0.06 (3 H, s, CH₃Si), 0.09 (3H, s, CH₃Si), 0.90 (9H, s, (CH₃)₃CSi), 1.82 – 1.94 (2H, m, 4-H₂), 2.57 – 2.61 (2H, m, 2-H₂), 2.62 – 2.73 (2H, m, 5-H₂), 4.26 (1H, p, *J* 6, 3-H), 7.15 – 7.24 (2H, m, Ar), 7.25 – 7.33 (3H, m, Ar), 9.82 (1H, dd, *J* 3, 2, 1-H); δ_C (CDCl₃, 100MHz) -4.5 (CH₃CSi), 18.1 ((CH₃)₃CSi), 25.9 ((CH₃)₃CSi), 31.6 (C-5) 39.7 (C-2), 50.9 (C-4), 67.9 (C-3), 126.1 (*p*-Ar), 128.4, 128.6, 141.8 (*i*-Ar), 202.1 (C-1).

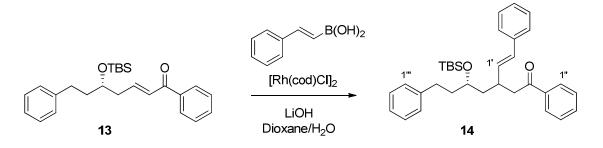
Spectroscopic data in accordance with literature data (racemic).³

Diethyl 2-oxo-2-phenylethylphosphonate 12

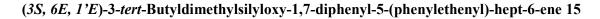


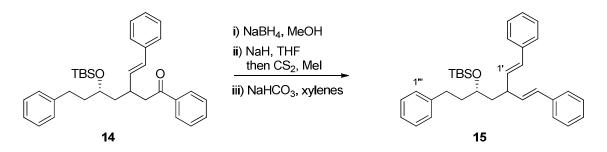
Bromoacetophenone (5 g, 25.12 mmol) and triethylphosphite (4.17 g, 25.12 mmol) were heated to 110 °C and refluxed for 24 h. The resulting crude black oil was purified by column chromatography using 80% ethyl acetate in petroleum ether 40-60 as the eluent to yield phosphonate **12** as a yellow oil (4.19 g, 16.34 mmol, 65% yield). $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.26 (6H, t, *J* 7, P(OCH₂CH₃)), 3.63 (2H, d, *J* 23, 1-H₂), 4.12

(4H, p, *J* 7, P(OC*H*₂CH₃)), 7.42 – 7.50 (2H, m, Ar), 7.57 (1H, m, *p*-Ar), 7.98 – 8.02 (2H, m, Ar);. δ_C (100 MHz, CDCl₃) 16.3 (d, *J* 6.5, P(OCH₂CH₃)), 38.6 (d, *J* 130.0, P(OCH₂CH₃)), 62.7 (d, *J* 6.5, C-1), 128.7, 129.1, 133.8 (*p*-Ar), 136.6 (d, *J* 2, *i*-Ar), 192.1 (d, *J* 6.5, C-2).


Spectroscopic data in accordance with literature data.⁴

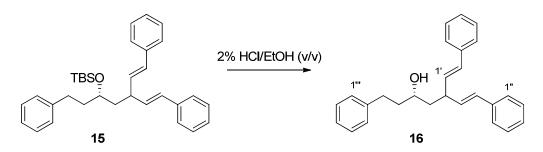
(5S, 2E)-5-tert-Butyldimethylsilyloxy-1,7-diphenylhept-2-en-1-one 13




Sodium hydride (91 mg, 2.27 mmol) was suspended in anhydrous THF (10 ml) and cooled to 0 °C. Phosphonate **12** (500 mg, 1.95 mmol) in THF (4 ml) was added dropwise and stirred for 0.5 h until the suspension became a solution. Aldehyde **11** (475 mg, 1.62 mmol) in THF (9 ml) was added and the reaction was warmed to room temperature and stirred for 18 h. Water (30 ml) was added to quench the reaction and the mixture was extracted with ethyl acetate (3 x30 ml). The combined organic fractions were dried over MgSO₄ and concentrated *in vacuo*. The crude material was purified by column chromatography using 2% ethyl acetate in petroleum ether 40-60 as the eluent to yield *ketone* **13** as a yellow oil (361 mg, 0.92 mmol, 65% yield, $[\alpha]_D^{20}$ +3.0 (*c*. 1.0 CHCl₃); v_{max}/cm⁻¹ 2954, 2928, 2856, 1671, 1622, 1253, 1089, 986, 814, 774, 969; δ_H (400 MHz, CDCl₃) 0.05 (3H, s, CH₃Si), 0.08 (3H, s, CH₃Si), 0.91 (9H, s, (CH₃)₃CSi), 1.76 – 1.86 (2H, m, 6-H₂), 2.53 (2H, ddd, *J* 8, 6, 1.5, 4-H₂), 2.60 – 2.79 (2H, m, 7-H₂), 3.92 (1H, p, *J* 6, 5-H), 6.90 (1H, dt, *J* 15.5, 1.5, 2-H), 7.06 (1H, dt, *J* 15.5, 8, 3-H), 7.15 – 7.21 (2H, m, Ar), 7.22 – 7.33 (3H, m, Ar), 7.43 – 7.50 (2H, m, Ar, 2'-H), 7.54 (1H, m, 3'-H), 7.92 (2H, dd, *J* 8, 4, 1.4, 1'-H); δ_C (CDCl₃, 100MHz) -4.4 (CH₃CSi), 18.1 ((CH₃)₃CSi), 25.8 ((CH₃)₃CSi), 31.7 (C-7), 39.2 (C-6), 40.8 (C-4), 70.9 (C-5), 125.8 (C-3''), 128.0 (C-2), 128.3, 128.4, 128.50, 128.51, 132.6 (C-3'), 137.9, 142.1, 146.1 (C-3), 190.5 (C-1); HRMS (CI) calc for C₂₅H₃₄O₂Si [M+H] 395.2406 found 395.2397

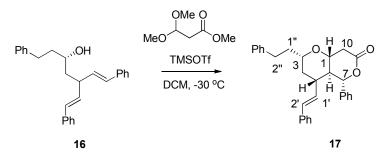
(5S, 1'E)-5-tert-Butyldimethylsilyloxy-1,7-diphenyl-3-(phenylethenyl)-heptan-1-one 14

Ketone 13 (345 mg, 0.87 mmol) was dissolved in a 10:1 mixture of 1,4-dioxane and water (5.5 ml) and phenylvinylboronic acid (259 mg, 1.75 mmol), [Rh(cod)Cl]₂ (21 mg, 0.04 mmol) and lithium hydroxide (21 mg, 0.87 mmol) were added and stirred for 16 h at room temperature. Et₂O (20 ml) and water (20 ml) were added and stirred for 5 minutes. The phases were separated and the aqueous phase was extracted with Et₂O (2 x 20 ml). The combined organic phase was dried over MgSO₄ and concentrated *in vacuo*. The crude material was purified by column chromatography using 2% ethyl acetate in petroleum ether 40-60 as the eluent to yield ketone 14 as a yellow oil (407 mg, 0.82 mmol, 94% yield) as a mixture of diastereomers. ν_{max}/cm^{-1} 2928, 1685, 1448, 1253, 1060, 966, 834, 773, 767; δ_{H} (400 MHz, CDCl_3) 0.00 -0.13 (6H, m, CH₃Si), 0.90 & 0.93 (9H, s, ((CH₃)₃CSi), 1.67 - 2.01 (4H, m, 4-H₂ & 6-H₂), 2.89 - 2.56 (2H, m, 7-H₂), 3.22 - 3.00 (3H, m, 2-H₂ & 3-H), 3.82 (1H, m, 5-H), 6.09 (1H, m, 1'-H), 6.39 (1H, m, 2'-H), 7.11 – 7.26 (2H, m, Ar), 7.29 – 7.34 (4H, m, Ar), 7.48 (2H, m, Ar), 7.58 (1H, m, Ar), 7.96 (2H, dd, J 8.0, 1.5, Ar); δ_{C} (100 MHz, CDCl₃) -4.3 (CH₃Si), -4.2 (CH₃Si), -4.1 (CH₃Si), -3.9 (CH₃CSi), 18.2 ((CH₃)₃CSi), 18.2 ((CH₃)₃CSi), 26.1 ((CH₃)₃CSi), 26.1 ((CH₃)₃CSi), 31.2 (C-7), 31.4 (C-7), 35.9, 36.2, 38.2, 40.0, 42.4, 42.46, 44.8, 45.5, 69.9 (C-5), 70.0 (C-5), 125.7, 125.8, 126.3, 127.3, 128.2, 128.3, 128.46, 128.47, 128.48, 128.55, 128.59, 128.60, 128.7, 130.6, 130.9, 133.0, 133.1, 133.15, 133.4, 137.4, 137.5, 142.5, 142.8, 198.9 (C-1), 199.2 (C-1); HRMS (ESI) calc for C₃₃H₄₂O₂SiNa [M+Na] 521.2846 found 521.2836.

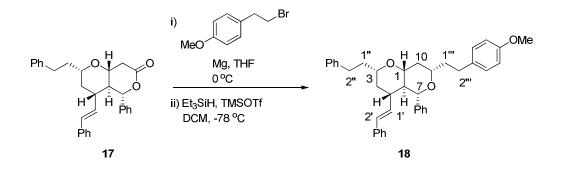


Ketone 14 (200 mg, 0.4 mmol) was dissolved in methanol (10 ml) and sodium borohydride (32 mg, 0.8 mmol) was added and the reaction was stirred for 0.5 h. Saturated ammonium chloride solution (10 ml) was added and the mixture was extracted with ethyl acetate (3 x 10 ml). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo*. The resulting crude oil was dissolved in anhydrous

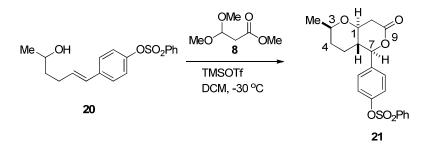
THF (10 ml) under N₂. Sodium hydride (48 mg, 1.2 mmol, 60% in mineral oil) was added and the reaction was stirred for 0.5 h before carbon disulfide (168 µl, 213 mg, 2.8 mmol) and iodomethane (103 µl, 227 mg, 1.6 mmol) were added and the reaction was stirred for 70 h. Water (20 ml) was added and the mixture was extracted with ethyl acetate (3 x 20 ml). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo* and then purified by column chromatography using 2% ethyl acetate in petroleum ether as the eluent to yield xanthate (168 mg, 0.28 mmol) as a colorless oil. The xanthate was dissolved in xylene (5 ml), sodium hydrogen carbonate (119 mg, 1.42 mmol) was added and the mixture was heated to reflux for 6 hrs. The solvent was removed in vacuo, CH₂Cl₂ (5ml) was added and filtered and the filtrate was concentrated in vacuo to give silvl ether 15 as a pale yellow oil (131 mg, 0.27 mmol, 68% yield over three steps). $[\alpha]_D^{22}$ -41.0 (c. 1.0 CHCl₃); v_{max} /cm⁻¹ 3060, 3025, 2927, 2855, 1448, 1253, 1071, 966; δ_H (400 MHz, CDCl₃) 0.05 (3H, s, CH₃Si), 0.07 (3H, s, CH₃Si), 0.94 (9H, s, ((CH₃)₃CSi)), 1.70 - 1.95 (4H, m, 2-H₂ & 4-H₂), 2.67 (2H, m, 7-H), 3.21 (1H, p, J 7.5, 5-H), 3.84 (1H, dq, J 7, 5, 3-H), 6.13 (1H, dd, J 16.0, 7.5, 6-H), 6.19 (1H, dd, J 16.0, 7.5, 1'-H), 6.38 (1H, d, J 16.0, 7-H), 6.43 (1H, d, J 16.0, 2'-H), 7.39 - 7.11 (15H, m, Ar); δ_C (100 MHz, CDCl₃) -4.2 (CH₃Si), -4.0 (CH₃Si), 18.1 ((CH₃)₃CSi), 26.0 ((CH₃)₃CSi), 31.2 (C-1), 39.2 (C-2), 42.4 (C-4), 42.7 (C-5), 69.7 (C-3), 125.7, 126.1, 127.1, 127.2, 128.3, 128.5, 129.6 (C-7), 130.2 (C-2'), 132.7 (C-6), 133.1 (C-1'), 137.4, 137.5, 142.5; HRMS (ESI) calc for C₃₃H₄₂OSiNa [M+Na] 505.2897 found 505.2883.


(5S, 6E, 1'E)- 1,7-Diphenyl-5-(phenylethenyl)hept-6-en-3-ol 16

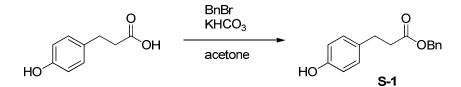
Silyl ether **15** (121 mg, 0.25 mmol) was dissolved in 2% HCl/EtOH (v/v) (5 ml) and stirred for 5 h. The reaction mixture was poured into ethyl acetate (20 ml) and water (20 ml), the phases were separated and the aqueous phase was extracted with ethyl acetate (2 x 20 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo*, and purified by column chromatography using 20% ethyl acetate in petroleum ether 40-60 as the eluent to yield *alcohol* **16** as a yellow oil (83 mg, 0.225 mmol, 90% yield). $[\alpha]_D^{21}$ -8.0 (*c*. 1.0 CHCl₃); v_{max}/cm^{-1} 3356, 3081, 3059, 2919, 2851, 1494, 1448, 964, 744, 692; δ_H (400 MHz, CDCl₃) 1.64 (1H, br s, OH), 1.75 – 1.98 (4H, m, 2-H₂ & 4-H₂), 2.68 (1H, m, 1-*H*H), 2.84 (1H, m, 1-*HH*), 3.37 (1H, p, *J* 8, 5-H), 3.82 (1H, m, 3-H), 6.19 (1H, dd, *J* 16, 8, 6-H), 6.28 (1H, dd, *J* 16, 8, 1'-H), 6.49 (1H, d, *J* 16, 7-H), 6.53 (1H, d, *J* 16, 2'-H), 7.10 – 7.57 (15H, m, Ar); δ_C (100 MHz, CDCl₃) 32.3 (C-


1), 39.7 (C-2), 42.9 (C-4), 43.6 (C-5), 69.6 (C-3), 126.0, 126.30, 126.33, 127.39, 127.43, 128.53, 128.57, 128.68, 128.69, 129.9 (C-7), 130.7 (C-2'), 132.2 (C-6), 133.1 (C-1'), 137.4, 137.5, 142.2; HRMS (ESI) calc for C₂₇H₂₈ONa [M+Na] 391.2032 found 391.2049.

(-)-(1*R*, 3*S*, 5*S*, 6*S*, 7*S*)-3-Phenylethyl-7-phenyl-5((*E*)-phenethenyl)-2,8-dioxabicyclo[4.4.0]decan-9one 17


TMSOTf (82 µL, 0.45 mmol, 2.0 eq.) was added dropwise to a stirred solution of alcohol 16 (83 mg, 0.23 mmol, 1.0 eq.) and methyl 3,3-dimethoxypropionate (0.13 mL, 0.90 mmol, 4.0 eq.) in dry DCM (15 mL) at -30 °C under argon. After 1 h saturated aqueous NaHCO₃ was added (15 mL) and the layers were separated. The aqueous phase was extracted with DCM (2 x 15 mL) and the combined organic phases were dried over MgSO₄ and the solvent removed *in vacuo*. Purification by flash column chromatography eluting with 10-30% EtOAc in petrol gave *lactone* 17 (45 mg, 45%) as a yellow oil; $[\propto]_D^{20}$ -61.8 (c 2.2 CHCl₃); v_{max} (neat)/cm⁻¹ 3024, 2918, 2854, 1736, 1495, 1455, 1344, 1237, 752; δ_{H} (400 MHz, CDCl₃) 1.38 (1H, dt, J 13.5, 11.5, 4-H_{ax}), 1.64 (1H, ddd, J 13.5, 4.0, 2.0, 4-H_{ea}), 1.76 (1H, m, 1'-HH), 1.88 (1H, m, 1"-HH), 1.97 (1H, q, J 10.5, 6-H), 2.34 (1H, m, 5-H), 2.68-2.83 (2H, m, 2"-H₂), 2.74 (1H, dd, J 18.0, 12.0, 10-H_{ax}), 3.14 (1H, dd, J18.0, 5.0, 10-H_{ea}), 3.50 (1H, m, 3-H), 3.70 (1H, ddd, J12.0, 10.5, 5.0, 1-H), 4.97 (1H, d, J 10.5, 7-H), 5.16 (1H, dd, J 16.0, 9.0, 1'-H), 5.97 (1H, d, J 16.0, 2'-H), 6.74 (2H, m, Ar-H), 7.09 (1H, m, Ar-H), 7.11-7.14 (3H, m, Ar-H), 7.18-7.25 (7H, m, Ar-H), 7.31 (2H, m, Ar-H); δ_C (100 MHz, CDCl₃) 31.4 (C-2"), 37.2, 37.4 (C-10 and C-1"), 39.1 (C-4), 42.4 (C-5), 47.8 (C-6), 73.4 (C-1), 75.5 (C-3), 85.3 (C-7), 125.8 (C-Ar), 125.9 (C-Ar), 127.0 (C-Ar), 128.0 (C-Ar), 128.39 (C-Ar), 128.43 (C-Ar), 128.5 (C-Ar), 128.9 (C-Ar), 129.4 (C-2'), 132.1 (C-1'), 136.7 (C-Ar), 137.9 (C-Ar), 141.7 (C-Ar), 168.9 (C-9); Found (ESI) 461.2101 $[MNa]^+$ (C₃₀H₃₀O₃Na requires 461.2087).

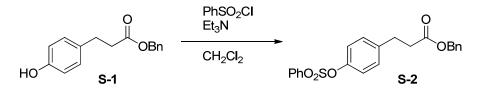
(-)-(1*R*, 3*S*, 5*S*, 6*S*, 7*S*, 9*S*)-9-(4-Methoxyphenyl)-3-phenylethyl-7-phenyl-5((*E*)-phenethenyl)-2,8-dioxabicyclo[4.4.0]decane 240


Methoxyphenethyl bromide (1 ml, 1376 mg, 6.40 mmol) was added to a solution of vacuum dried magnesium (171 mg, 7.04) in tetrahydrofuran (6.4 ml). A single crystal of iodine was added and the reaction mixture was warmed to initial reaction. On cooling to room temperature the magnesium was seen to be consumed. 1 ml of the resulting solution was added slowly to a solution of lactone 17 (43 mg, 0.09 mg)mmol, 1.0 eq.) in dry Et₂O (5 ml) under argon at 0 °C. After 3 h saturated aqueous NH₄Cl was added (10 ml) and the phases separated. The aqueous phase was extracted with Et₂O (3 x 15 ml) and the combined organic phases washed with brine (25 ml) and dried over MgSO4. The solvent was removed in vacuo and purification by flash column chromatography eluting with 5-20% EtOAc in petrol gave the lactol intermediate (36 mg, 70%) which was used in the next step directly. TMSOTf (17 µl, 0.094 mmol, 1.5 eq.) was added dropwise to a solution of the lactol (36 mg, 0.063 mmol, 1.0 eq.) and triethylsilane (0.1 ml, 0.63 mmol, 10.0 eq.) in dry DCM (5 ml) under argon at -78 °C. After 0.75 h a saturated aqueous solution of NaHCO₃ (15 ml) was added and the phases separated. The aqueous phase was extracted with DCM (2 x 20 ml) and the combined organic phases dried over MgSO₄. The solvent was removed in vacuo and purification by flash column chromatography eluting with 2-10% EtOAc in petrol gave bicycle 18 (24 mg, 68%) as a white crystalline solid; M.p. 133-135 °C; $[\propto]_D^{20}$ -100.0 (c 1.2 CHCl₃); v_{max} (neat)/cm⁻¹ 3024, 2941, 2893, 2850, 1609, 1513, 1247, 1067, 1030, 742, 688; δ_H (400 MHz, CDCl₃) 1.32 (1H, m, 4-HH), 1.56 (1H, m, 4-HH), 1.66-2.00 (6H, m, 6-H, 10-Hax, 1"-H2 and 1""-H2), 2.08 (1H, ddd, J 12.5, 4.5, 2.0, 10-H_{eq}), 2.22 (1H, m, 5-H), 2.66 (1H, t, J 8.0, 2"-H₂ or 2""-H₂), 2.69 (2H, m, 2"-H₂ or 2""-H₂), 3.38 (1H, ddd, J 11.5, 9.5, 4.5, 1-H), 3.47 (1H, m, 3-H), 3.55 (1H, m, 9-H), 3.80 (3H, s, OCH₃), 4.02 (1H, d, J 10.0, 7-H), 5.15 (1H, dd, J 15.5, 9.0, 1'-H), 5.82 (1H, d, J 15.5, 2'-H), 6.73 (2H, m, Ar-H), 6.83 (2H, d, J 9.0, Ar-H), 6.99 (1H, m, Ar-H), 7.08-7.23 (11H, m, Ar-H), 7.29-7.32 (3H, m, Ar-H); δ_C (100 MHz, CDCl₃) 30.4, 31.6 (C-2" and C-2""), 37.6, 37.7 (C-1" and C-1""), 38.1 (C-10), 40.3 (C-4), 41.9 (C-5), 50.6 (C-6), 55.2 (OCH₃), 75.0, 75.7 (C-3 and C-9), 79.1 (C-1), 83.4 (C-7), 113.7 (C-Ar), 125.7 (C-Ar), 125.8 (C-Ar), 126.5 (C-Ar), 127.8 (C-Ar), 127.89 (C-Ar), 127.94 (C-Ar), 128.2, 128.3 (C-2' and C-Ar), 128.5 (C-Ar), 129.4 (C-Ar), 134.13, 134.14 (C-1' and C-Ar), 137.4 (C-Ar), 140.9 (C-Ar), 142.1 (C-Ar), 157.6 (C-Ar); Found (ESI) 581.3033 $[MNa]^+$ (C₃₉H₄₂O₃Na requires 581.3026). Elemental Analysis Calc. (%) for C₃₉H₄₂O₃: C 83.83, H 7.58, Found 83.34, H 7.47.

(±)-(1α, 6β)-3β -Methyl-7β -(4-benzenesulfonyloxyphenyl)-2,8-dioxabicyclo[4.4.0]decan-9-one 21

TMSOTf (0.21 mL, 1.19 mmol, 2.0 eq.) was added dropwise to a stirred solution of alcohol **20** (197 mg, 0.59 mmol, 1.0 eq.) and methyl 3,3-dimethoxypropionate **8** (0.34 mL, 2.37 mmol, 4.0 eq.) in dry DCM (15 mL) at -30 °C under argon. After 1 h saturated aqueous NaHCO₃ (15 mL) was added and the phases were separated. The aqueous phase was extracted with DCM (2 x 15 mL) and the combined organic phases were dried over MgSO₄ and the solvent removed *in vacuo*. Purification by flash column chromatography eluting with 10-50% EtOAc in petrol followed by recrystallisation from EtOAc gave *lactone* **21** (222 mg, 93%) as a white crystalline solid; M.p. 143-145 °C; v_{max} (neat)/cm⁻¹ 2952, 2857, 1736, 1365, 1176, 1153, 1089, 866, 847, 751; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.17-1.27 (2H, m, 4-*H*H and 5-*H*H), 1.20 (3H, d, *J* 6.0, CH₃), 1.38 (1H, m, 4-H*H*), 1.59 (1H, m, 6-H), 1.67 (1H, m, 5-H*H*), 2.63 (1H, dd, *J* 18.0, 10.0, 10.0, 6.0, 1-H), 4.79 (1H, d, *J* 11.0, 7-H), 7.02 (2H, d, *J* 8.5, Ar-H), 7.22 (2H, d, *J* 8.5, Ar-H), 7.54 (2H, m, Ar-H), 7.69 (1H, m, Ar-H), 7.84 (2H, m, Ar-H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 21.5 (CH₃), 25.1 (C-4), 32.3 (C-5), 37.3 (C-10), 43.4 (C-6), 73.6 (C-3), 73.9 (C-1), 83.5 (C-7), 122.6 (C-Ar), 128.4 (C-Ar), 128.5 (C-Ar), 129.2 (C-Ar), 135.2 (C-Ar), 136.0 (C-Ar), 149.7 (C-Ar), 169.1 (C-9); Found (ESI) 425.1021 [MNa]⁺ (C₂₁H₂₂O₆SNa requires 425.1029).

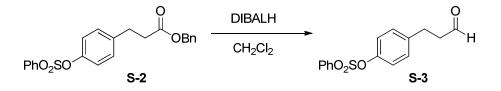
Benzyl 3-(4'-hydroxyphenyl)propionate S-1



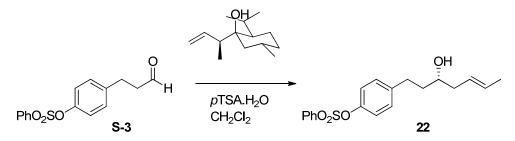
Acid (5.0 g, 30.09 mmol), benzyl bromide (4.3 ml, 36.11 mmol) and potassium hydrogen carbonate (4.52 g, 45.14 mmol) were suspended in acetone (30 ml) and heated to reflux for 18 h. After cooling to room

temperature, the acetone was removed *in vacuo* and CH₂Cl₂ (20 ml) and water (20 ml) were added. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 20 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 20% ethyl acetate in petroleum ether 40-60 as the eluent to yield benzyl ester **S-1** as a pale yellow oil (7.68 g, 29.95 mmol, 99% yield). $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.64 (2H, t, *J* 8, 2-H₂), 2.90 (2H, t, *J* 8, 3-H₂), 5.10 (2H, s, OCH₂Ph), 6.73 (2H, d, *J* 8.5, Ar), 7.04 (2H, d, *J* 8.5, Ar), 7.28 – 7.38 (5H, m, OCH₂Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 30.1 (C-3), 36.2 (C-2), 66.3 (OCH₂), 115.3, 128.2, 128.5, 129.4, 132.6, 135.9, 153.9, 172.8 (C-1).

Spectroscopic data in accordance with literature data.⁵

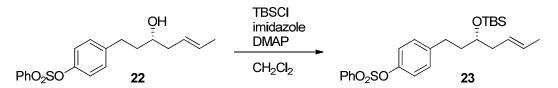

Benzyl 3-(4'-benzenesulfoxyphenyl)propionate S-2

Benzenesulfonyl chloride (3.82 ml, 5.29 g, 29.95 mmol) and triethylamine (4.31 ml, 3.03 g, 29.95 mmol) were added dropwise sequentially to a stirring solution of benzyl ester **S-1** (7.68 g, 29.95 mmol) in CH₂Cl₂ (50 ml) under N₂ at 0 °C. Once both additions were complete, the reaction mixture was warmed to room temperature and stirred for 18 h. Saturated ammonium chloride solution (50 ml) was added and the biphasic mixture was stirred for 5 minutes. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 50 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 20% ethyl acetate in petroleum ether 40-60 as the eluent to yield benzyl ester **S-2** as a pale yellow solid (10.69 g, 26.97 mmol, 90% yield). mp 60-62°C; $\delta_{\rm H}$ (301 MHz, CDCl₃) 2.63 (2H, t, *J* 8, 2-H₂), 2.92 (2H, t, *J* 8, 3-H₂), 5.09 (2H, s, OCH₂Ph)), 6.86 (2H, d, *J* 8.5, Ar), 7.08 (2H, d, *J* 8.5, Ar), 7.26 – 7.39 (5H, m, OCH₂Ph), 7.47 – 7.56 (2H, m, OSO₂Ph), 7.79 – 7.86 (2H, m, OSO₂Ph); $\delta_{\rm C}$ (76 MHz, CDCl₃) 30.3 (C-3), 35.7 (C-2), 66.5 (OCH₂Ph), 122.4, 128.3, 128.4, 128.6, 128.7, 129.2, 129.6, 134.3, 135.9, 139.6, 148.1, 172.4 (C-1).

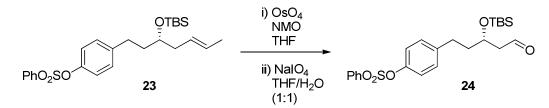

Spectroscopic data in accordance with literature data.⁵

3-(4'-(Benzenesulfoxyphenyl)propional S-3

Diisobutylaluminium hydride (6.62 ml, 1M in hexanes) was added dropwise to a stirring solution of benzyl ester **S-2** (2.5 g, 6.31 mmol) in CH₂Cl₂ (40 ml) under N₂ at -78 °C. The reaction was stirred for 6 h at -78 °C then quenched by addition of saturated Rochelle's salt solution (100 ml) and stirred until the phases separated. The reaction mixture was extracted with CH₂Cl₂ (2 x 100 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 20 – 30% ethyl acetate in petroleum ether 40-60 as the eluent to yield *aldehyde* **S-3** as a colorless oil (1.78 g, 6.15 mmol, 98% yield). v_{max} /cm⁻¹ 2924, 2852, 1720 (CHO), 1503, 1370, 1198, 1177, 1149, 1092, 863; $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.79 (2H, td, *J* 8, 1, 2-H₂), 2.95 (2H, t, *J* 8, 3-H₂), 6.92 (2H, d, *J* 8.5, Ar), 7.12 (2H, d, *J* 8.5, Ar), 7.53 – 7.60 (2H, m, OSO₂*Ph*), 7.70 (1H, m, OSO₂*Ph*), 7.84 – 7.89 (2H, m, OSO₂*Ph*), 9.83 (1H, t, *J* 1, 1-H). $\delta_{\rm C}$ (101 MHz, CDCl₃) 27.5 (C-3), 45.2 (C-2), 122.6, 128.6, 129.3, 129.6, 139.7, 148.1, 201.0 (C-1). HRMS (ESI) calc for C₁₅H₁₄O₄SNa [M+Na] 313.0505 found 313.0503.

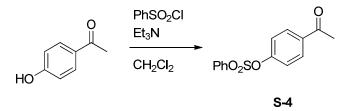

(S, E) 1-(4'-Benzenesulfoxyphenyl)-hept-5-en-3-ol 22

Nokami reagent (1.20 g, 5.86 mmol) and *para* toluenesulfonic acid hydrate (54 mg, 0.28 mmol) were added to a solution of aldehyde **S-3** (825 mg, 2.85 mmol) in CH₂Cl₂ (20 ml) under N₂. The reaction mixture was stirred for 20 h. Water (20 ml) was added and the phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 20 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 5 – 30% ethyl acetate in petroleum ether 40-60 as the eluent to yield *alcohol* **22** as a colorless oil (969 mg, 2.79 mmol, 98% yield). $[\alpha]_D^{20}$ - 11.0 (*c*. 1.0 CHCl₃); v_{max}/cm⁻¹ 3401, 2917, 1501, 1371, 1198, 1149, 866; δ_H (400 MHz, CDCl₃) 1.65 – 1.75 (5H, m, 7-H₃ & 4-H₂), 2.08 (1H, m, 2-HH), 2.25 (1H, m, 2-HH), 2.62 (1H, m, 1-HH), 2.76 (1H, m, 1-HH), 3.55 (1H, m, 3-H), 5.40 and 5.55 (each 1H, each m, 5-H & 6-H), 6.87 (2H, d, *J* 8.5, Ar), 7.10 (2H, d, *J* 8.5, Ar), 7.49 – 7.55 (2H, m, OSO₂Ph), 7.63 – 7.69 (1H, m, OSO₂Ph), 7.81 – 7.86 (2H, m, OSO₂Ph);

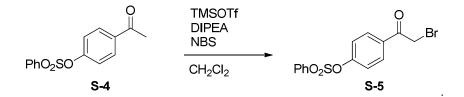

 δ_{C} (101 MHz, CDCl₃) 18.1 (C-7), 31.4 (C-1), 38.1 (C-4), 40.9 (C-2), 69.9 (C-3), 122.1, 126.7, 128.5, 129.1, 129.4, 129.5, 134.1, 135.5, 141.3, 147.6. HRMS (ESI) calc for C₁₉H₂₂O₄SNa [M+Na] 369.1131 found 369.1118.

(S, E) 1-(4'-(benzenesulfoxy)phenyl)-3-(tertbutyldimethyl)silyloxy-hept-5-ene 23

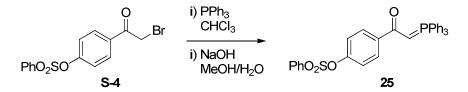
Alcohol **22** (1.61 g, 4.65 mmol) was dissolved in anhydrous CH₂Cl₂ (40 ml) and TBDMSCI (842 mg, 5.58 mmol), imidazole (950 mg, 13.96 mmol) and DMAP (57 mg, 0.46 mmol) were added. The reaction mixture was stirred for 40 h under a balloon of argon. Water (20 ml) was added and the reaction mixture was stirred for a further 5 minutes. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 20 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 1% ethyl acetate in petrol as the eluent to give *TBS ether* **23** (1.78 g, 83% yield) as a yellow oil. $[\alpha]_D^{20}$ -7.0 (*c*. 1.0 CHCl₃) v_{max} /cm⁻¹ 2953, 2928, 1502, 1375, 1200, 1151, 864, 832 δ_H (400 MHz, CDCl₃) 0.03 (3H, s, CH₃Si), 0.04 (3H, s, CH₃Si), 0.90 (9H, s, (CH₃)₃CSi), 1.52 – 1.77 (5H, m, 2-H₂ & 7-H₃), 2.16 (2H, t, *J* 5, 4-H₂), 2.53 (1H ddd, *J* 14, 11, 5.5, 1-H*H*), 2.67 (1H, ddd, *J* 14, 11, 6, 1*H*H), 3.67 (1H, p, *J* 6, 3-H), 5.25 – 5.54 (2H, m, 5-H & 6-H), 6.87 (2H, d, *J* 9, Ar), 7.07 (2H, d, *J* 9, Ar), 7.52 (2H, t, *J* 7.5, OSO₂*Ph*), 7.66 (1H, tt, *J* 7.5, 1.5, OSO₂*Ph*), 7.84 (2H, dd, *J* 8.5, 1.5, OSO₂*Ph*); δ_C (101 MHz, CDCl₃) -4.6 (CH₃CSi), -4.3 (CH₃CSi), 18.0 (C-7), 18.1 ((CH₃)₃CSi), 25.9 ((CH₃)₃CSi), 31.1 (C-1), 38.4 (C-2), 40.6 (C-4), 71.8 (C-3), 122.1, 127.3 (C-6), 127.4 (C-5), 128.5, 129.0, 129.4, 134.1, 135.5, 141.9, 147.5; HRMS (ESI) calc for C₂₅H₃₄O₄SSiNa [M+Na] 483.1995, found 483.1987


(S)-5-(4'-Benzenesulfoxyphenyl)-3-(tertbutyldimethylsilyloxy)-pentanal 24

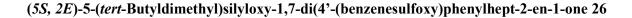
N-Methyl morpholine-*N*-oxide (153 mg, 1.13 mmol) and osmium tetroxide (1 crystal) were added to a stirring solution of silyl ether **23** (260 mg, 0.56 mmol) in THF (5 ml) and stirred for 0.75 h. The reaction was quenched with the addition of saturated sodium sulfite solution (10 ml). The resulting biphasic mixture was extracted with ethyl acetate (3 x 30 ml) and the combined organic phases were dried over

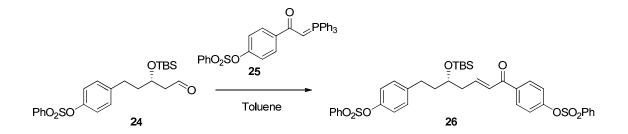

MgSO₄ and concentrated *in vacuo* to give a yellow oil. The crude oil was dissolved in THF (10 ml) and water (10 ml) and NaIO₄ (232 mg, 1.27 mmol) was added and stirred for 2 h, after which additional NaIO₄ (232 mg, 1.27 mmol) was added and stirred for a further 1 h. The reaction was quenched with the addition of saturated sodium hydrogen carbonate solution (10 ml). The resulting biphasic mixture was extracted with ethyl acetate (3 x 30 ml), the combined organic phases dried over MgSO₄ and concentrated *in vacuo* to give *aldehyde* **24** (247.7 mg, 98% yield) as a yellow oil. $[\alpha]_D^{20}$ -5.0, v_{max}/cm^{-1} 2953, 2929, 2856, 1723, 1502, 1373, 1199, 1178, 1150, 1092, 864, 863; δ_H (400 MHz, CDCl₃) 0.05 (3H, s, CH₃Si), 0.07 (3H, s, CH₃Si), 0.89 (9H, s, (CH₃)₃CSi), 1.75 – 1.85 (2H, m, 4-H₂), 2.49 – 2.72 (4H, m, 2-H₂ & 5-H₂), 4.22 (1H, p, *J* 6, 3-H), 6.88 (2H, d, *J* 8.5, Ar), 7.07 (2H, d, *J* 8.5, Ar), 7.53 (2H, dd, *J* 8, 7, OSO₂*Ph*), 7.66 (1H, m, OSO₂*Ph*), 7.84 (2H, dd, *J* 8.5, 1, OSO₂*Ph*), 9.80 (1H, t, *J* 2, 1-H); δ_C (101 MHz, CDCl₃) -4.6 (*C*H₃Si), -4.5 (*C*H₃Si), 18.0 ((CH₃)₃*C*Si), 25.7 ((*C*H₃)₃*C*Si), 30.8 (C-5), 39.3 (C-4), 50.8 (C-2), 67.5 (C-3), 122.3, 128.5, 129.1, 129.3, 134.1, 135.5, 140.9, 147.7, 201.7 (C-1). HRMS (ESI) calc for C₂₃H₃₂O₅SSiNa [M+Na] 471.1632, found 471.1633.

4'-Benzenesulfoxyacetophenone S-4

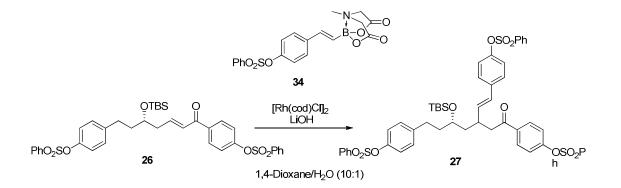

4'-Hydroxyacetophenone (2.5 g, 18.36 mmol) was dissolved in anhydrous CH_2Cl_2 (50 ml) under N₂ and cooled to 0 °C. Benzenesulfonyl chloride (2.34 ml, 3.24 g, 18.36 mmol) and triethylamine (2.55 ml, 1.86 g, 18.36 mmol) were added dropwise and the reaction was warmed to room temperature and stirred for 16 h. Water (50 ml) was added and mixture was extracted with CH_2Cl_2 (2 x 30 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 30% ethyl acetate in petroleum ether 40-60 as the eluent to yield *sulfonate* **S-4** as a colorless oil (4.70 g, 16.99 mmol, 93% yield). v_{max}/cm^{-1} 3069, 3006, 3963, 1683, 1595, 1374, 1200, 1151, 859, 846, 752, 577, 559; $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.57 (3H, s, CH₃), 7.02 – 7.14 (2H, m, Ar), 7.50 – 7.57 (2H, m, OSO₂*Ph*), 7.69 (1H, m, OSO₂*Ph*), 7.82 – 7.86 (2H, m, OSO₂*Ph*), 7.87 – 7.92 (2H, m, Ar); $\delta_{\rm C}$ (100 MHz, CDCl₃) 26.7 (CH₃), 122.6, 128.5, 129.40, 129.42, 130.2, 134.6, 135.2, 135.8, 153.0, 196.7 (C=O); HRMS (ESI) calc for C₁₄H₁₂O₄SNa [M+Na] 299.0348 found 299.0336

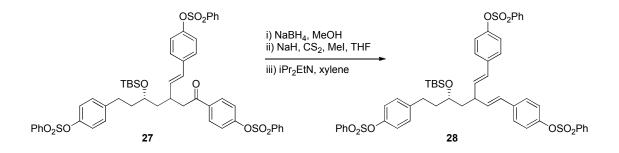
2-Bromo-4'-benzenesulfoxyacetophenone S-5


Sulfonate **S-4** (4.70 g, 16.99 mmol) was dissolved in anhydrous CH₂Cl₂ (50 ml) under N₂ and cooled to 0 °C. *N,N*-Diisopropylethylamine (3.7 ml, 21.24 mmol) and TMSOTf (3.69 ml, 20.39 ml) were added dropwise and the mixture was stirred for 0.5 hr. *N*-Bromosuccinimide (3.63 g, 20.39 mmol) was added and mixture was warmed to room temperature and stirred for 3 h. The reaction mixture was washed sequentially with saturated ammonium chloride solution (40 ml) and saturated sodium hydrogen carbonate solution (40 ml), dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 30% ethyl acetate in petroleum ether 40-60 as the eluent to yield *sulfonate* **S-5** as a pale yellow oil which crystallized on standing to give dark yellow crystals (5.29 g, 14.88 mmol, 88% yield). mp 69-71 °C v_{max}/cm^{-1} 3073, 1698, 1595, 1364, 1180, 1153, 835, 747, 564; δ_{H} (400 MHz, CDCl₃) 4.38 (2H, s, 2-CH₂), 7.06 – 7.17 (2H, m, Ar), 7.50 – 7.59 (2H, m, OSO₂*Ph*), 7.68 (1H, m, OSO₂*Ph*), 7.87 – 8.02 (2H, m, Ar); δ_{C} (100 MHz, CDCl₃) 30.4 (C-2), 122.7, 128.4, 129.3, 130.8, 132.6, 134.6, 135.1, 153.4, 189.9 (C-1); HRMS (ESI) calc for C₁₄H₁₁O₄SBrNa [M+Na] 376.9454 found 376.9460.

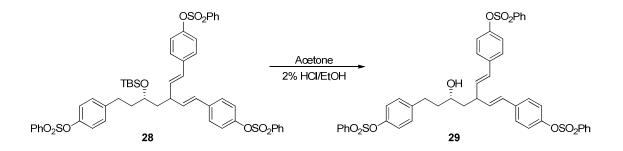

Triphenyl-(4-((benzenesulfoxy)benzoyl)-2'-methylenephosphorane 25

Triphenylphosphine (738 mg, 2.81 mmol) was added to a stirring solution of acetophenone **S-4** (1000 mg, 2.81 mmol) in chloroform (15 ml) and stirred for 18 hrs. The solvent was removed *in vacuo* and resulting solid was triturated with diethyl ether (20 ml). The resulting solid was dissolved in methanol/water (20 ml 1:1 v/v), sodium hydroxide (112 mg, 2.81 mmol) was added and stirred for 3 hrs. The precipitate was filtered and washed with water before drying for 60 hrs in a vacuum oven to yield *ylide* **25** as a colorless solid (1.1 g, 2.05 mmol, 73%). mp 166-168 °C; v_{max}/cm^{-1} 3059, 1591, 1522, 1437, 1373, 1103, 689; δ_{H} (400 MHz, CDCl₃) 4.35 (1H, d, *J* 21, 2'-H), 6.93 (2H, d, *J* 9, Ar), 7.41 – 7.60 (10H, m, Ar), 7.62 – 7.72 (8H, m, Ar), 7.77 – 7.83 (2H, m, Ar), 7.86 (2H, d, *J* 9, Ar); δ_{C} (101 MHz, CDCl₃) 51.3 (d, *J* 111, C-2'), 121.5, 126.3, 127.2, 128.3, 128.4, 128.5, 128.6, 128.9, 129.0, 129.1, 131.9, 131.9, 132.0, 132.1, 132.2,

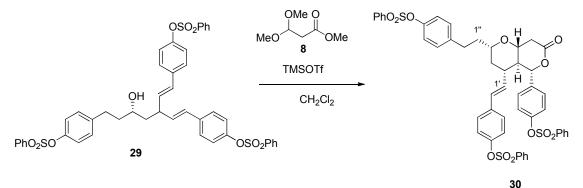

132.2, 133.0, 133.1, 133.1, 134.1, 135.3, 140.3, 140.4, 150.3, 183.3 (C-1'). HRMS (CI) calc for $C_{32}H_{26}O_4PS$ [M+H] 537.1289, found 537.1285


Ylide **25** (275.6 mg, 0.51 mmol) and aldehyde **24** (115 mg, 0.26 mmol) were dissolved in toluene (10 ml) and heated to reflux for 20 h. After cooling to room temperature, solvent was removed *in vacuo* and the mixture was purified by column chromatography using 20 % ethyl acetate in petrol as the eluent to give *enone* **26** as a yellow oil (165 mg, 0.23 mmol, 91%). $[\alpha]_D^{20}$ -3.0 (*c*. 1.0 CHCl₃), v_{max}/cm^{-1} 2952, 2928, 1671, 1620, 1501, 1449, 1374, 1199, 1178, 1150, 861, 833; δ_H (400 MHz, CDCl₃) 0.03 (3H, s, CH₃Si), 0.05 (3H, s, CH₃Si), 0.88 (9H, s, (CH₃)₃CSi), 1.68 – 1.77 (2H m, 6-H₂), 2.45 – 2.51 (2H, m, 4-H₂), 2.57 (1H, m, 7-H*H*), 2.68 (1H, m, 7-*H*H), 3.87 (1H, p, *J* 6, 5-H), 6.81 – 6.91 (2H, m, Ar), 7.00 – 7.15 (3H, m, Ar & 3-H), 7.47 – 7.62 (4H, m, OSO₂*Ph*), 7.60 – 7.76 (2H, m, OSO₂*Ph*), 7.74 – 7.92 (3H, m, OSO₂*Ph* & 2-H);. δ_C (101 MHz, CDCl₃) -4.5 (*C*H₃CSi), -4.3 (*C*H₃CSi), 18.1 ((CH₃)₃*C*Si), 25.8 ((*C*H₃)₃*C*Si), 31.1 (C-7), 38.9 (C-6), 40.8 (C-4), 70.7 (C-5), 122.2, 122.5, 128.4, 128.5, 129.3, 130.2, 134.1, 134.5, 135.5, 136.5, 141.2, 146.6, 152.6, 188.8 (C-1) HRMS (ESI) calc for C₃₇H₄₂O₈S₂SiNa [M+Na] 706.1982, found 706.1983.

(5*S*, 2*E*)-3-(4'Benzenesulfoxyphenyl)ethynyl-5-(*tert*-butyldimethyl)silyloxy-1,7-di(4'-(benzenesulfoxy)phenylheptanone 27

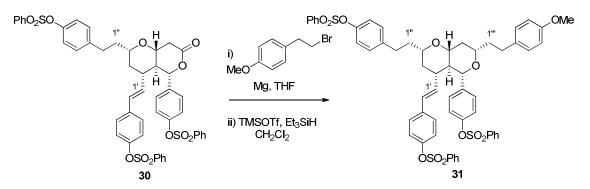

MIDA boronate 34 (843 mg, 2.03 mmol) was suspended in 1,4-dioxane (20 ml) and 1M sodium hydroxide solution (10 ml) was added and stirred for 1 h. pH7 phosphate buffer (20 ml) was added and mixture was extracted with ethyl acetate (3 x 20 ml). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo* until ~5ml 1,4-dioxane remained. Dioxane solution of boronic acid was added to a 1,4-dioxane solution (25 ml) of enone 26 (718 mg, 1.02 mmol), [Rh(cod)Cl]₂ (25 mg, 0.05 mmol) and lithium hydroxide (24 mg, 1.02 mmol) and heated to reflux for 3 hrs. On cooling to room temperature water (30 ml) was added and the reaction mixture was extracted with ethyl acetate (3 x 30 ml). The combined organic phases were dried over MgSO₄ and concentrated in vacuo and purified by column chromatography using 20% ethyl acetate in petrol as the eluent to yield ketone 27 (886 mg, 0.92 mmol, 90%). v_{max}/cm⁻¹ 3008, 2957, 2856, 1751, 1501, 1346, 1199, 1176, 1148, 857, 732; δ_H (400 MHz, C₆D₆) -0.05, 0.01, 0.03 (6H, s, CH₃Si), 0.94, 0.95 (9H, s, (CH₃)CSi), 1.51 - 1.81 (4H, m), 2.34 - 2.52 (2H, m), 2.55 - 2.69 (2H, m), 2.89 - 3.14 (1H, m, 3-H), 3.59 - 3.74 (1H, m, 5-H), 5.85, 5.87 (1H, ddd, J 16, 7), 6.16, 6.25 (1 H, d, J 16), 6.73 – 6.95 (20H, m, Ar), 7.55 (2H, dd, J 9, 3, Ar), 7.57 – 7.69 (5H, m, Ar); δ_C (101 MHz, C₆D₆) -4.6, -4.5, -4.5, -4.2 (CH₃Si), 17.9, 17.9 ((CH₃)CSi), 25.8, 25.8 ((CH₃)CSi), 30.3, 30.4, 35.0 (C-3), 35.4 (C-3), 37.8, 39.4, 41.9, 43.9, 44.6, 69.6 (C-5), 69.7 (C-5), 122.4, 122.4, 122.6, 122.7, 127.0, 127.0, 128.2, 128.3, 128.3, 128.7, 128.7, 128.8, 128.9, 128.9, 129.1, 129.3, 129.4, 129.6, 129.7, 133.4, 133.5, 133.5, 133.5, 133.8, 133.8, 134.2, 134.5, 135.5, 135.5, 135.7, 135.7, 135.9, 135.9, 136.2, 136.2, 141.2, 141.5, 148.0, 148.9, 152.8, 152.9, 195.8 (C-1), 195.9 (C-1); HRMS (ESI) calc for C₅₁H₅₄O₁₁S₃SiNa [M+Na] 989.2490 found 989.2497.

(*3S*, *6E*, *1'E*)-5-(4'Benzenesulfoxyphenyl)ethenyl-5-(*tert*-butyldimethyl)silyloxy-1,7-di(4'-(benzenesulfoxy)phenylhept-6-ene 28


Ketone 27 (684 mg, 0.71 mmol) and sodium borohydride (53 mg, 1.41 mmol) were dissolved in methanol (35 ml) and stirred for 1 h at which point additional sodium borohydride (53 mg, 1.41 mmol) was added and stirred for a further 0.5 h. The reaction was guenched with 1M HCl (30 ml) and extracted with ethyl acetate (3 x 30 ml). The combined organic fractions were dried over MgSO₄ and concentrated *in vacuo*. The resulting oil was dissolved in THF (20 ml) under N₂ and NaH (848.5 mg, 21.21 mmol) was added. After 1 hr CS₂ (2.98 ml, 49.50 mmol) and MeI (1.82 ml, 28.29 mmol) were added and heated to 50 °C for 1 hr. The reaction was quenched with the addition of 1M HCl (20 ml) and the reaction was extracted with ethyl acetate (3 x 30 ml). The combined organic fractions were dried over MgSO₄, concetrated in vacuo and purified by column chromatography using 20% ethyl acetate in petrol as the eluent to yield a xanthate as a yellow oil. The yellow oil was used immediately and was dissolved in dry xylene (10 ml) under N₂. Hunigs base (few drops) was added and reaction heated to reflux for 24 h. After cooling to room temperature xylene and Hunig's base were removed in vacuo to give diene 28 (410 mg, 0.43 mmol, 61%) as a brown oil. $[\alpha]_{D}^{21}$ -8.0 (c. 1.0 CHCl₃); v_{max} /cm⁻¹ 2927, 2855, 1500, 1372, 1198, 1177, 1149, 862, 833, 747, 685, 578; δ_H (400 MHz, C₆D₆) -0.05 (3H, s, CH₃Si), 0.00 (3H, s, CH₃Si), 0.96 (9H, s, s) (CH₃)CSi), 1.52 – 1.84 (4H, m, 2-H₂ & 4-H₂), 2.45 (2H, t, J 7, 1-H₂), 3.07 (1H, p, J 7, 5-H), 3.67 (1H, p, J 7, 3-H), 5.81 – 5.87 (1H, dd, J 16, 7, 1'-H), 5.90 (1H, dd, J 16, 7, 6-H), 6.16 (1, d, J 16, 2'-H), 6.22 (1H, d, J 16, 7-H), 6.65 – 6.99 (21H, m, Ar), 7.54 – 7.77 (6H, m, Ar); $\delta_{\rm C}$ (101 MHz, C₆D₆) -4.4 (CH₃Si), -4.3 (CH₃Si), 17.9 ((CH₃)CSi), 25.8 ((CH₃)CSi), 30.4 (C-1), 38.8 (C-2), 42.1 (C-4), 42.7 (C-5), 69.4 (C-3), 122.4, 122.7, 122.7, 127.1, 128.3, 128.3, 128.7, 128.7, 129.3, 133.3, 133.4, 133.4, 133.4, 133.7, 135.8, 136.0, 136.2, 136.2, 141.1, 148.0, 148.9, 149.0; HRMS (ESI) calc for C₅₁H₅₄O₁₀S₃SiNa [M+Na] 973.2540 found 973.2535.

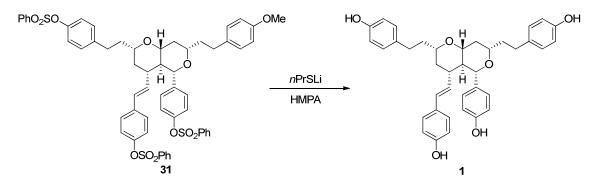
(3S, 6E, 1'E)-5-(4'Benzenesulfoxyphenyl)ethenyl-1,7-di(4'-(benzenesulfoxyphenyl)hept-6-en-3-ol 29

TBS ether **28** (410 mg, 0.43 mmol) was suspended in 2% HCl/ethanol (30 ml), acetone (2 ml) was added to aid solubility and the reaction was stirred for 18 h after which HCl (0.6 ml) was added and the reaction was stirred for a further 1 h. Water (20 ml) and ethyl acetate (30 ml) were added and the mixture was extracted with ethyl acetate (3 x 30 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 30-40% ethyl acetate in petrol as the eluent to give *alcohol* **29** (295 mg, 0.35 mmol, 82%). $[\alpha]_D^{23}$ -5.0 (*c*. 1.0 CHCl₃); v_{max}/cm⁻¹ 3566, 3067, 2925, 2855, 1500, 1449, 1368, 1197, 1176, 1148, 1091, 861, 747, 685, 578; δ_H (400 MHz, C₆D₆) 1.32 – 1.62 (4H, m, 2-H₂ & 4-H₂), 2.32 (1H, m, 1-H*H*), 2.47 (1H, m, 1-*H*H), 3.13 (1H, p, *J* 7, 5-H), 3.40 (1H, m, 3-H), 5.81 (1H, dd, *J* 16, 7, 1'-H), 5.91 (1H, dd, *J* 16, 7, 6-H), 6.13 (1H, d, *J* 16, 2'-H), 6.20 (1H, d, *J* 16, 7-H), 6.61 – 7.00 (21H, m, Ar), 7.55 – 7.80 (6H, m, Ar); δ_C (101 MHz, C₆D₆) 31.1 (C-1), 39.4 (C-2), 42.4 (C-4), 43.1 (C-5), 68.3 (C-3), 122.3, 122.6, 122.7, 127.1, 127.1, 128.3, 128.3, 128.7, 128.7, 129.4, 132.9, 133.4, 133.4, 133.9, 135.8, 135.8, 136.0, 136.2, 136.3, 141.1, 148.0, 148.9, 148.9; HRMS (ESI) calc for C₄₅H₄₀O₁₀S₃Na [M+Na] 859.1678 found 859.1712.


(-)-(1*R*, 3*S*, 5*S*, 6*S*, 7*S*)-3-(*p*-Benzenesulfoxyphen)ethyl-5-(*E*)-(*p*-benzenesulfoxyphen)ethynyl-7-(*p*-benzenesulfoxy)phenyl-2,8-dioxabicyclo[4.4.0]decan-9-one 30

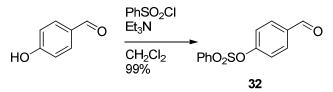
Trimethylsilyl trifluoromethanesulfonate (77 µl, 0.43 mmol) was added to a stirring solution of alcohol **29** (179 mg, 0.21 mmol) and methyl 3,3-dimethoxypropanoate **8** (121 µl, 0.86 mmol) in CH₂Cl₂ (20 ml) at - 30 °C under N₂. The reaction mixture was stirred for 1.5 h before being quenched by the addition of water (20 ml). The phases were separated and the aqueous phase was washed with CH₂Cl₂ (2 x 30 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column

chromatography using 30-50% ethyl acetate in petrol as the eluent to yield *lactone* **30** as a pale yellow oil (142 mg, 0.16 mmol, 75%). m.p. $[\alpha]_D^{21}$ -20.0 (*c*. 1.0 CHCl₃); v_{max}/cm^{-1} 2924, 2854, 1738, 1501, 1369, 1198, 1177, 1149, 1091, 862, 749, 685; δ_H (400 MHz, CDCl₃) 1.32 (1H, m, 4-*H*H), 1.59 (1H, ddd, *J* 13.5, 4, 2, 4-H*H*), 1.63 – 1.85 (2H, m, 1"-H₂), 1.88 (1H, q, *J* 10, 6-H), 2.32 (1H, m, 5-H), 2.54 – 2.84 (3H, m, 2"-H₂ & 10-H_{ax}), 3.11 (1 H, dd, *J* 18, 5.5, 10-H_{eq}), 3.45 (1H, m, 3-H), 3.67 (1H, ddd, *J* 11.5, 10, 5.5, 1-H), 4.94 (1H, d, *J* 10, 7-H), 5.07 (1H, dd, *J* 16, 9, 1'-H), 5.94 (1H, d, *J* 16, 2'-H), 6.70 (2H, d, *J* 8.5, Ar), 6.82 (3H, dd, *J* 15, 8.5, Ar), 6.92 (2H, d, *J* 8.5, Ar), 7.10 (2H, d, *J* 8.5, Ar), 7.16 (2 H, d, *J* 8.5, Ar), 7.48 – 7.60 (7H, m, Ar), 7.65 – 7.77 (5H, m, Ar), 7.86 (4H, m, Ar); δ_C (101 MHz, CDCl₃) 30.7 (C-2"), 37.0 (C-1"), 37.2 (C-10), 39.0 (C-4), 42.3 (C-5), 47.6 (C-6), 73.2 (C-3), 75.4 (C-1), 84.1 (C-7), 122.2, 122.3, 122.4, 126.7, 128.4, 128.4, 128.4, 128.5 (C-2'), 129.1, 129.1, 129.2, 129.3, 129.5, 130.0, 132.9 (C-1') 134.2, 134.3, 134.3, 135.2, 135.3, 135.4, 135.5, 137.1, 140.8, 147.7, 148.6, 149.6, 168.5 (C-9); HRMS (ESI) calc for C₄₈H₄₂O₁₂S₃Na [M+Na] 929.1730, found 929.1702.


(-)-(1*R*, 3*S*, 5*S*, 6*S*, 7*S*, 9*S*)- 3α, 9α-di(*p*-Benzenesulfoxyphen)ethyl-5α-(*E*)-(*p*-benzenesulfoxyphen)ethynyl-7α-(*p*-benzenesulfoxy)phenyl-2,8-dioxabicyclo[4.4.0]decane 31

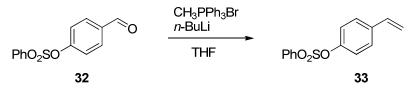
Methoxyphenethyl bromide (1 ml, 1376 mg, 6.40 mmol) was added to a solution of vacuum dried magnesium (171 mg, 7.04) in tetrahydrofuran (6.4 ml). A single crystal of iodine was added and the reaction mixture was warmed to initial reaction. On cooling to room temperature the magnesium was seen to be consumed. 1 ml of the resulting solution was added slowly to a solution of lactone **30** (275 mg, 0.303 mmol) in tetrahydrofuran (20 ml) at 0 °C. The reaction was warmed to room temperature and stirred for 4 h before the reaction mixture was quenched with saturated ammonium chloride (30 ml) and extracted with ethyl acetate (3 x 50 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 20-50% ethyl acetate in petrol as the eluent to give *lactol* (168 mg, 0.161 mmol, 53%) as a pale yellow oil. Lactol was dissolved in dichloromethane (20 ml) and triethylsilane (258 μ l, 1.61 mmol) was added. The reaction mixture was cooled to -78 °C and TMSOTf (44 μ l, 0.242 mmol) was added dropwise. The reaction was stirred at -78 °C for 1 h before quenching with saturated ammonium chloride (30 ml) and extracting with

dichloromethane (3 x 30 ml). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and filtered through a silica plug using 60% ethyl acetate in petrol as the eluent to give *bicycle* **31** (131 mg, 0.128 mmol, 42% over two steps, 76% from lactol) as a pale yellow oil. $[\alpha]_D^{22}$ -41.0 (*c*. 1.0 CHCl₃); v_{max} /cm⁻¹ 2930, 1501, 1449, 1371, 1198, 1176, 1149, 863. δ_H (500 MHz, CDCl₃) 1.26 (1H, m, 4-HH), 1.45 (1H, m, 4-HH), 1.54 – 1.64 (3H, m, 6-H, 10-HH & 1"-HH), 1.72 – 1.83 (2H, m, 1" *H*H & 1""-*H*H), 1.89 (1H, m, 1""-H*H*) 2.01 (1H, m, 10-H*H*), 2.17 (1H, m, 5-H), 2.54 – 2.73 (4H, m, 2"-H & 2""-H), 3.30 (1H, m, 1-H), 3.35 (1H, m, 3-H), 3.49 (1H, m, 9-H), 3.78 (3H, s, *CH*₃O) 3.95 (1H, d, *J* 10, 7-H), 5.01 (1H, dd, *J* 16, 9.0, 1'-H), 5.75 (1H, d, *J* 16, 2'-H), 6.65 (2H, d, *J* 8, Ar), 6.79 (4H, dd, *J* 12, 8, Ar), 6.88 (4H, d, *J* 8, Ar), 7.06 (5H, dd, *J* 11, 8, Ar), 7.51 (8H, m, Ar), 7.58 – 7.68 (4H, m, Ar), 7.73 (2H, d, *J* 8, Ar), 7.82 (6H, t, *J* 8, Ar); δ_C (101 MHz, CDCl₃) 30.3 & 30.9 (C-2" & C-2"'), 37.3 (C-1"), 37.6 (C-1""), 37.9 (C-10), 40.2 (C-4), 42.0 (C-5), 50.6 (C-6), 55.2 (MeO), 75.0 (C-9), 75.4 (C-3), 78.8 (C-1), 82.3 (C-7), 113.7, 122.1, 122.2, 126.5, 127.1 (C-2'), 128.3, 128.4, 128.5, 129.1, 129.1, 129.1, 129.3, 129.4, 129.5, 133.9, 134.1, 134.2, 134.2, 134.9 (C-1'), 135.4, 135.5, 135.7, 136.0, 140.0, 141.1, 147.6, 148.3, 148.9, 157.7; HRMS (ESI) calc for C₅₇H₅₄O₁₂S₃Na [M+Na] 1049.2669, found 1049.2632.


(-)-Blepharocalyxin D 1

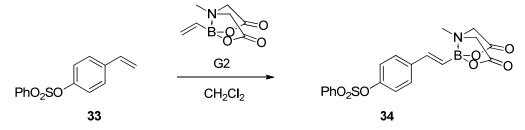
n-Butyllithium (1.90 ml, 3 mmol, 1.58 M in hexanes) was added dropwise to a solution of propanethiol (272 µl, 3 mmol) in HMPA (2 ml) under N₂ at 0 °C. After 1hr, the reaction mixture was warmed to room temperature and the hexane was removed *in vacuo*. To the resulting solution of lithium propanethiolate, a solution of bicycle **35** (20 mg, 0.019 mmol) in HMPA (1 ml) was added slowly. The reaction mixture was heated to 180 °C for 30 minutes before cooling to room temperature. Water (20 ml) was added and the mixture was extracted with ethyl acetate (3 x 20 ml). The combined organic fractions were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography using 50% ethyl acetate in hexane to give (–)-blepharocalyxin D **1** (9.6 mg, 0.016 mmol, 85%) as a pale yellow solid. $[\alpha]_D^{21}$ -79.2 (*c*. 0.23 MeOH); lit.⁶ $[\alpha]_D^{22}$ -77.1 (*c*. 0.11 MeOH); δ_H (Acetone-D₆, 400MHz) 1.08 (1H, m, 4-*H*H), 1.50 – 1.81 (7H, m, 1"-H₂, 1"''-H₂, 4-H*H*, 6-H & 10-*H*H), 2.00 (1H, ddd, *J* 12, 4.0, 1.5, 10-H*H*), 2.22 (1H, m, 5-H), 2.49 – 2.67 (4H, m, 2"-H₂ & 2"''-H₂), 3.36 (1H, m, 1-H), 3.42 – 3.63 (2H, m, 3-H & 9-H), 3.99 (1H, d,

J 10, 7-H), 5.06 (1H, dd, J 16, 8.5, 1'-H), 5.82 (1H, d, J 16, 2'-H), 6.50 – 6.69 (4H, m, Ar), 6.69 – 6.78 (5H, m, Ar), 6.87 – 7.08 (5H, m, Ar), 8.37 – 8.58 (2H, m, Ar); δ_C (Acetone-D₆, 126MHz) 30.4 & 30.5 (C-2" & C-2""), 38.1 & 38.2 (C-1" & C-1""), 38.4 (C-10), 40.6 (C-4), 41.6 (C-5), 51.2 (C-6), 74.6, 75.4, 79.1 (C-1), 82.7 (C-7), 114.6, 114.7, 115.0, 115.1, 126.9, 127.0 (C-2'), 129.2, 129.3, 129.7, 132.1 (C-2'), 132.7, 132.8, 132.9, 155.4, 155.5, 156.0, 156.9. HRMS (ESI) calc for C₃₈H₄₀O₆Na [M+Na] 615.2713, found 615.2717.

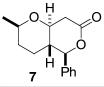

4-(Benzenesulfoxy)benzaldehyde 32

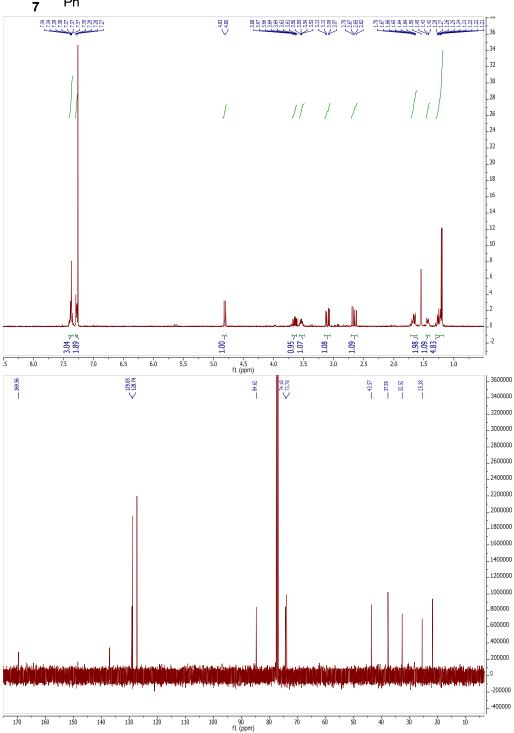
4-Hydroxybenzaldehyde (2.5g, 20.47 mmol) was suspended in CH₂Cl₂ (35 ml) under N₂ and cooled to 0 °C. Benzenesulfonyl chloride (2.6 ml, 20.47 mmol) and triethylamine (2.8 ml, 20.47 mmol) were added dropwise, the reaction was warmed to room temperature and stirred for 2 hrs. 1M HCl (30 ml) was added and the reaction mixture was washed with 1M HCl (2×30 ml). The organic phase was dried over MgSO₄ and concentrated in vacuo to give aldehyde 32 (5.34 g, 20.36 mmol, 99%) as a colorless solid mp 78-79 °C, lit mp 81-82 °C⁶; δ_H (400 MHz, CDCl₃) 7.09 – 7.24 (2H, m, Ar), 7.48 – 7.60 (2H, m, OSO₂Ph), 7.68 (1H, m, OSO₂Ph), 7.78 – 7.88 (4H, m, OSO₂Ph & Ar), 9.97 (1H, s, 1-H); δ_C (101 MHz, CDCl₃) 123.0, 128.4, 129.3, 131.3, 134.6, 134.9, 135.1, 153.7, 190.6 (C-1).

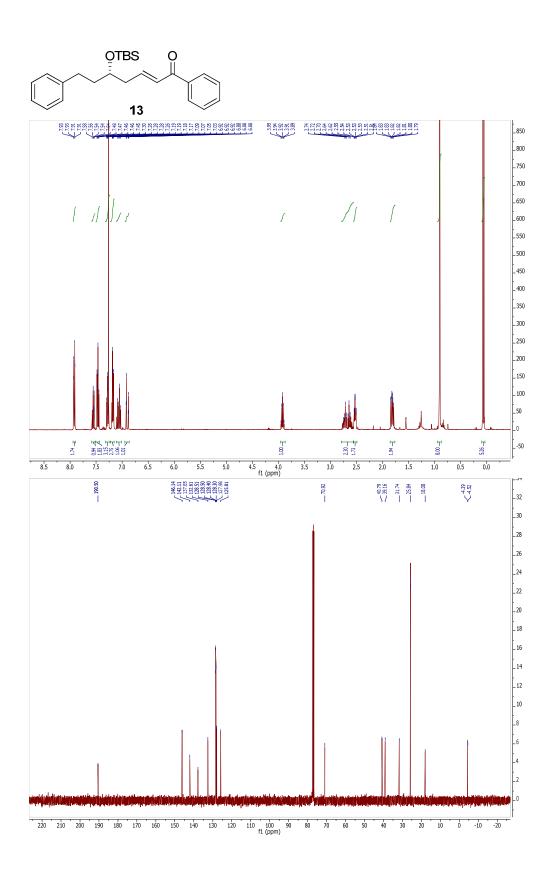
Spectroscopic data in accordance with literature data.⁷

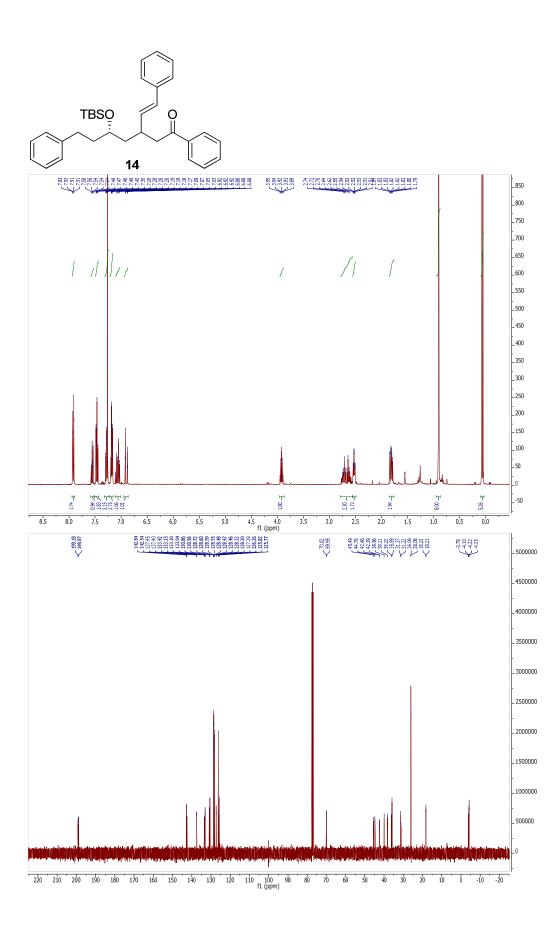

(4'-Benzenesulfoxyphenyl)ethene 33

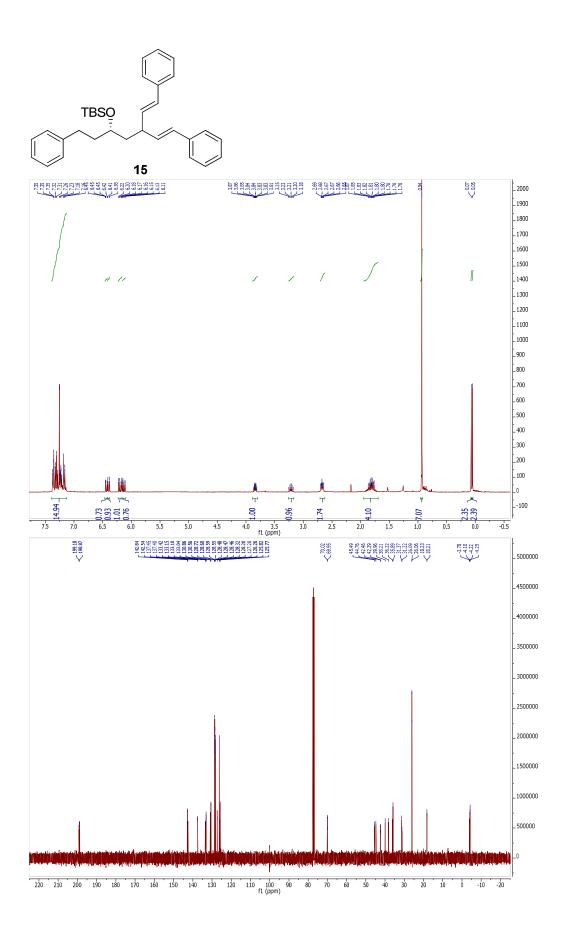
n-Butyllithium (5 ml, 7.85 mmol, 1.57 M in hexanes) was added dropwise to a stirring suspension of methyltriphenylphosphonium bromide (2.73 g, 7.63 mmol) in THF (30 ml) at -78 °C under N₂. After stirring for 0.5 hr, a solution of aldehyde 32 (1.00 g, 3.81 mmol) in THF (10 ml) was added slowly. The reaction was allowed to warm to room temperature overnight then quenched with saturated ammonium chloride (60 ml) and was extracted with diethyl ether (3 x 50 ml). The combined organic phases were dried over MgSO₄, concentrated in vacuo and purified by flash chromatography using 2% ethyl acetate in petrol as the eluent to yield *styrene* **33** as a colorless oil (603 mg, 2.32 mmol, 61%). v_{max}/cm^{-1} 3069, 1501, 1372, 1199, 1178, 862, 848; δ_H (400 MHz, CDCl₃) 5.27 (1H, d, J 11, 2-HH), 5.69 (1H, d, J 17.5. 2-HH),

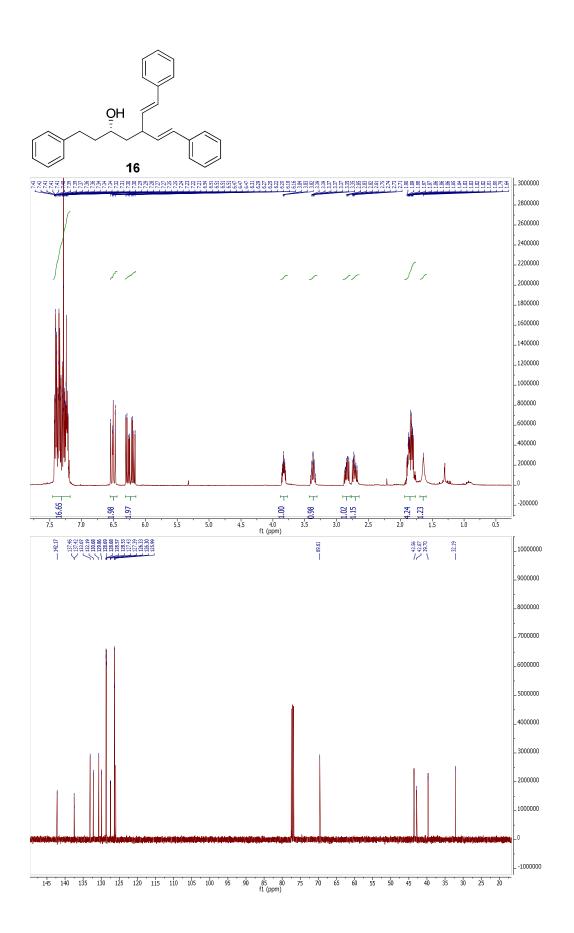

6.65 (1H, dd, *J* 17.5, 11, 1-H), 6.93 (2H, d, *J* 8.5), 7.31 (2H, d, *J* 8.5), 7.53 (2H, tt, *J* 8, 1, OSO₂Ph), 7.67 (1H, tt, *J* 8, 1, OSO₂Ph), 7.84 (2H, dd, *J* 8, 1, OSO₂Ph); δ_C (101 MHz, CDCl₃) 115.0 (C-2), 122.4, 127.3, 128.5, 129.1, 134.2, 135.3, 135.4 (C-1), 136.6, 148.9; HRMS (ESI) calc for C₁₄H₁₂O₃SNa [M+Na] 283.0399 found 283.0409.

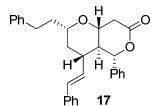

4'-Benzenesulfoxyphenethyl boronic acid MIDA boronate 34

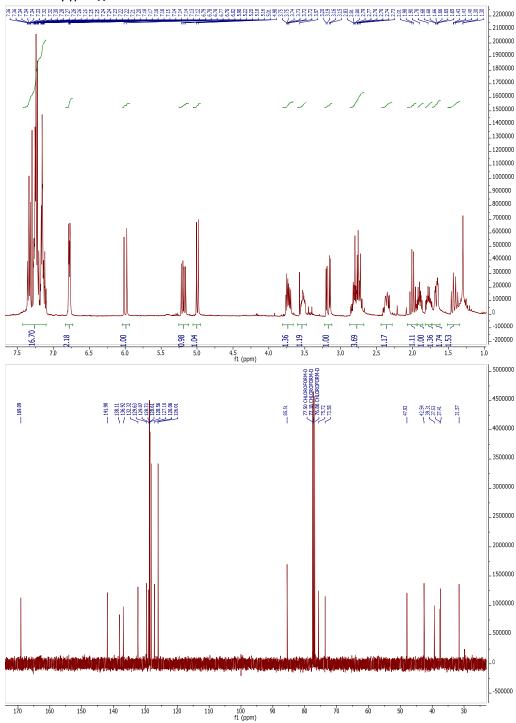


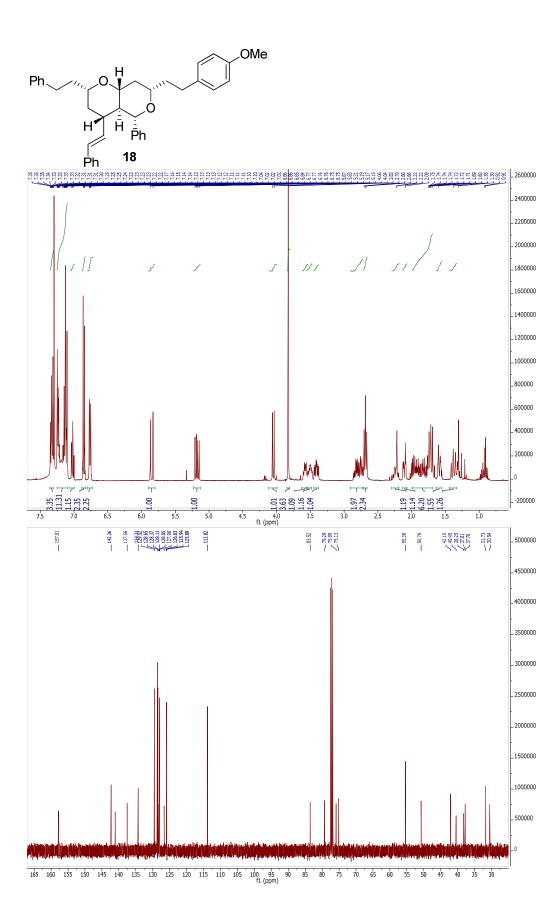

Styene **33** (559 mg, 2.15 mmol), vinyl boronic acid MIDA boronate (260 mg, 1.42 mmol) and Grubbs 2nd generation catalyst (121 mg, 0.14 mmol) were combined in CH₂Cl₂ (20 ml) and heated under reflux for 24 hrs. After cooling to room temperature, solvent was removed *in vacuo* and the residue was purified by column chromatography using 20% acetonitrile in diethyl ether as the eluent to yield *boronate* **34** (457 mg, 1.10 mmol, 77%). mp 174-176 °C; v_{max}/cm^{-1} 3008, 2963, 1769, 1750, 1503, 1345, 1196, 1174, 1146, 1027, 852; $\delta_{\rm H}$ (400 MHz, acetone) 3.06 (3H, s, CH₃), 4.08 (2H, d, *J* 17), 4.26 (2H, d, *J* 17), 6.35 (1H, d, *J* 18), 6.91 (1H, d, *J* 18), 7.00 (2H, d, *J* 8.5, Ar), 7.51 (1H, d, *J* 8.5, Ar), 7.62 – 7.72 (2H, m, OSO₂Ph), 7.82 (1H, m, OSO₂Ph), 7.84 – 7.91 (2H, m, OSO₂Ph); HRMS (CI) calc for C₁₉H₁₉BNO₇S [M+H] 416.0975 found 416.0965.

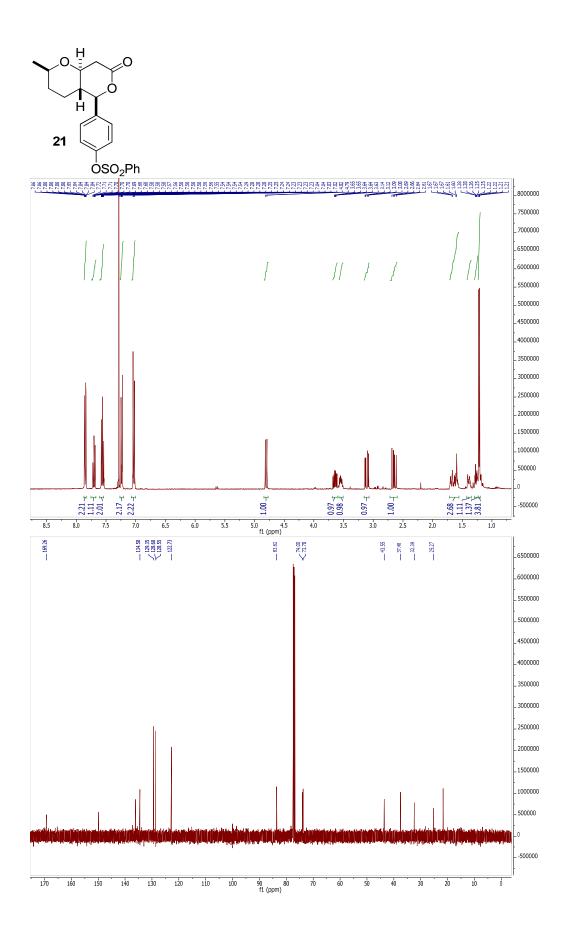

NMR Spectra of novel compounds

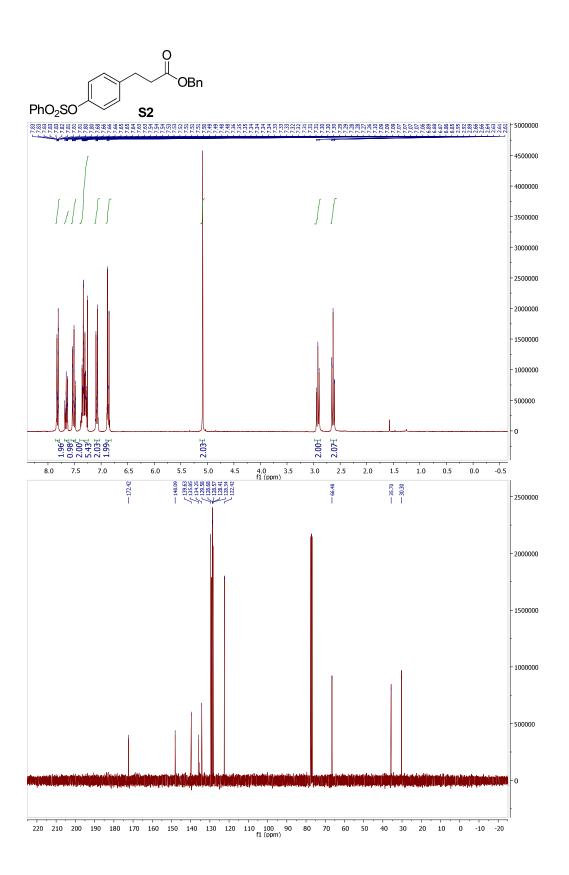


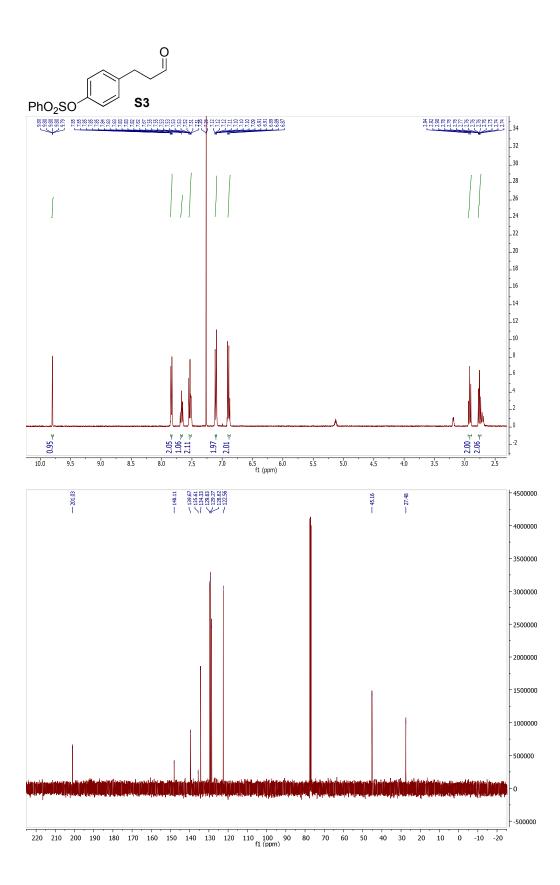


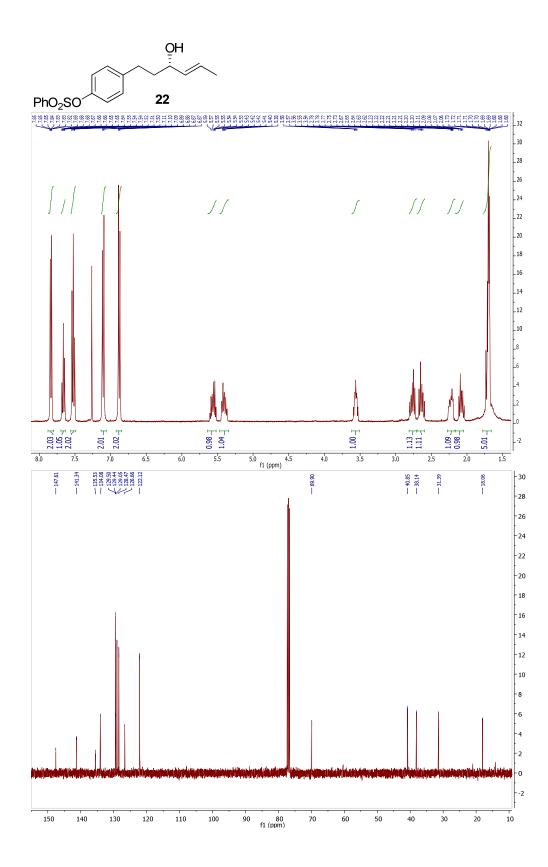


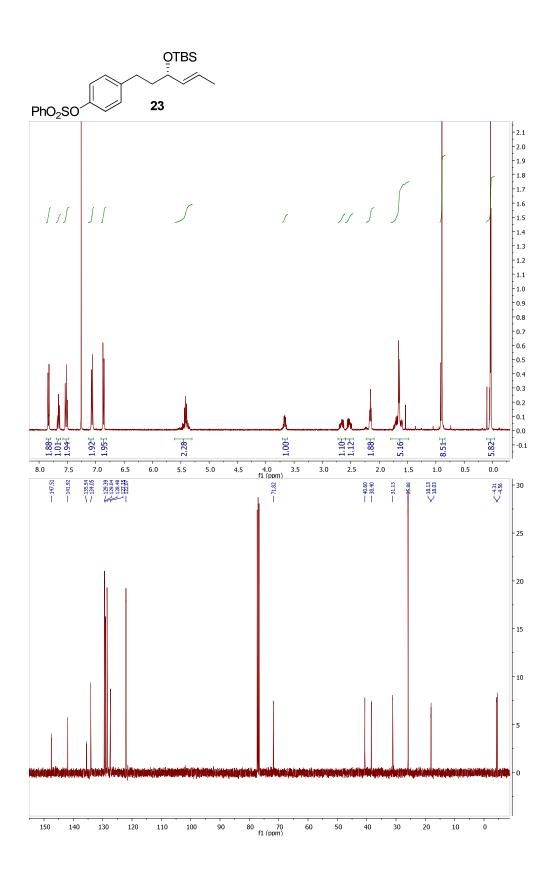


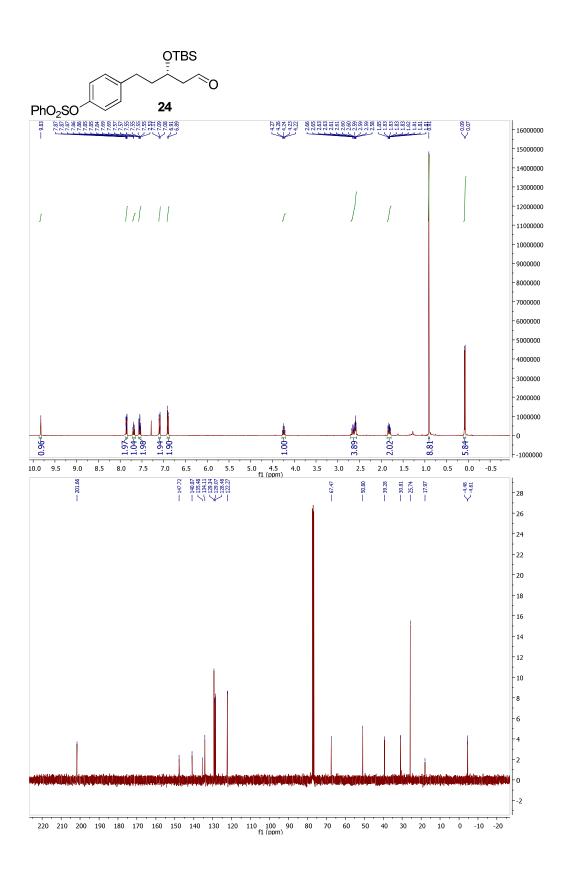


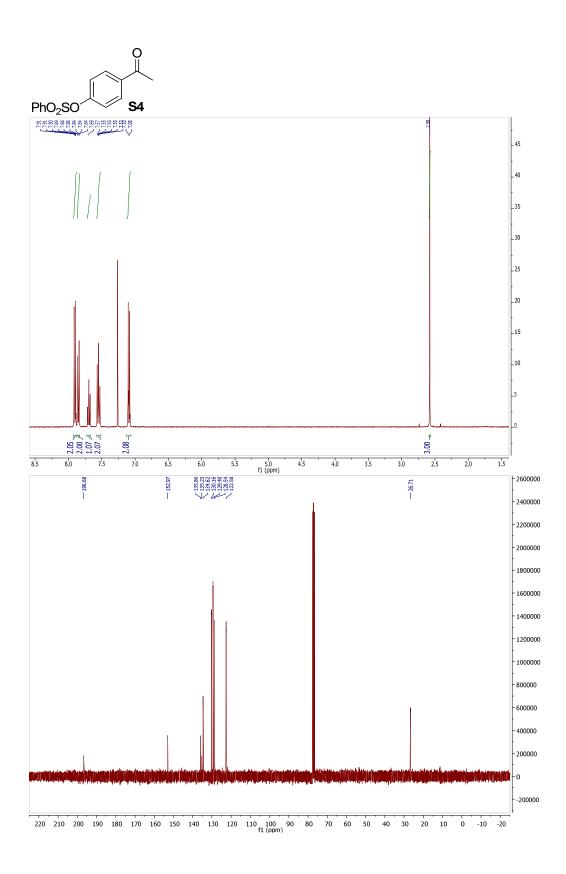


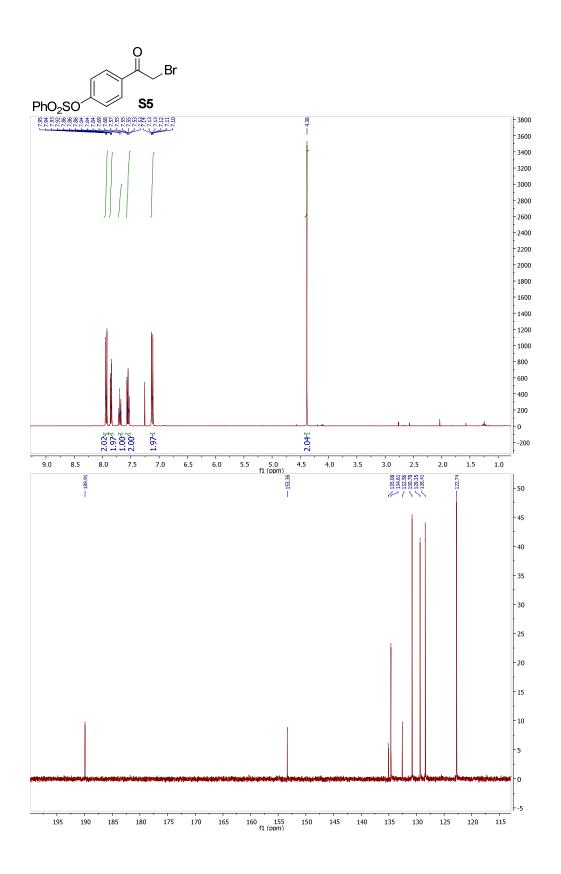


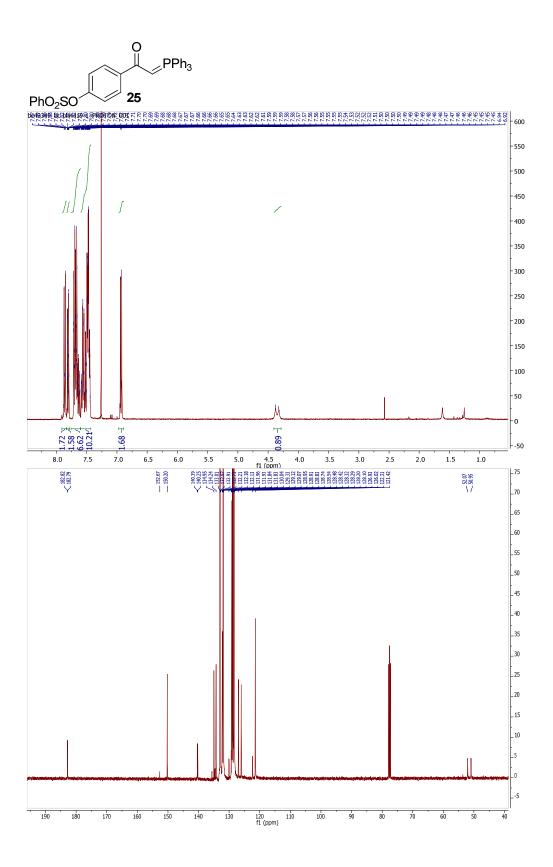


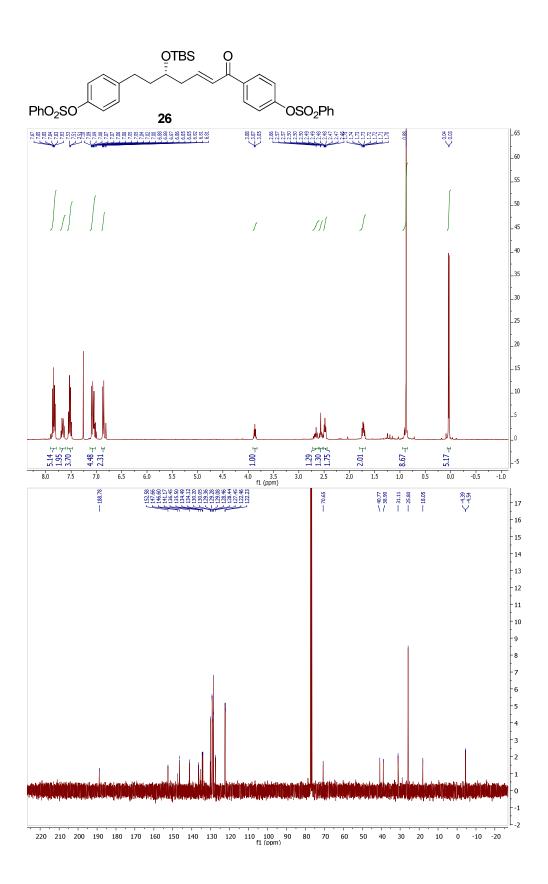


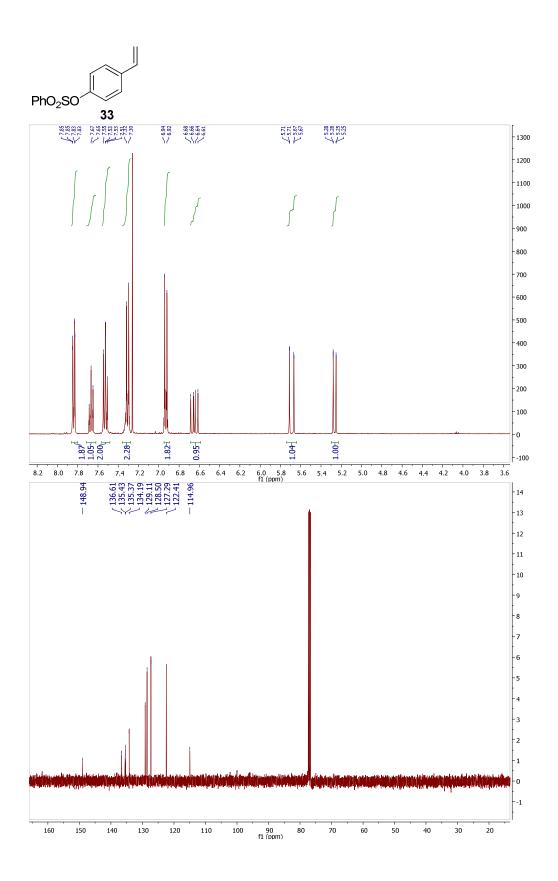


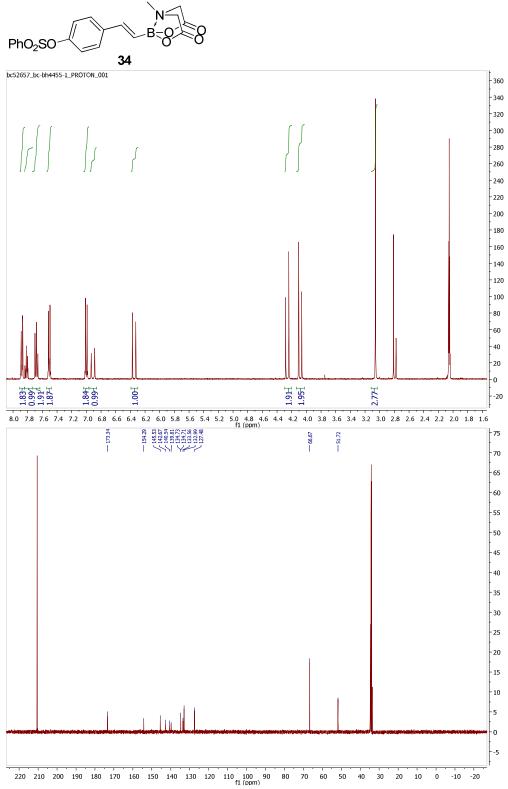


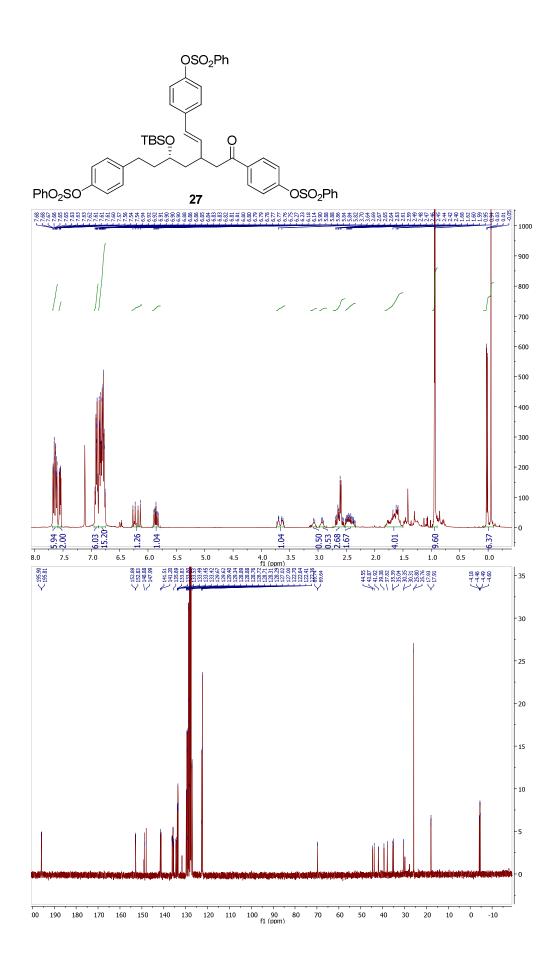


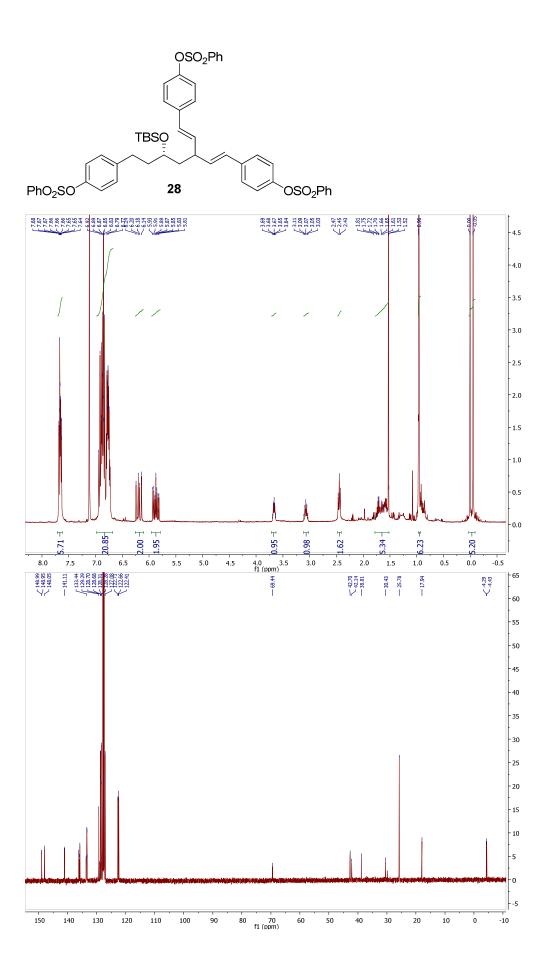


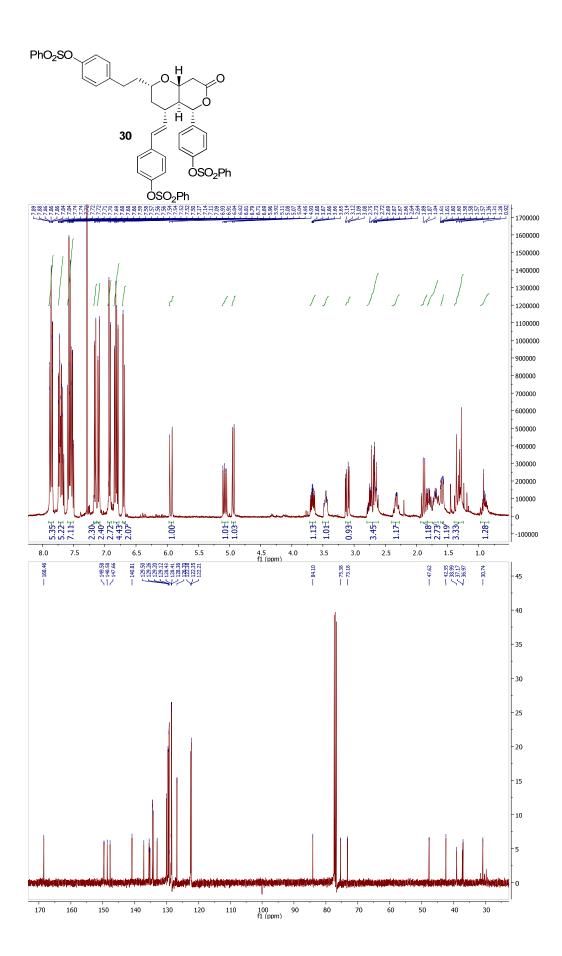


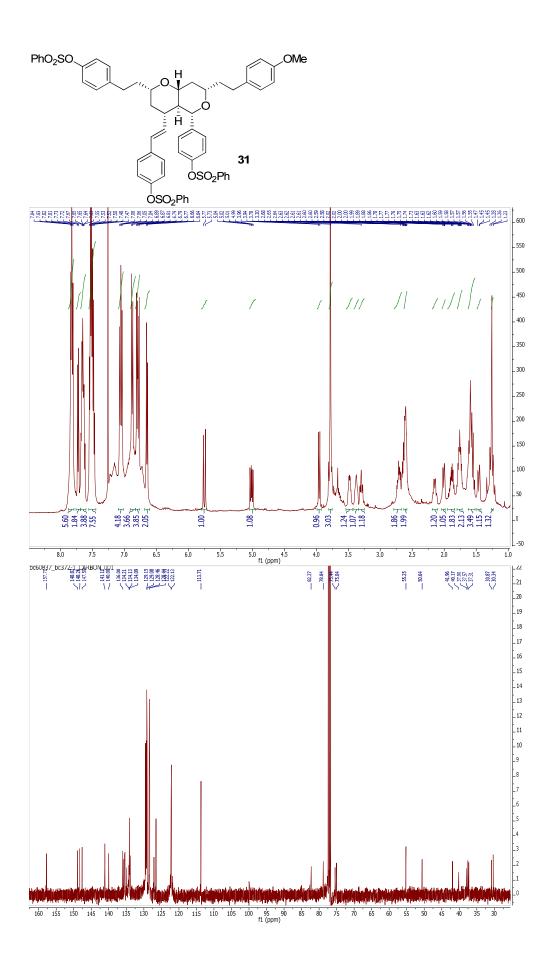


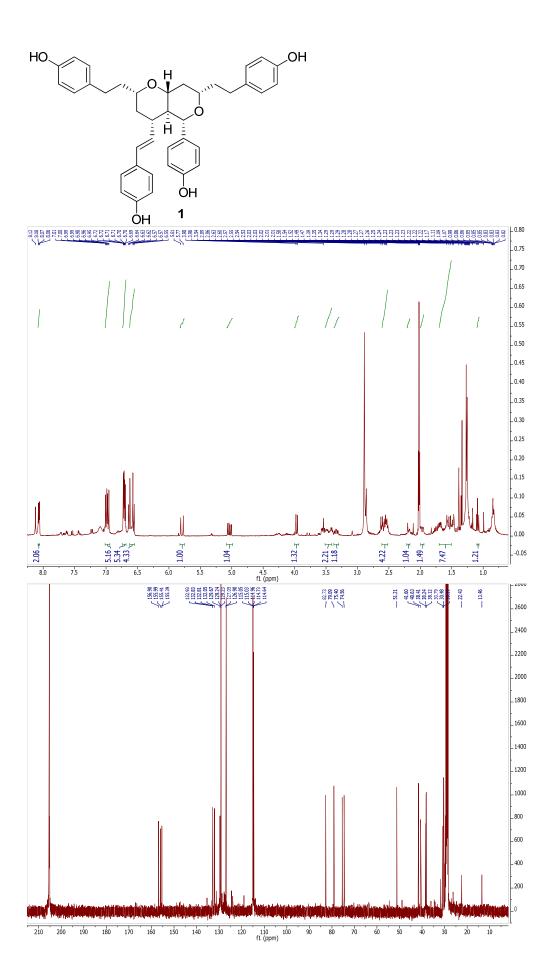












References

(1) de Fátima, Â.; Kohn, L. K.; de Carvalho, J. E.; Pilli, R.. A. Bioorg. Med. Chem. 2006, 14, 622.

(2) Bunt, A. J.; Bailey, C. D.; Cons, B. D.; Edwards, S. J.; Elsworth, J. D.; Pheko, T.; Willis, C. L. Angew. Chem. Int. Ed 2012, 51, 3901.

- (3) Hon, Y.-S.; Wong, Y.-C.; Chang, C.-P.; Hsieh, C.-H. Tetrahedron 2007, 63, 11325.
- (4) Kramer, S.; Dooleweerdt, K.; Lindhardt, A. T.; Rottlander, M.; Skrydstrup, T. Org. Lett. 2009, 11, 4208.
- (5) Guo, W.; Li, J. F.; Fan, N. J.; Wu, W. W.; Zhou, P. W.; Z. Xia, C. Z. Synth. Comm. 2005, 35, 145.
- (6) Ko, H. M.; Lee, D. G.; Kim, M. A.; Kim, H. J.; Park, J.; Lah, M. S.; Lee, E. Tetrahedron 2007, 63, 5797.
- (7) Tian, X.; Jaber, J. J.; Rychnovsky, S. D. J. Org. Chem. 2006, 71, 3176.