Total Synthesis of (-)-Blepharocalyxin D and Analogues

Benjamin D. Cons, Adam J. Bunt, Christopher D. Bailey and Christine L. Willis*

School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
Chris.willis@bristol.ac.uk

General Experimental

All commercially available compounds were used without further purification. Anhydrous solvents were obtained by passing through a modified Grubbs system of alumina columns, manufactured by Anhydrous Engineering. Routine monitoring of reactions was performed using precoated Merck-Keiselgel $60 \mathrm{~F}_{254}$ aluminium backed TLC plates. The spots were visualised by UV_{254} light and/or dipping the plates in potassium permanganate, phosphomolybdic acid or vanillin solutions followed by heating. All air or moisture sensitive reactions were carried out in flame-dried glassware under a positive pressure of nitrogen using standard syringe/septa techniques. Flash column chromatography ${ }^{1}$ was performed using silica gel (obtained from Fluorochem Ltd. or Sigma-Aldrich) as the adsorbent. Petroleum ether is of the $40-60{ }^{\circ} \mathrm{C}$ boiling point range.

Melting points were determined on an electrothermal apparatus and are uncorrected. Infrared spectra were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer in the solid or liquid state. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using either Jeol ECP $400\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 101 \mathrm{MHz}\right)$; a Jeol Lambda $300\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 76 \mathrm{MHz}\right)$; a Varian $400\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 101 \mathrm{MHz}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced to the residual protio solvent. All chemical shifts (δ) are reported in ppm and coupling constants (J) are in Hertz (Hz) and are reported to the nearest half integer. DEPT 135, COSY and HSQC NMR spectra were routinely used to definitively assign the signals of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra. Chemical ionisation (CI) mass spectra were recorded on a VG Autospec mass spectrometer. Electrospray (ESI) mass spectra were recorded on a VG Quattro mass spectrometer. Methane was the ionisation gas used for chemical ionisation.

Experimental Procedures

Methyl (2E, 8E)-5-methyl-9-phenyl-4-oxanona-2,8-dienoate 6

Methyl propiolate ($0.23 \mathrm{~mL}, 2.59 \mathrm{mmol}, 1.2$ eq.) in dry DCM (20 mL) was added dropwise over a period of 3 h to a solution of alcohol 5 ($380 \mathrm{mg}, 2.16 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and quinuclidine (9 \mathrm{mg}$, cat.) in dry DCM $(15 \mathrm{~mL})$ at room temperature under nitrogen. Upon complete addition the reaction was stirred for 5 h before addition of a $5 \% \mathrm{v} / \mathrm{v}$ aqueous solution of acetic acid (5 mL). The solution was stirred vigorously for 0.5 h and the layers were separated. The aqueous phase was extracted with DCM ($2 \times 25 \mathrm{~mL}$). The combined organic phases were washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, dried over MgSO_{4} and the solvent was removed in vacuo. Purification by flash column chromatography eluting with 5% EtOAc in petrol gave enol-ether 6 ($330 \mathrm{mg}, 59 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2980,2949,1737,1241,1211$, $1132,1046,750 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.31\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.70(1 \mathrm{H}$, dddd, $J 14.0,9.0,7.0,5.0,6-$ $H \mathrm{H}), 1.86(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H} H), 2.22-2.36\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.12(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{d}, J$ $12.5,2-\mathrm{H}), 6.18$ ($1 \mathrm{H}, \mathrm{dt}, J 15.5$ and $7.0,8-\mathrm{H}$), 6.41 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 15.5,9-\mathrm{H}$), $7.19-7.24$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $7.28-$ $7.36(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{d}, J 12.5,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.0\left(\mathrm{CH}_{3}\right), 28.7(\mathrm{C}-7), 35.8(\mathrm{C}-6)$, $51.0\left(\mathrm{OCH}_{3}\right), 79.0(\mathrm{C}-5), 96.9(\mathrm{C}-2), 126.0(2 \times \mathrm{C}-\mathrm{Ar}), 127.1$ (C-Ar), 128.5 (2 x C-Ar), 129.1 (C-8), 130.8 (C-9), 137.4 (C-Ar), 162.1 (C-3), 168.5 (C-1); Found (CI) $261.1495[\mathrm{MH}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}\right.$ requires 261.490)
$(\pm)-(1 \alpha, 6 \beta)-3 \beta$-Methyl-7 β-phenyl-2,8-dioxabicyclo[4.4.0]decan-9-one 7

TMSOTf ($0.42 \mathrm{~mL}, 2.30 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added dropwise to a stirred solution of enol-ether $\mathbf{6}$ (300 mg , $1.15 \mathrm{mmol}, 1.0$ eq.) in dry $\mathrm{DCM}(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After 1.5 h the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and the layers were separated. The aqueous phase was extracted with $\operatorname{DCM}(3 \times 30 \mathrm{~mL})$, dried over MgSO_{4} and the solvent was removed in vacuo. Recrystallisation from EtOAc gave lactone 7 ($195 \mathrm{mg}, 69 \%$) as a colorless crystalline solid; M.p. $160-162{ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ 2977, 2941, 2919, 2882, 1730, 1084; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.21\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.23-1.28(2 \mathrm{H}, \mathrm{m}, 4-$ $H \mathrm{H}$ and $5-\mathrm{HH}), 1.44(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}$ or $5-\mathrm{HH}), 1.65-1.72(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}$ or $5-\mathrm{HH}$ and $6-\mathrm{H}), 2.66(1 \mathrm{H}, \mathrm{dd}, J$ 18.0 and $\left.11.0,10-\mathrm{H}_{\mathrm{ax}}\right), 3.11\left(1 \mathrm{H}, \mathrm{dd}, J 18.0\right.$ and $\left.6.0,10-\mathrm{H}_{\mathrm{eq}}\right), 3.55(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.65(1 \mathrm{H}, \mathrm{ddd}, J 11.0$, 10.0 and $6.0,1-H), 4.82(1 \mathrm{H}, \mathrm{d}, J 10.5,7-\mathrm{H}), 7.28-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.36-7.41(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.6\left(\mathrm{CH}_{3}\right), 25.3$ and $32.4(\mathrm{C}-4$ and $\mathrm{C}-5), 37.5(\mathrm{C}-10), 43.5(\mathrm{C}-6), 73.7$ and $74.1(\mathrm{C}-1$ and C-3), 84.5 (C-7), 127.1 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.6 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.9 (C-Ar), 136.9 (C-Ar), 169.4 (C-9); Found (CI) $247.1379[\mathrm{MH}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}\right)$ requires 247.1334; Elemental Analysis Calc. (\%) for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$: C 73.15, H 7.37, Found C 72.98, H 7.09.

Method 2

5

7

TMSOTf ($0.39 \mathrm{~mL}, 2.19 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added dropwise to a stirred solution of alcohol 5 (193 mg , $1.1 \mathrm{mmol}, 1.0$ eq.) and methyl 3,3-dimethoxypropionate ($0.46 \mathrm{~mL}, 3.29 \mathrm{mmol}, 3 \mathrm{eq}$.) in dry DCM (15 $\mathrm{mL})$ at $-30{ }^{\circ} \mathrm{C}$ under nitrogen. After 1 h saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added and the phases were separated. The aqueous phase was extracted with DCM ($2 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over MgSO_{4} and the solvent removed in vacuo. Purification by flash column chromatography eluting with $10-40 \%$ EtOAc in petrol gave lactone 7 ($182 \mathrm{mg}, 67 \%$) as a colorless crystalline solid; spectroscopic data as above.

(S)-1-Phenylhex-5-en-3-ol 9

Titanium isopropoxide ($1.1 \mathrm{ml}, 1.08 \mathrm{~g}, 3.80 \mathrm{mmol}$) was added dropwise to a suspension of (R)-1,1'-bi-2naphthol ($1.09 \mathrm{~g}, 3.80 \mathrm{mmol}$) and $4 \AA$ molecular sieve powder in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{ml})$ under N_{2} turning the suspension bright red. The resulting suspension was refluxed for 1 h before cooling to room temperature. 3-Phenylpropanal ($5 \mathrm{ml}, 5.09 \mathrm{mg}, 37.97 \mathrm{mmol}$) was added and stirred for 10 minutes. The reaction was cooled to $-78^{\circ} \mathrm{C}$ and allyltributyltin ($12.8 \mathrm{ml}, 13.83 \mathrm{mg}, 41.77 \mathrm{mmol}$) was added slowly. After stirring for 10 minutes the reaction was placed in a $-20{ }^{\circ} \mathrm{C}$ freezer under N_{2} for 80 h . The mixture was warmed to room temperature and saturated aqueous sodium hydrogen carbonate (8 ml) was added and reaction was stirred for $1 \mathrm{hr} . \mathrm{MgSO}_{4}$ was added and stirred for 10 minutes, then filtered and the resulting red solution was concentrated in vacuo. The crude material was purified by column chromatography using 5% ethyl acetate in petroleum ether 40-60 as the eluent to yield alcohol 9 as a yellow oil ($5.53 \mathrm{~g}, 31.39 \mathrm{mmol}, 83 \%$ yield). $[\alpha]_{\mathrm{D}}^{22}-25.0\left(c .2 .0 \mathrm{CHCl}_{3}\right) \operatorname{lit}[\alpha]_{\mathrm{D}}^{25}-30\left(c .2 .0, \mathrm{CHCl}_{3}\right) \delta_{\mathrm{H}}\left(\mathrm{CHCl}_{3}, 400 \mathrm{MHz}\right) 1.61-1.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 1.76-1.84\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.19(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}), 2.34(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}), 2.69(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H} H), 2.82(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{HH}), 3.68(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.16\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 5.83(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.15-7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) . \delta_{\mathrm{c}}\left(\mathrm{CHCl}_{3}\right.$, $100 \mathrm{MHz}) 32.2$ (C-2), 38.5 (C-1), 42.2 (C-4), 70.0 (C-3), 118.5 (C-6), 126.0, 128.5, 128.6, 134.7 (C-5), 142.2 (i-Ar). Spectroscopic data in accordance with literature data. ${ }^{1}$

(S)- 3-tert-Butyldimethylsilyloxy-1-phenylhex-5-ene 10

9

10

Alcohol $9(1.28 \mathrm{~g}, 7.30 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ and tertbutyldimethylsilylchloride ($1.31 \mathrm{~g}, 8.75 \mathrm{mmol}$), imidazole ($1.49 \mathrm{~g}, 21.86 \mathrm{mmol}$) and 4-DMAP (90 mg , 0.73 mmol) were added and stirred at room temperature for 16 h under N_{2}. Water (20 ml) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{ml})$. The combined organic fractions were dried over MgSO_{4} and concentrated in vacuo then purified by column chromatography using 1% ethyl acetate in petroleum ether 40-60 as the eluent to yield silyl ether 10 as a yellow oil ($1.66 \mathrm{~g}, 5.72 \mathrm{mmol}, 78 \%$ yield). $[\alpha]_{\mathrm{D}}^{21}-9.0\left(c .1 .0 \mathrm{CHCl}_{3}\right) \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.92(8 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.69-1.83\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.28\left(2 \mathrm{H}, \mathrm{t}, J 6,4-\mathrm{H}_{2}\right), 2.59(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}), 2.72(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H} H)$,
$3.77(1 \mathrm{H}$, quin, $J 6.03-\mathrm{H}), 4.93-5.15\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 5.74(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.16-7.21(3 \mathrm{H}, \mathrm{m}), 7.24-7.31$
$(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CHCl}_{3}, 100 \mathrm{MHz}\right)-4.3\left(\mathrm{CH}_{3} \mathrm{CSi}\right)$, $-4.5\left(\mathrm{CH}_{3} \mathrm{CSi}\right)$, $18.1\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, $25.9\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, 31.8 (C-1), 38.7 (C-2), 41.9 (C-4), 71.6 (C-3), 116.8 (C-6), 125.6, 128.3, 128.4, 135.1 (C-4), 142.6 (i-Ar).

Spectroscopic data in accordance with literature data. ${ }^{2}$

(S)- 3-tert-Butyldimethylsilyloxy-5-phenyl-pentanal 11

10

11

Silyl ether 174 ($581 \mathrm{mg}, 2 \mathrm{mmol}$) was dissolved in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture $(1: 1,40 \mathrm{ml})$ and sodium periodate $(1.93 \mathrm{~g}, 9 \mathrm{mmol})$ and osmium tetroxide (1 crystal) were added and the reaction was stirred under N_{2} for 3 hrs. Water (30 ml) was added and mixture was extracted with ethyl acetate ($3 \times 40 \mathrm{ml}$). The combined organic fractions were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography using 2% ethyl acetate in petroleum ether 40-60 as the eluent to yield aldehyde 173 as a yellow oil ($475 \mathrm{mg}, 1.62 \mathrm{mmol}, 81 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}+5.0\left(c .1 .0 \mathrm{CHCl}_{3}\right) \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.90\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.82-1.94\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.57-2.61$ ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}$), $2.62-2.73\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 4.26(1 \mathrm{H}, \mathrm{p}, J 6,3-\mathrm{H}), 7.15-7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.25-7.33(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 9.82(1 \mathrm{H}, \mathrm{dd}, J 3,2,1-\mathrm{H}) ; . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)-4.5\left(\mathrm{CH}_{3} \mathrm{CSi}\right), 18.1\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 25.9$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 31.6$ (C-5) 39.7 (C-2), 50.9 (C-4), 67.9 (C-3), 126.1 (p-Ar), 128.4, 128.6, 141.8 (i-Ar), 202.1 (C-1).

Spectroscopic data in accordance with literature data (racemic). ${ }^{3}$

Diethyl 2-oxo-2-phenylethylphosphonate 12

12

Bromoacetophenone ($5 \mathrm{~g}, 25.12 \mathrm{mmol}$) and triethylphosphite ($4.17 \mathrm{~g}, 25.12 \mathrm{mmol}$) were heated to $110{ }^{\circ} \mathrm{C}$ and refluxed for 24 h . The resulting crude black oil was purified by column chromatography using 80% ethyl acetate in petroleum ether $40-60$ as the eluent to yield phosphonate $\mathbf{1 2}$ as a yellow oil ($4.19 \mathrm{~g}, 16.34$ $\mathrm{mmol}, 65 \%$ yield). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.26\left(6 \mathrm{H}, \mathrm{t}, J 7, \mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)\right), 3.63\left(2 \mathrm{H}, \mathrm{d}, J 23,1-\mathrm{H}_{2}\right), 4.12$
$\left(4 \mathrm{H}, \mathrm{p}, J 7, \mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)\right), 7.42-7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.57(1 \mathrm{H}, \mathrm{m}, p-\mathrm{Ar}), 7.98-8.02(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, J 6.5, \mathrm{P}\left(\mathrm{OCH}_{2} C \mathrm{H}_{3}\right)\right), 38.6\left(\mathrm{~d}, J 130.0, \mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)\right), 62.7(\mathrm{~d}, J 6.5, \mathrm{C}-1), 128.7$, 129.1, 133.8 (p-Ar), 136.6 (d, $J 2, i$-Ar), 192.1 (d, $J 6.5, \mathrm{C}-2$).

Spectroscopic data in accordance with literature data. ${ }^{4}$
(5S, 2E)-5-tert-Butyldimethylsilyloxy-1,7-diphenylhept-2-en-1-one 13

12

11

Sodium hydride ($91 \mathrm{mg}, 2.27 \mathrm{mmol}$) was suspended in anhydrous THF (10 ml) and cooled to $0{ }^{\circ} \mathrm{C}$. Phosphonate $12(500 \mathrm{mg}, 1.95 \mathrm{mmol})$ in THF (4 ml) was added dropwise and stirred for 0.5 h until the suspension became a solution. Aldehyde $11(475 \mathrm{mg}, 1.62 \mathrm{mmol})$ in THF (9 ml) was added and the reaction was warmed to room temperature and stirred for 18 h . Water $(30 \mathrm{ml})$ was added to quench the reaction and the mixture was extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$). The combined organic fractions were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography using 2% ethyl acetate in petroleum ether $40-60$ as the eluent to yield ketone $\mathbf{1 3}$ as a yellow oil ($361 \mathrm{mg}, 0.92 \mathrm{mmol}, 65 \%$ yield, $[\alpha]_{\mathrm{D}}^{20}+3.0\left(c .1 .0 \mathrm{CHCl}_{3}\right.$); $v_{\max } / \mathrm{cm}^{-1} 2954,2928,2856,1671$, $1622,1253,1089,986,814,774,969 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right)$, $0.91\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.76-1.86\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.53\left(2 \mathrm{H}, \mathrm{ddd}, J 8,6,1.5,4-\mathrm{H}_{2}\right), 2.60-2.79(2 \mathrm{H}, \mathrm{m}$, $\left.7-\mathrm{H}_{2}\right), 3.92(1 \mathrm{H}, \mathrm{p}, J 6,5-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{dt}, J 15.5,1.5,2-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{dt}, J 15.5,8,3-\mathrm{H}), 7.15-7.21(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.22-7.33(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.43-7.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}, 2^{\prime}-\mathrm{H}\right), 7.54\left(1 \mathrm{H}, \mathrm{m}, 3{ }^{\prime}-\mathrm{H}\right), 7.92(2 \mathrm{H}, \mathrm{dd}, J 8.4$, $\left.1.4,1^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)-4.4\left(\mathrm{CH}_{3} \mathrm{CSi}\right), 18.1\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 25.8\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 31.7(\mathrm{C}-7), 39.2(\mathrm{C}-$ 6), 40.8 (C-4), 70.9 (C-5), 125.8 (C-3'’), 128.0 (C-2), 128.3, 128.4, 128.50, 128.51, 132.6 (C-3'), 137.9, 142.1, $146.1(\mathrm{C}-3), 190.5(\mathrm{C}-1)$; HRMS (CI) calc for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}] 395.2406$ found 395.2397

Ketone 13 ($345 \mathrm{mg}, 0.87 \mathrm{mmol}$) was dissolved in a $10: 1$ mixture of 1,4-dioxane and water (5.5 ml) and phenylvinylboronic acid ($259 \mathrm{mg}, 1.75 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(21 \mathrm{mg}, 0.04 \mathrm{mmol})$ and lithium hydroxide $(21 \mathrm{mg}, 0.87 \mathrm{mmol})$ were added and stirred for 16 h at room temperature. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ and water $(20 \mathrm{ml})$ were added and stirred for 5 minutes. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{ml})$. The combined organic phase was dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography using 2% ethyl acetate in petroleum ether 40 60 as the eluent to yield ketone 14 as a yellow oil ($407 \mathrm{mg}, 0.82 \mathrm{mmol}, 94 \%$ yield) as a mixture of diastereomers. $v_{\max } / \mathrm{cm}^{-1} 2928,1685,1448,1253,1060,966,834,773,767 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.00-$ $0.13\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.90 \& 0.93\left(9 \mathrm{H}, \mathrm{s},\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.67-2.01\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2} \& 6-\mathrm{H}_{2}\right), 2.89-2.56(2 \mathrm{H}\right.$, $\left.\mathrm{m}, 7-\mathrm{H}_{2}\right), 3.22-3.00\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2} \& 3-\mathrm{H}\right), 3.82(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 6.09\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 6.39\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, 7.11 - 7.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.29 - 7.34 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.96 (2H, dd, J 8.0, $1.5, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.3\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.2\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.1\left(\mathrm{CH}_{3} \mathrm{Si}\right),-3.9\left(\mathrm{CH}_{3} \mathrm{CSi}\right), 18.2\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, $18.2\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 26.1\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 26.1\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, $31.2(\mathrm{C}-7), 31.4(\mathrm{C}-7), 35.9,36.2,38.2,40.0,42.4$, 42.46, 44.8, 45.5, 69.9 (C-5), 70.0 (C-5), 125.7, 125.8, 126.3, 127.3, 128.2, 128.3, 128.46, 128.47, 128.48, $128.55,128.59,128.60,128.7,130.6,130.9,133.0,133.1,133.15,133.4,137.4,137.5,142.5,142.8$, 198.9 (C-1), 199.2 (C-1); HRMS (ESI) calc for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}] 521.2846$ found 521.2836.

(3S, $6 E, 1$ ' E)-3-tert-Butyldimethylsilyloxy-1,7-diphenyl-5-(phenylethenyl)-hept-6-ene 15

Ketone 14 ($200 \mathrm{mg}, 0.4 \mathrm{mmol}$) was dissolved in methanol (10 ml) and sodium borohydride ($32 \mathrm{mg}, 0.8$ mmol) was added and the reaction was stirred for 0.5 h . Saturated ammonium chloride solution (10 ml) was added and the mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The resulting crude oil was dissolved in anhydrous

THF (10 ml) under N_{2}. Sodium hydride ($48 \mathrm{mg}, 1.2 \mathrm{mmol}, 60 \%$ in mineral oil) was added and the reaction was stirred for 0.5 h before carbon disulfide ($168 \mu \mathrm{l}, 213 \mathrm{mg}, 2.8 \mathrm{mmol}$) and iodomethane (103 $\mu \mathrm{l}, 227 \mathrm{mg}, 1.6 \mathrm{mmol})$ were added and the reaction was stirred for 70 h . Water (20 ml) was added and the mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo and then purified by column chromatography using 2% ethyl acetate in petroleum ether as the eluent to yield xanthate ($168 \mathrm{mg}, 0.28 \mathrm{mmol}$) as a colorless oil. The xanthate was dissolved in xylene (5 ml), sodium hydrogen carbonate ($119 \mathrm{mg}, 1.42 \mathrm{mmol}$) was added and the mixture was heated to reflux for 6 hrs . The solvent was removed in vacuo, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml) was added and filtered and the filtrate was concentrated in vacuo to give silyl ether 15 as a pale yellow oil $(131 \mathrm{mg}, 0.27 \mathrm{mmol}$, 68% yield over three steps). $[\alpha]_{\mathrm{D}}^{22}-41.0\left(c .1 .0 \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3060,3025,2927,2855,1448,1253$, 1071,$966 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.94\left(9 \mathrm{H}, \mathrm{s},\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)\right)$, $1.70-1.95\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2} \& 4-\mathrm{H}_{2}\right), 2.67(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.21(1 \mathrm{H}, \mathrm{p}, J 7.5,5-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{dq}, J 7,5,3-\mathrm{H})$, 6.13 ($1 \mathrm{H}, \mathrm{dd}, J 16.0,7.5,6-\mathrm{H}), 6.19(1 \mathrm{H}, \mathrm{dd}, J 16.0,7.5,1 ’-\mathrm{H}), 6.38(1 \mathrm{H}, \mathrm{d}, J 16.0,7-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{d}, J$ $\left.16.0,2^{\prime}-\mathrm{H}\right), 7.39-7.11(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.2\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.0\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.1$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 26.0\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 31.2(\mathrm{C}-1), 39.2$ (C-2), 42.4 (C-4), 42.7 (C-5), 69.7 (C-3), 125.7, 126.1, 127.1, 127.2, 128.3, 128.5, 129.6 (C-7), 130.2 (C-2'), 132.7 (C-6), 133.1 (C-1'), 137.4, 137.5, 142.5; HRMS (ESI) calc for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{OSiNa}[\mathrm{M}+\mathrm{Na}] 505.2897$ found 505.2883.

(5S, $6 E, 1^{\prime} E$)- 1,7-Diphenyl-5-(phenylethenyl)hept-6-en-3-ol 16

Silyl ether 15 ($121 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in $2 \% \mathrm{HCl} / \mathrm{EtOH}(\mathrm{v} / \mathrm{v})(5 \mathrm{ml})$ and stirred for 5 h . The reaction mixture was poured into ethyl acetate $(20 \mathrm{ml})$ and water $(20 \mathrm{ml})$, the phases were separated and the aqueous phase was extracted with ethyl acetate ($2 \times 20 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4}, concentrated in vacuo, and purified by column chromatography using 20% ethyl acetate in petroleum ether 40-60 as the eluent to yield alcohol 16 as a yellow oil ($83 \mathrm{mg}, 0.225 \mathrm{mmol}, 90 \%$ yield). $[\alpha]_{\mathrm{D}}^{21}-8.0\left(c .1 .0 \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3356,3081,3059,2919,2851,1494,1448,964,744,692 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.75-1.98\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2} \& 4-\mathrm{H}_{2}\right), 2.68(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}), 2.84(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H} H), 3.37(1 \mathrm{H}, \mathrm{p}, J 8,5-\mathrm{H}), 3.82(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.19(1 \mathrm{H}, \mathrm{dd}, J 16,8,6-\mathrm{H}), 6.28(1 \mathrm{H}, \mathrm{dd}, J 16,8,1$ '-H$)$, $6.49(1 \mathrm{H}, \mathrm{d}, J 16,7-\mathrm{H}), 6.53\left(1 \mathrm{H}, \mathrm{d}, J 16,2^{\prime}-\mathrm{H}\right), 7.10-7.57(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 32.3(\mathrm{C}-$
1), 39.7 (C-2), 42.9 (C-4), 43.6 (C-5), 69.6 (C-3), 126.0, 126.30, 126.33, 127.39, 127.43, 128.53, 128.57, 128.68, 128.69, 129.9 (C-7), 130.7 (C-2'), 132.2 (C-6), 133.1 (C-1'), 137.4, 137.5, 142.2; HRMS (ESI) calc for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}] 391.2032$ found 391.2049.
(-)-(1R, 3S, 5S, 6S, 7S)-3-Phenylethyl-7-phenyl-5((E)-phenethenyl)-2,8-dioxabicyclo[4.4.0]decan-9one 17

TMSOTf ($82 \mu \mathrm{~L}, 0.45 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added dropwise to a stirred solution of alcohol $\mathbf{1 6}$ ($83 \mathrm{mg}, 0.23$ $\mathrm{mmol}, 1.0$ eq.) and methyl 3,3-dimethoxypropionate ($0.13 \mathrm{~mL}, 0.90 \mathrm{mmol}, 4.0$ eq.) in dry DCM (15 mL) at $-30{ }^{\circ} \mathrm{C}$ under argon. After 1 h saturated aqueous NaHCO_{3} was added $(15 \mathrm{~mL})$ and the layers were separated. The aqueous phase was extracted with DCM ($2 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over MgSO_{4} and the solvent removed in vacuo. Purification by flash column chromatography eluting with $10-30 \%$ EtOAc in petrol gave lactone $\mathbf{1 7}\left(45 \mathrm{mg}, 45 \%\right.$) as a yellow oil; $[\propto]_{D}^{20}-61.8$ (c 2.2 CHCl_{3}); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3024,2918,2854,1736,1495,1455,1344,1237,752 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.38\left(1 \mathrm{H}, \mathrm{dt}, J 13.5,11.5,4-\mathrm{H}_{\mathrm{ax}}\right), 1.64\left(1 \mathrm{H}, \mathrm{ddd}, J 13.5,4.0,2.0,4-\mathrm{H}_{\mathrm{eq}}\right), 1.76\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-H \mathrm{H}\right), 1.88(1 \mathrm{H}$, $\mathrm{m}, 1 "-\mathrm{H} H), 1.97(1 \mathrm{H}, \mathrm{q}, J 10.5,6-\mathrm{H}), 2.34(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.68-2.83\left(2 \mathrm{H}, \mathrm{m}, 2\right.$ "- $\left.\mathrm{H}_{2}\right), 2.74(1 \mathrm{H}, \mathrm{dd}, J 18.0$, $\left.12.0,10-\mathrm{H}_{\mathrm{ax}}\right), 3.14\left(1 \mathrm{H}, \mathrm{dd}, J 18.0,5.0,10-\mathrm{H}_{\mathrm{eq}}\right), 3.50(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{ddd}, J 12.0,10.5,5.0,1-\mathrm{H})$, $4.97(1 \mathrm{H}, \mathrm{d}, J 10.5,7-\mathrm{H}), 5.16$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 16.0,9.0,1^{\prime}-\mathrm{H}\right), 5.97\left(1 \mathrm{H}, \mathrm{d}, J 16.0,2^{\prime}-\mathrm{H}\right), 6.74$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $7.11-7.14(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.18-7.25(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 31.4 (C-2"), 37.2, 37.4 (C-10 and C-1"), 39.1 (C-4), 42.4 (C-5), 47.8 (C-6), 73.4 (C-1), 75.5 (C-3), 85.3 (C-7), 125.8 (C-Ar), 125.9 (C-Ar), 127.0 (C-Ar), 128.0 (C-Ar), 128.39 (C-Ar), 128.43 (C-Ar), 128.5 (C-Ar), 128.9 (C-Ar), 129.4 (C-2'), 132.1 (C-1'), 136.7 (C-Ar), 137.9 (C-Ar), 141.7 (C-Ar), 168.9 (C-9); Found (ESI) $461.2101[\mathrm{MNa}]^{+}\left(\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}\right.$ requires 461.2087).
(-)-(1R, 3S, 5S, 6S, 7S, 9S)-9-(4-Methoxyphenyl)-3-phenylethyl-7-phenyl-5((E)-phenethenyl)-2,8dioxabicyclo[4.4.0]decane 240

Methoxyphenethyl bromide ($1 \mathrm{ml}, 1376 \mathrm{mg}, 6.40 \mathrm{mmol}$) was added to a solution of vacuum dried magnesium ($171 \mathrm{mg}, 7.04$) in tetrahydrofuran (6.4 ml). A single crystal of iodine was added and the reaction mixture was warmed to initial reaction. On cooling to room temperature the magnesium was seen to be consumed. 1 ml of the resulting solution was added slowly to a solution of lactone $\mathbf{1 7}$ ($43 \mathrm{mg}, 0.09$ mmol, 1.0 eq.) in dry $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ under argon at $0{ }^{\circ} \mathrm{C}$. After 3 h saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added (10 $\mathrm{ml})$ and the phases separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{ml})$ and the combined organic phases washed with brine (25 ml) and dried over MgSO_{4}. The solvent was removed in vacuo and purification by flash column chromatography eluting with 5-20\% EtOAc in petrol gave the lactol intermediate ($36 \mathrm{mg}, 70 \%$) which was used in the next step directly. TMSOTf ($17 \mu \mathrm{l}, 0.094 \mathrm{mmol}, 1.5$ eq.) was added dropwise to a solution of the lactol ($36 \mathrm{mg}, 0.063 \mathrm{mmol}, 1.0$ eq.) and triethylsilane $(0.1 \mathrm{ml}$, $0.63 \mathrm{mmol}, 10.0$ eq.) in dry $\mathrm{DCM}(5 \mathrm{ml})$ under argon at $-78^{\circ} \mathrm{C}$. After 0.75 h a saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$ was added and the phases separated. The aqueous phase was extracted with DCM (2 x 20 ml) and the combined organic phases dried over MgSO_{4}. The solvent was removed in vacuo and purification by flash column chromatography eluting with 2-10\% EtOAc in petrol gave bicycle $\mathbf{1 8}(24 \mathrm{mg}$, 68%) as a white crystalline solid; M.p. $133-135{ }^{\circ} \mathrm{C} ;[\propto]_{D}^{20}-100.0\left(c 1.2 \mathrm{CHCl}_{3}\right.$); $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3024$, 2941, 2893, 2850, 1609, 1513, 1247, 1067, 1030, 742, 688; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH})$, $1.56(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H} H), 1.66-2.00\left(6 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 10-\mathrm{H}_{\mathrm{ax}}, 1 "-\mathrm{H}_{2}\right.$ and $\left.1 ">-\mathrm{H}_{2}\right), 2.08(1 \mathrm{H}$, ddd, $J 12.5,4.5,2.0$, $\left.10-\mathrm{H}_{\mathrm{eq}}\right), 2.22(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.66\left(1 \mathrm{H}, \mathrm{t}, J 8.0,2 "-\mathrm{H}_{2}\right.$ or 2 ""- $\left.\mathrm{H}_{2}\right), 2.69\left(2 \mathrm{H}, \mathrm{m}, 2 "-\mathrm{H}_{2}\right.$ or 2 "' $\left.-\mathrm{H}_{2}\right), 3.38(1 \mathrm{H}$, ddd, $J 11.5,9.5,4.5,1-\mathrm{H}), 3.47(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.55(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02(1 \mathrm{H}, \mathrm{d}, J 10.0$, $7-\mathrm{H}), 5.15\left(1 \mathrm{H}, \mathrm{dd}, J 15.5,9.0,1^{\prime}-\mathrm{H}\right), 5.82\left(1 \mathrm{H}, \mathrm{d}, J 15.5,2^{\prime}-\mathrm{H}\right), 6.73(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{d}, J 9.0$, Ar-H), $6.99(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.08-7.23(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.29-7.32(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 30.4, 31.6 (C-2" and C-2"'), 37.6, 37.7 (C-1" and C-1"'), 38.1 (C-10), 40.3 (C-4), 41.9 (C-5), 50.6 (C-6), $55.2\left(\mathrm{OCH}_{3}\right), 75.0,75.7$ (C-3 and C-9), 79.1 (C-1), 83.4 (C-7), 113.7 (C-Ar), 125.7 (C-Ar), 125.8 (C-Ar), 126.5 (C-Ar), 127.8 (C-Ar), 127.89 (C-Ar), 127.94 (C-Ar), 128.2, 128.3 (C-2' and C-Ar), 128.5 (C-Ar), 129.4 (C-Ar), 134.13, 134.14 (C-1’ and C-Ar), 137.4 (C-Ar), 140.9 (C-Ar), 142.1 (C-Ar), 157.6 (C-Ar); Found (ESI) 581.3033 [MNa] ${ }^{+}\left(\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Na}\right.$ requires 581.3026). Elemental Analysis Calc. (\%) for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{O}_{3}: \mathrm{C} 83.83$, H 7.58, Found 83.34, H 7.47.

$(\pm)-(1 \alpha, 6 \beta)-3 \beta$-Methyl-7 β-(4-benzenesulfonyloxyphenyl)-2,8-dioxabicyclo[4.4.0]decan-9-one 21

TMSOTf ($0.21 \mathrm{~mL}, 1.19 \mathrm{mmol}, 2.0$ eq.) was added dropwise to a stirred solution of alcohol $\mathbf{2 0}$ (197 mg , $0.59 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and methyl 3,3-dimethoxypropionate $8(0.34 \mathrm{~mL}, 2.37 \mathrm{mmol}, 4.0$ eq.) in dry DCM $(15 \mathrm{~mL})$ at $-30{ }^{\circ} \mathrm{C}$ under argon. After 1 h saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added and the phases were separated. The aqueous phase was extracted with DCM ($2 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over MgSO_{4} and the solvent removed in vacuo. Purification by flash column chromatography eluting with $10-50 \%$ EtOAc in petrol followed by recrystallisation from EtOAc gave lactone 21 ($222 \mathrm{mg}, 93 \%$) as a white crystalline solid; M.p. 143-145 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2952,2857,1736$, $1365,1176,1153,1089,866,847,751 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.17-1.27(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}$ and $5-\mathrm{HH}), 1.20$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{CH}_{3}\right), 1.38(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H} H), 1.59(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.67(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H} H), 2.63(1 \mathrm{H}, \mathrm{dd}, J 18.0$, $\left.11.0,10-\mathrm{H}_{\mathrm{ax}}\right), 3.09\left(1 \mathrm{H}, \mathrm{dd}, J 18.0,6.0,10-\mathrm{H}_{\mathrm{eq}}\right), 3.53(1 \mathrm{H}, \mathrm{dqd}, J 11.0,6.0,2.0,3-\mathrm{H}), 3.63(1 \mathrm{H}, \operatorname{ddd}, J$ $11.0,10.0,6.0,1-\mathrm{H}), 4.79(1 \mathrm{H}, \mathrm{d}, J 11.0,7-\mathrm{H}), 7.02(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}-\mathrm{H}), 7.22$ (2H, d, $J 8.5, \mathrm{Ar}-\mathrm{H}), 7.54$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $7.69(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.5\left(\mathrm{CH}_{3}\right), 25.1(\mathrm{C}-4)$, 32.3 (C-5), 37.3 (C-10), 43.4 (C-6), 73.6 (C-3), 73.9 (C-1), 83.5 (C-7), 122.6 (C-Ar), 128.4 (C-Ar), 128.5 (C-Ar), 129.2 (C-Ar), 134.4 (C-Ar), 135.2 (C-Ar), 136.0 (C-Ar), 149.7 (C-Ar), 169.1 (C-9); Found (ESI) $425.1021[\mathrm{MNa}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{SNa}\right.$ requires 425.1029).

Benzyl 3-(4'-hydroxyphenyl)propionate S-1

Acid ($5.0 \mathrm{~g}, 30.09 \mathrm{mmol}$), benzyl bromide ($4.3 \mathrm{ml}, 36.11 \mathrm{mmol}$) and potassium hydrogen carbonate (4.52 $\mathrm{g}, 45.14 \mathrm{mmol})$ were suspended in acetone $(30 \mathrm{ml})$ and heated to reflux for 18 h . After cooling to room
temperature, the acetone was removed in vacuo and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and water $(20 \mathrm{ml})$ were added. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{ml})$. The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using 20% ethyl acetate in petroleum ether $40-60$ as the eluent to yield benzyl ester $\mathbf{S} \mathbf{- 1}$ as a pale yellow oil ($7.68 \mathrm{~g}, 29.95 \mathrm{mmol}, 99 \%$ yield). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.64\left(2 \mathrm{H}, \mathrm{t}, J 8,2-\mathrm{H}_{2}\right), 2.90\left(2 \mathrm{H}, \mathrm{t}, J 8,3-\mathrm{H}_{2}\right)$, $5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.73(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 7.04(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 7.28-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $30.1(\mathrm{C}-3), 36.2(\mathrm{C}-2), 66.3\left(\mathrm{OCH}_{2}\right), 115.3,128.2,128.5,129.4,132.6,135.9,153.9$, 172.8 (C-1).

Spectroscopic data in accordance with literature data. ${ }^{5}$

Benzyl 3-(4'-benzenesulfoxyphenyl)propionate S-2

Benzenesulfonyl chloride ($3.82 \mathrm{ml}, 5.29 \mathrm{~g}, 29.95 \mathrm{mmol}$) and triethylamine ($4.31 \mathrm{ml}, 3.03 \mathrm{~g}, 29.95 \mathrm{mmol}$) were added dropwise sequentially to a stirring solution of benzyl ester $\mathbf{S}-\mathbf{1}(7.68 \mathrm{~g}, 29.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ under N_{2} at $0{ }^{\circ} \mathrm{C}$. Once both additions were complete, the reaction mixture was warmed to room temperature and stirred for 18 h . Saturated ammonium chloride solution (50 ml) was added and the biphasic mixture was stirred for 5 minutes. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{ml})$. The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using 20% ethyl acetate in petroleum ether $40-60$ as the eluent to yield benzyl ester S-2 as a pale yellow solid ($10.69 \mathrm{~g}, 26.97 \mathrm{mmol}, 90 \%$ yield). $\mathrm{mp} 60-62^{\circ} \mathrm{C}$; δ_{H} ($301 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.63\left(2 \mathrm{H}, \mathrm{t}, J 8,2-\mathrm{H}_{2}\right), 2.92\left(2 \mathrm{H}, \mathrm{t}, J 8,3-\mathrm{H}_{2}\right), 5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$), $6.86(2 \mathrm{H}, \mathrm{d}, J$ 8.5, Ar), 7.08 ($2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}$), $7.26-7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.47$ - $7.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.65(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.79-7.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right) ; \delta_{\mathrm{C}}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.3(\mathrm{C}-3), 35.7(\mathrm{C}-2), 66.5\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$, 122.4, 128.3, 128.4, 128.6, 128.7, 129.2, 129.6, 134.3, 135.9, 139.6, 148.1, 172.4 (C-1).

Spectroscopic data in accordance with literature data. ${ }^{5}$

3-(4’-(Benzenesulfoxyphenyl)propional S-3

Diisobutylaluminium hydride ($6.62 \mathrm{ml}, 1 \mathrm{M}$ in hexanes) was added dropwise to a stirring solution of benzyl ester S-2 $(2.5 \mathrm{~g}, 6.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ under N_{2} at $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred for 6 h at $-78{ }^{\circ} \mathrm{C}$ then quenched by addition of saturated Rochelle's salt solution (100 ml) and stirred until the phases separated. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{ml})$. The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using 20 -30% ethyl acetate in petroleum ether 40-60 as the eluent to yield aldehyde $\mathbf{S}-\mathbf{3}$ as a colorless oil (1.78 g , $6.15 \mathrm{mmol}, 98 \%$ yield). $v_{\max } / \mathrm{cm}^{-1} 2924,2852,1720(\mathrm{CHO}), 1503,1370,1198,1177,1149,1092,863 ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.79\left(2 \mathrm{H}, \mathrm{td}, J 8,1,2-\mathrm{H}_{2}\right), 2.95\left(2 \mathrm{H}, \mathrm{t}, J 8,3-\mathrm{H}_{2}\right), 6.92(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 7.12(2 \mathrm{H}, \mathrm{d}$, $J 8.5, \mathrm{Ar}), 7.53-7.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.84-7.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 9.83(1 \mathrm{H}$, $\mathrm{t}, J 1,1-\mathrm{H}) . \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 27.5(\mathrm{C}-3), 45.2(\mathrm{C}-2), 122.6,128.6,129.3,129.6,139.7,148.1,201.0$ (C-1). HRMS (ESI) calc for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}] 313.0505$ found 313.0503.

(S, E) 1-(4'-Benzenesulfoxyphenyl)-hept-5-en-3-ol 22

Nokami reagent ($1.20 \mathrm{~g}, 5.86 \mathrm{mmol}$) and para toluenesulfonic acid hydrate ($54 \mathrm{mg}, 0.28 \mathrm{mmol}$) were added to a solution of aldehyde $\mathbf{S} \mathbf{- 3}(825 \mathrm{mg}, 2.85 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ under N_{2}. The reaction mixture was stirred for 20 h . Water (20 ml) was added and the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 20 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using 5-30\% ethyl acetate in petroleum ether 40-60 as the eluent to yield alcohol 22 as a colorless oil ($969 \mathrm{mg}, 2.79 \mathrm{mmol}, 98 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}-$ 11.0 (c. $1.0 \mathrm{CHCl}_{3}$); $v_{\max } / \mathrm{cm}^{-1} 3401,2917,1501,1371,1198,1149,866 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.65-$ $1.75\left(5 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{3} \& 4-\mathrm{H}_{2}\right), 2.08(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}), 2.25(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}), 2.62(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}), 2.76(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H} H), 3.55(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.40$ and 5.55 (each 1 H , each m, $5-\mathrm{H} \& 6-\mathrm{H}), 6.87(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 7.10(2 \mathrm{H}$, d, $J 8.5, \mathrm{Ar}), 7.49-7.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.63-7.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.81-7.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right)$;
$\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.1(\mathrm{C}-7), 31.4(\mathrm{C}-1), 38.1(\mathrm{C}-4), 40.9(\mathrm{C}-2), 69.9(\mathrm{C}-3), 122.1,126.7,128.5$, 129.1, 129.4, 129.5, 134.1, 135.5, 141.3, 147.6. HRMS (ESI) calc for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}] 369.1131$ found 369.1118 .

(S, E) 1-(4'-(benzenesulfoxy)phenyl)-3-(tertbutyldimethyl)silyloxy-hept-5-ene 23

Alcohol 22 ($1.61 \mathrm{~g}, 4.65 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ and $\operatorname{TBDMSCl}(842 \mathrm{mg}$, $5.58 \mathrm{mmol})$, imidazole ($950 \mathrm{mg}, 13.96 \mathrm{mmol}$) and DMAP ($57 \mathrm{mg}, 0.46 \mathrm{mmol}$) were added. The reaction mixture was stirred for 40 h under a balloon of argon. Water (20 ml) was added and the reaction mixture was stirred for a further 5 minutes. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{ml})$. The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using 1% ethyl acetate in petrol as the eluent to give TBS ether $\mathbf{2 3}$ $(1.78 \mathrm{~g}, 83 \%$ yield $)$ as a yellow oil. $[\alpha]_{\mathrm{D}}^{20}-7.0\left(c .1 .0 \mathrm{CHCl}_{3}\right) v_{\max } / \mathrm{cm}^{-1} 2953,2928,1502,1375,1200$, $1151,864,832 \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.90\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, $1.52-1.77\left(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2} \& 7-\mathrm{H}_{3}\right), 2.16\left(2 \mathrm{H}, \mathrm{t}, J 5,4-\mathrm{H}_{2}\right), 2.53(1 \mathrm{H}$ ddd, $J 14,11,5.5,1-\mathrm{H} H), 2.67(1 \mathrm{H}$, ddd, $J 14,11,6,1 H \mathrm{H}), 3.67(1 \mathrm{H}, \mathrm{p}, J 6,3-\mathrm{H}), 5.25-5.54(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H} \& 6-\mathrm{H}), 6.87(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar}), 7.07$ ($2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar}$), $7.52\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{OSO}_{2} P h\right), 7.66\left(1 \mathrm{H}, \mathrm{tt}, J 7.5,1.5, \mathrm{OSO}_{2} P h\right), 7.84(2 \mathrm{H}, \mathrm{dd}, J 8.5,1.5$, $\left.\mathrm{OSO}_{2} \mathrm{Ph}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.6\left(\mathrm{CH}_{3} \mathrm{CSi}\right),-4.3\left(\mathrm{CH}_{3} \mathrm{CSi}\right), 18.0(\mathrm{C}-7), 18.1\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 25.9$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 31.1(\mathrm{C}-1), 38.4(\mathrm{C}-2), 40.6(\mathrm{C}-4), 71.8(\mathrm{C}-3), 122.1,127.3$ (C-6), $127.4(\mathrm{C}-5), 128.5,129.0$, 129.4, 134.1, 135.5, 141.9, 147.5; HRMS (ESI) calc for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SSiNa}$ [M+Na] 483.1995, found 483.1987

(S)-5-(4'-Benzenesulfoxyphenyl)-3-(tertbutyldimethylsilyloxy)-pentanal 24

N-Methyl morpholine- N-oxide ($153 \mathrm{mg}, 1.13 \mathrm{mmol}$) and osmium tetroxide (1 crystal) were added to a stirring solution of silyl ether $23(260 \mathrm{mg}, 0.56 \mathrm{mmol})$ in THF (5 ml) and stirred for 0.75 h . The reaction was quenched with the addition of saturated sodium sulfite solution (10 ml). The resulting biphasic mixture was extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$) and the combined organic phases were dried over
MgSO_{4} and concentrated in vacuo to give a yellow oil. The crude oil was dissolved in THF (10 ml) and water (10 ml) and $\mathrm{NaIO}_{4}(232 \mathrm{mg}, 1.27 \mathrm{mmol})$ was added and stirred for 2 h , after which additional $\mathrm{NaIO}_{4}(232 \mathrm{mg}, 1.27 \mathrm{mmol})$ was added and stirred for a further 1 h . The reaction was quenched with the addition of saturated sodium hydrogen carbonate solution (10 ml). The resulting biphasic mixture was extracted with ethyl acetate (3 x 30 ml), the combined organic phases dried over MgSO_{4} and concentrated in vacuo to give aldehyde $24\left(247.7 \mathrm{mg}, 98 \%\right.$ yield) as a yellow oil. $[\alpha]_{\mathrm{D}}^{20}-5.0, v_{\max } / \mathrm{cm}^{-1}$ 2953, 2929, 2856, 1723, 1502, 1373, 1199, 1178, 1150, 1092, 864, 863; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.05(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.89\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.75-1.85\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.49-2.72(4 \mathrm{H}, \mathrm{m}, 2-$ $\left.\mathrm{H}_{2} \& 5-\mathrm{H}_{2}\right), 4.22(1 \mathrm{H}, \mathrm{p}, J 6,3-\mathrm{H}), 6.88(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 7.07$ (2H, d, J 8.5, Ar), 7.53 (2H, dd, J 8, 7, $\left.\mathrm{OSO}_{2} \mathrm{Ph}\right), 7.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.84\left(2 \mathrm{H}, \mathrm{dd}, J 8.5,1, \mathrm{OSO}_{2} P h\right), 9.80(1 \mathrm{H}, \mathrm{t}, J 2,1-\mathrm{H}) ; \delta_{\mathrm{C}}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$-4.6 $\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.5\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.0\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 25.7\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 30.8(\mathrm{C}-5), 39.3(\mathrm{C}-4), 50.8(\mathrm{C}-$ 2), 67.5 (C-3), 122.3, 128.5, 129.1, 129.3, 134.1, 135.5, 140.9, 147.7, 201.7 (C-1). HRMS (ESI) calc for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}] 471.1632$, found 471.1633 .

4'-Benzenesulfoxyacetophenone S-4

S-4

4'-Hydroxyacetophenone ($2.5 \mathrm{~g}, 18.36 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ under N_{2} and cooled to $0^{\circ} \mathrm{C}$. Benzenesulfonyl chloride ($2.34 \mathrm{ml}, 3.24 \mathrm{~g}, 18.36 \mathrm{mmol}$) and triethylamine ($2.55 \mathrm{ml}, 1.86$ $\mathrm{g}, 18.36 \mathrm{mmol}$) were added dropwise and the reaction was warmed to room temperature and stirred for 16 h. Water (50 ml) was added and mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{ml})$. The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using 30% ethyl acetate in petroleum ether $40-60$ as the eluent to yield sulfonate $\mathbf{S}-4$ as a colorless oil (4.70 g , $16.99 \mathrm{mmol}, 93 \%$ yield). $v_{\max } / \mathrm{cm}^{-1} 3069,3006,3963,1683,1595,1374,1200,1151,859,846,752,577$, $559 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.02-7.14(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.50-7.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right)$, $7.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.82-7.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.87-7.92(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $26.7\left(\mathrm{CH}_{3}\right), 122.6,128.5,129.40,129.42,130.2,134.6,135.2,135.8,153.0,196.7(\mathrm{C}=\mathrm{O})$; HRMS (ESI) calc for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}] 299.0348$ found 299.0336

2-Bromo-4'-benzenesulfoxyacetophenone S-5

S-4

Sulfonate $\mathbf{S}-4(4.70 \mathrm{~g}, 16.99 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ under N_{2} and cooled to $0{ }^{\circ} \mathrm{C} . N$, N-Diisopropylethylamine $(3.7 \mathrm{ml}, 21.24 \mathrm{mmol})$ and TMSOTf $(3.69 \mathrm{ml}, 20.39 \mathrm{ml})$ were added dropwise and the mixture was stirred for 0.5 hr . N-Bromosuccinimide ($3.63 \mathrm{~g}, 20.39 \mathrm{mmol}$) was added and mixture was warmed to room temperature and stirred for 3 h . The reaction mixture was washed sequentially with saturated ammonium chloride solution (40 ml) and saturated sodium hydrogen carbonate solution (40 ml), dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using 30\% ethyl acetate in petroleum ether 40-60 as the eluent to yield sulfonate S-5 as a pale yellow oil which crystallized on standing to give dark yellow crystals ($5.29 \mathrm{~g}, 14.88 \mathrm{mmol}, 88 \%$ yield). $\mathrm{mp} 69-71^{\circ} \mathrm{C} v_{\max } / \mathrm{cm}^{-1} 3073,1698,1595,1364,1180,1153,835,747,564 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $4.38\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 7.06-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.50-7.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.80$ $-7.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.87-8.02(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.4(\mathrm{C}-2), 122.7,128.4,129.3$, $130.8,132.6,134.6,135.1,153.4,189.9(\mathrm{C}-1)$; $\mathrm{HRMS}(E S I)$ calc for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{SBrNa}[\mathrm{M}+\mathrm{Na}] 376.9454$ found 376.9460 .

Triphenyl-(4-((benzenesulfoxy)benzoyl)-2'-methylenephosphorane 25

S-4

$\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$

25

Triphenylphosphine $(738 \mathrm{mg}, 2.81 \mathrm{mmol})$ was added to a stirring solution of acetophenone $\mathbf{S}-4(1000 \mathrm{mg}$, $2.81 \mathrm{mmol})$ in chloroform $(15 \mathrm{ml})$ and stirred for 18 hrs . The solvent was removed in vacuo and resulting solid was triturated with diethyl ether (20 ml). The resulting solid was dissolved in methanol/water (20 ml $1: 1 \mathrm{v} / \mathrm{v})$, sodium hydroxide $(112 \mathrm{mg}, 2.81 \mathrm{mmol})$ was added and stirred for 3 hrs . The precipitate was filtered and washed with water before drying for 60 hrs in a vacuum oven to yield ylide $\mathbf{2 5}$ as a colorless solid ($1.1 \mathrm{~g}, 2.05 \mathrm{mmol}, 73 \%$). $\mathrm{mp} 166-168{ }^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 3059,1591,1522,1437,1373,1103,689 ; \delta_{\mathrm{H}}$ (400 MHz, $\left.\mathrm{CDCl}_{3}\right) 4.35\left(1 \mathrm{H}, \mathrm{d}, J 21,2^{\prime}-\mathrm{H}\right), 6.93(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar}), 7.41-7.60(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.62-7.72$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.77-7.83(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.86(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 51.3(\mathrm{~d}, J 111, \mathrm{C}-2$ ') , $121.5,126.3,127.2,128.3,128.4,128.5,128.6,128.9,129.0,129.1,131.9,131.9,132.0,132.1,132.2$,
132.2, 133.0, 133.1, 133.1, 134.1, 135.3, 140.3, 140.4, 150.3, 183.3 (C-1'). HRMS (CI) calc for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{PS}[\mathrm{M}+\mathrm{H}] 537.1289$, found 537.1285

(5S, 2E)-5-(tert-Butyldimethyl)silyloxy-1,7-di(4'-(benzenesulfoxy)phenylhept-2-en-1-one 26

Ylide $25(275.6 \mathrm{mg}, 0.51 \mathrm{mmol})$ and aldehyde $24(115 \mathrm{mg}, 0.26 \mathrm{mmol})$ were dissolved in toluene (10 ml) and heated to reflux for 20 h . After cooling to room temperature, solvent was removed in vacuo and the mixture was purified by column chromatography using 20% ethyl acetate in petrol as the eluent to give enone 26 as a yellow oil ($165 \mathrm{mg}, 0.23 \mathrm{mmol}, 91 \%$). $[\alpha]_{\mathrm{D}}^{20}-3.0\left(c .1 .0 \mathrm{CHCl}_{3}\right), \nu_{\max } / \mathrm{cm}^{-1} 2952,2928$, $1671,1620,1501,1449,1374,1199,1178,1150,861,833 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right)$, $0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.88\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.68-1.77\left(2 \mathrm{H} \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.45-2.51\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.57$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{HH}), 2.68(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{HH}), 3.87(1 \mathrm{H}, \mathrm{p}, J 6,5-\mathrm{H}), 6.81-6.91(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.00-7.15(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} \& 3-\mathrm{H}), 7.47-7.62\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.60-7.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.74-7.92\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph} \&\right.$ $2-\mathrm{H})$;. $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.5\left(\mathrm{CH}_{3} \mathrm{CSi}\right),-4.3\left(\mathrm{CH}_{3} \mathrm{CSi}\right), 18.1\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 25.8\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 31.1(\mathrm{C}-$ 7), 38.9 (C-6), 40.8 (C-4), 70.7 (C-5), 122.2, 122.5, 128.4, 128.5, 129.3, 130.2, 134.1, 134.5, 135.5, 136.5, 141.2, 146.6, 152.6, 188.8 (C-1) HRMS (ESI) calc for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}] 706.1982$, found 706.1983.
(5S, 2E)-3-(4'Benzenesulfoxyphenyl)ethynyl-5-(tert-butyldimethyl)silyloxy-1,7-di(4'(benzenesulfoxy)phenylheptanone 27

MIDA boronate 34 ($843 \mathrm{mg}, 2.03 \mathrm{mmol}$) was suspended in 1,4-dioxane (20 ml) and 1M sodium hydroxide solution (10 ml) was added and stirred for $1 \mathrm{~h} . \mathrm{pH} 7$ phosphate buffer $(20 \mathrm{ml})$ was added and mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo until $\sim 5 \mathrm{ml} 1,4$-dioxane remained. Dioxane solution of boronic acid was added to a 1,4-dioxane solution (25 ml) of enone $\mathbf{2 6}(718 \mathrm{mg}, 1.02 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(25 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ and lithium hydroxide ($24 \mathrm{mg}, 1.02 \mathrm{mmol}$) and heated to reflux for 3 hrs . On cooling to room temperature water (30 ml) was added and the reaction mixture was extracted with ethyl acetate (3×30 $\mathrm{ml})$. The combined organic phases were dried over MgSO_{4} and concentrated in vacuo and purified by column chromatography using 20% ethyl acetate in petrol as the eluent to yield ketone 27 ($886 \mathrm{mg}, 0.92$ $\mathrm{mmol}, 90 \%) . v_{\max } / \mathrm{cm}^{-1} 3008,2957,2856,1751,1501,1346,1199,1176,1148,857,732 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)-0.05,0.01,0.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.94,0.95\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) \mathrm{CSi}\right), 1.51-1.81(4 \mathrm{H}, \mathrm{m}), 2.34-2.52(2 \mathrm{H}$, m), $2.55-2.69(2 H, m), 2.89-3.14(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.59-3.74(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.85,5.87(1 \mathrm{H}, \mathrm{ddd}, J 16$, 7), $6.16,6.25(1 \mathrm{H}, \mathrm{d}, J 16), 6.73-6.95(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.55(2 \mathrm{H}, \mathrm{dd}, J 9,3, \mathrm{Ar}), 7.57-7.69(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$; $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)-4.6,-4.5,-4.5,-4.2\left(\mathrm{CH}_{3} \mathrm{Si}\right), 17.9,17.9\left(\left(\mathrm{CH}_{3}\right) \mathrm{CSi}\right), 25.8,25.8\left(\left(\mathrm{CH}_{3}\right) \mathrm{CSi}\right), 30.3$, 30.4, 35.0 (C-3), 35.4 (C-3), 37.8, 39.4, 41.9, 43.9, 44.6, 69.6 (C-5), 69.7 (C-5), 122.4, 122.4, 122.6, $122.7,127.0,127.0,128.2,128.3,128.3,128.7,128.7,128.8,128.9,128.9,129.1,129.3,129.4,129.6$, $129.7,133.4,133.5,133.5,133.5,133.8,133.8,134.2,134.5,135.5,135.5,135.7,135.7,135.9,135.9$, 136.2, 136.2, 141.2, 141.5, 148.0, 148.9, 152.8, 152.9, 195.8 (C-1), 195.9 (C-1); HRMS (ESI) calc for $\mathrm{C}_{51} \mathrm{H}_{54} \mathrm{O}_{11} \mathrm{~S}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}] 989.2490$ found 989.2497.
(3S, $\quad 6 E, \quad 1$ ' E)-5-(4'Benzenesulfoxyphenyl)ethenyl-5-(tert-butyldimethyl)silyloxy-1,7-di(4'-(benzenesulfoxy)phenylhept-6-ene 28

Ketone 27 ($684 \mathrm{mg}, 0.71 \mathrm{mmol}$) and sodium borohydride ($53 \mathrm{mg}, 1.41 \mathrm{mmol}$) were dissolved in methanol $(35 \mathrm{ml})$ and stirred for 1 h at which point additional sodium borohydride ($53 \mathrm{mg}, 1.41 \mathrm{mmol}$) was added and stirred for a further 0.5 h . The reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{ml})$ and extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$). The combined organic fractions were dried over MgSO_{4} and concentrated in vacuo. The resulting oil was dissolved in THF (20 ml) under N_{2} and $\mathrm{NaH}(848.5 \mathrm{mg}, 21.21 \mathrm{mmol})$ was added. After 1 hr CS 2 ($2.98 \mathrm{ml}, 49.50 \mathrm{mmol}$) and MeI ($1.82 \mathrm{ml}, 28.29 \mathrm{mmol}$) were added and heated to $50{ }^{\circ} \mathrm{C}$ for 1 hr . The reaction was quenched with the addition of $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{ml})$ and the reaction was extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$). The combined organic fractions were dried over MgSO_{4}, concetrated in vacuo and purified by column chromatography using 20% ethyl acetate in petrol as the eluent to yield a xanthate as a yellow oil. The yellow oil was used immediately and was dissolved in dry xylene (10 ml) under N_{2}. Hunigs base (few drops) was added and reaction heated to reflux for 24 h . After cooling to room temperature xylene and Hunig's base were removed in vacuo to give diene 28 ($410 \mathrm{mg}, 0.43 \mathrm{mmol}$, 61%) as a brown oil. $[\alpha]_{\mathrm{D}}^{21}-8.0\left(c .1 .0 \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2927,2855,1500,1372,1198,1177,1149,862$, 833, 747, 685, 578; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)-0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.96(9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right) \mathrm{CSi}\right), 1.52-1.84\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2} \& 4-\mathrm{H}_{2}\right), 2.45\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 3.07(1 \mathrm{H}, \mathrm{p}, J 7,5-\mathrm{H}), 3.67(1 \mathrm{H}, \mathrm{p}$, $J 7,3-\mathrm{H}), 5.81-5.87\left(1 \mathrm{H}, \mathrm{dd}, J 16,7,1^{\prime}-\mathrm{H}\right), 5.90(1 \mathrm{H}, \mathrm{dd}, J 16,7,6-\mathrm{H}), 6.16$ (1, d, $\left.J 16,2^{\prime}-\mathrm{H}\right), 6.22(1 \mathrm{H}$, d, $J 16,7-\mathrm{H}), 6.65-6.99(21 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.54-7.77(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)-4.4\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.3$ $\left(\mathrm{CH}_{3} \mathrm{Si}\right), 17.9\left(\left(\mathrm{CH}_{3}\right) \mathrm{CSi}\right), 25.8\left(\left(\mathrm{CH}_{3}\right) \mathrm{CSi}\right), 30.4(\mathrm{C}-1), 38.8(\mathrm{C}-2), 42.1(\mathrm{C}-4), 42.7(\mathrm{C}-5), 69.4(\mathrm{C}-3)$, 122.4, 122.7, 122.7, 127.1, 128.3, 128.3, 128.7, 128.7, 129.3, 133.3, 133.4, 133.4, 133.4, 133.7, 135.8 , $136.0,136.2,136.2,141.1,148.0,148.9$, 149.0; HRMS (ESI) calc for $\mathrm{C}_{51} \mathrm{H}_{54} \mathrm{O}_{10} \mathrm{~S}_{3} \mathrm{SiNa}$ [M+Na] 973.2540 found 973.2535.
(3S, $6 E$, 1 ' E)-5-(4'Benzenesulfoxyphenyl)ethenyl-1,7-di(4'-(benzenesulfoxyphenyl)hept-6-en-3-ol 29

TBS ether $28(410 \mathrm{mg}, 0.43 \mathrm{mmol})$ was suspended in $2 \% \mathrm{HCl} /$ ethanol $(30 \mathrm{ml})$, acetone (2 ml) was added to aid solubility and the reaction was stirred for 18 h after which $\mathrm{HCl}(0.6 \mathrm{ml})$ was added and the reaction was stirred for a further 1 h . Water $(20 \mathrm{ml})$ and ethyl acetate $(30 \mathrm{ml})$ were added and the mixture was extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using $30-40 \%$ ethyl acetate in petrol as the eluent to give alcohol 29 ($295 \mathrm{mg}, 0.35 \mathrm{mmol}, 82 \%$). $[\alpha]_{\mathrm{D}}^{23}-5.0\left(c .1 .0 \mathrm{CHCl}_{3}\right) ; \mathrm{v}_{\max } / \mathrm{cm}^{-1} 3566,3067$, $2925,2855,1500,1449,1368,1197,1176,1148,1091,861,747,685,578 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 1.32-$ $1.62\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2} \& 4-\mathrm{H}_{2}\right), 2.32(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H} H), 2.47(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}), 3.13(1 \mathrm{H}, \mathrm{p}, J 7,5-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 5.81$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 16,7,1^{\prime}-\mathrm{H}\right), 5.91(1 \mathrm{H}, \mathrm{dd}, J 16,7,6-\mathrm{H}), 6.13\left(1 \mathrm{H}, \mathrm{d}, J 16,2^{\prime}-\mathrm{H}\right), 6.20(1 \mathrm{H}, \mathrm{d}, J 16$, $7-\mathrm{H}), 6.61-7.00(21 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.55-7.80(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 31.1(\mathrm{C}-1), 39.4(\mathrm{C}-2)$, 42.4 (C-4), 43.1 (C-5), 68.3 (C-3), 122.3, 122.6, 122.7, 127.1, 127.1, 128.3, 128.3, 128.7, 128.7, 129.4, 132.9, 133.4, 133.4, 133.4, 133.9, 135.8, 135.8, 136.0, 136.2, 136.3, 141.1, 148.0, 148.9, 148.9; HRMS (ESI) calc for $\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{O}_{10} \mathrm{~S}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}] 859.1678$ found 859.1712 .

(-)-(1R, 3S, 5S, 6S, 7S)-3-(p-Benzenesulfoxyphen)ethyl-5-(E)-(p-benzenesulfoxyphen)ethynyl-7-(p-benzenesulfoxy)phenyl-2,8-dioxabicyclo[4.4.0]decan-9-one 30

Trimethylsilyl trifluoromethanesulfonate ($77 \mu \mathrm{l}, 0.43 \mathrm{mmol}$) was added to a stirring solution of alcohol 29 ($179 \mathrm{mg}, 0.21 \mathrm{mmol}$) and methyl 3,3-dimethoxypropanoate $\mathbf{8}(121 \mu \mathrm{l}, 0.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $30^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred for 1.5 h before being quenched by the addition of water $(20 \mathrm{ml})$. The phases were separated and the aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{ml})$.The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by column
chromatography using $30-50 \%$ ethyl acetate in petrol as the eluent to yield lactone $\mathbf{3 0}$ as a pale yellow oil ($142 \mathrm{mg}, 0.16 \mathrm{mmol}, 75 \%$). m.p. $[\alpha]_{\mathrm{D}}^{21}-20.0\left(c .1 .0 \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2924,2854,1738,1501,1369$, $1198,1177,1149,1091,862,749,685 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}), 1.59(1 \mathrm{H}, \mathrm{ddd}, J 13.5$, 4, 2, 4-HH), $1.63-1.85\left(2 \mathrm{H}, \mathrm{m}, 1 "-\mathrm{H}_{2}\right), 1.88(1 \mathrm{H}, \mathrm{q}, J 10,6-\mathrm{H}), 2.32(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.54-2.84(3 \mathrm{H}, \mathrm{m}$, $\left.2 "-\mathrm{H}_{2} \& 10-\mathrm{H}_{\mathrm{ax}}\right), 3.11\left(1 \mathrm{H}, \mathrm{dd}, J 18,5.5,10-\mathrm{H}_{\mathrm{eq}}\right), 3.45(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.67(1 \mathrm{H}, \operatorname{ddd}, J 11.5,10,5.5,1-\mathrm{H})$, $4.94(1 \mathrm{H}, \mathrm{d}, J 10,7-\mathrm{H}), 5.07$ ($1 \mathrm{H}, \mathrm{dd}, J 16,9,1$ '-H), 5.94 ($1 \mathrm{H}, \mathrm{d}, J 16,2^{\prime}-\mathrm{H}$), 6.70 ($2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}$), 6.82 (3H, dd, $J 15,8.5, \mathrm{Ar}), 6.92$ (2H, d, $J 8.5, \mathrm{Ar}$), 7.10 ($2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}$), 7.16 ($2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}$), 7.48 - 7.60 ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.65-7.77$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.86 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar);} \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.7$ (C-2"), 37.0 (C-1"), 37.2 (C-10), 39.0 (C-4), 42.3 (C-5), 47.6 (C-6), 73.2 (C-3), 75.4 (C-1), 84.1 (C-7), 122.2, 122.3, 122.4, 126.7, 128.4, 128.4, 128.4, 128.5 (C-2'), 129.1, 129.1, 129.2, 129.3, 129.5, 130.0, 132.9 (C-1') 134.2, 134.3, 134.3, 135.2, 135.3, 135.4, 135.5, 137.1, 140.8, 147.7, 148.6, 149.6, 168.5 (C-9); HRMS (ESI) calc for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}] 929.1730$, found 929.1702.

(-)-(1R, 3S, 5S, 6S, 7S, 9S)- 3a, 9 α-di(p-Benzenesulfoxyphen)ethyl-5a-(E)-(p-

 benzenesulfoxyphen)ethynyl-7 α-(p-benzenesulfoxy)phenyl-2,8-dioxabicyclo[4.4.0]decane 31

30

Methoxyphenethyl bromide ($1 \mathrm{ml}, 1376 \mathrm{mg}, 6.40 \mathrm{mmol}$) was added to a solution of vacuum dried magnesium ($171 \mathrm{mg}, 7.04$) in tetrahydrofuran (6.4 ml). A single crystal of iodine was added and the reaction mixture was warmed to initial reaction. On cooling to room temperature the magnesium was seen to be consumed. 1 ml of the resulting solution was added slowly to a solution of lactone $\mathbf{3 0}$ (275 mg , $0.303 \mathrm{mmol})$ in tetrahydrofuran $(20 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirred for 4 h before the reaction mixture was quenched with saturated ammonium chloride (30 ml) and extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using 20-50\% ethyl acetate in petrol as the eluent to give lactol ($168 \mathrm{mg}, 0.161 \mathrm{mmol}, 53 \%$) as a pale yellow oil. Lactol was dissolved in dichloromethane (20 ml) and triethylsilane ($258 \mu 1,1.61 \mathrm{mmol}$) was added. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and TMSOTf ($44 \mu \mathrm{l}, 0.242 \mathrm{mmol}$) was added dropwise. The reaction was stirred at $78{ }^{\circ} \mathrm{C}$ for 1 h before quenching with saturated ammonium chloride (30 ml) and extracting with
dichloromethane ($3 \times 30 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and filtered through a silica plug using 60% ethyl acetate in petrol as the eluent to give bicycle $\mathbf{3 1}$ ($131 \mathrm{mg}, 0.128 \mathrm{mmol}, 42 \%$ over two steps, 76% from lactol) as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{22}-41.0(c .1 .0$ $\left.\mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2930,1501,1449,1371,1198,1176,1149,863 . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.26(1 \mathrm{H}, \mathrm{m}, 4-$ HH), 1.45 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}$), $1.54-1.64(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 10-\mathrm{HH} \& 1 "-\mathrm{H} H), 1.72-1.83(2 \mathrm{H}, \mathrm{m}, 1 " H \mathrm{H}$ \& 1"'-
 $3.30(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.35(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.49(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) 3.95(1 \mathrm{H}, \mathrm{d}, J 10,7-\mathrm{H})$, 5.01 ($\left.1 \mathrm{H}, \mathrm{dd}, J 16,9.0,1^{\prime}-\mathrm{H}\right), 5.75\left(1 \mathrm{H}, \mathrm{d}, J 16,2^{\prime}-\mathrm{H}\right), 6.65$ (2H, d, $\left.J 8, \mathrm{Ar}\right), 6.79$ (4H, dd, $J 12,8, \mathrm{Ar}$), $6.88(4 \mathrm{H}, \mathrm{d}, J 8, \mathrm{Ar}), 7.06(5 \mathrm{H}, \mathrm{dd}, J 11,8, \mathrm{Ar}), 7.51(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.58-7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.73(2 \mathrm{H}, \mathrm{d}, J$ 8, Ar), 7.82 ($6 \mathrm{H}, \mathrm{t}, J 8, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.3 \& 30.9$ (C-2" \& C-2"'), 37.3 (C-1"), 37.6 (C-1"'), 37.9 (C-10), 40.2 (C-4), 42.0 (C-5), 50.6 (C-6), 55.2 (MeO), 75.0 (C-9), 75.4 (C-3), 78.8 (C-1), 82.3 (C7), 113.7, 122.1, 122.2, 126.5, 127.1 (C-2'), 128.3, 128.4, 128.4, 128.5, 129.1, 129.1, 129.1, 129.3, 129.4, $129.5,133.9,134.1,134.1,134.2,134.2,134.9$ (C-1'), 135.4, 135.5, 135.7, 136.0, 140.0, 141.1, 147.6, 148.3, 148.9, 157.7; HRMS (ESI) calc for $\mathrm{C}_{57} \mathrm{H}_{54} \mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Na}$ [M+Na] 1049.2669, found 1049.2632.

(-)-Blepharocalyxin D 1

n-Butyllithium ($1.90 \mathrm{ml}, 3 \mathrm{mmol}, 1.58 \mathrm{M}$ in hexanes) was added dropwise to a solution of propanethiol ($272 \mu \mathrm{l}, 3 \mathrm{mmol}$) in HMPA (2 ml) under N_{2} at $0^{\circ} \mathrm{C}$. After 1 hr , the reaction mixture was warmed to room temperature and the hexane was removed in vacuo. To the resulting solution of lithium propanethiolate, a solution of bicycle 35 ($20 \mathrm{mg}, 0.019 \mathrm{mmol}$) in HMPA (1 ml) was added slowly. The reaction mixture was heated to $180^{\circ} \mathrm{C}$ for 30 minutes before cooling to room temperature. Water (20 ml) was added and the mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$). The combined organic fractions were dried over MgSO_{4}, concentrated in vacuo and purified by column chromatography using 50% ethyl acetate in hexane to give (-)-blepharocalyxin D $1(9.6 \mathrm{mg}, 0.016 \mathrm{mmol}, 85 \% \text {) as a pale yellow solid. [} \alpha]_{\mathrm{D}}^{21}-79.2$ (c. $0.23 \mathrm{MeOH}) ;$ lit. ${ }^{6}[\alpha]_{\mathrm{D}}^{22}-77.1(c .0 .11 \mathrm{MeOH}) ; \delta_{\mathrm{H}}($ Acetone-D $6,400 \mathrm{MHz}) 1.08(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}), 1.50-$ $1.81\left(7 \mathrm{H}, \mathrm{m}, 1 "-\mathrm{H}_{2}, 1\right.$ "'- $\left.\mathrm{H}_{2}, 4-\mathrm{H} H, 6-\mathrm{H} \& 10-\mathrm{HH}\right), 2.00(1 \mathrm{H}, \mathrm{ddd}, J 12,4.0,1.5,10-\mathrm{H} H), 2.22(1 \mathrm{H}, \mathrm{m}, 5-$ H), $2.49-2.67\left(4 \mathrm{H}, \mathrm{m}, 2 "-\mathrm{H}_{2} \& 2 "\right.$ "- H_{2}), $3.36(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.42-3.63(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H} \& 9-\mathrm{H}), 3.99(1 \mathrm{H}, \mathrm{d}$,
$J 10,7-\mathrm{H}), 5.06\left(1 \mathrm{H}, \mathrm{dd}, J 16,8.5,1^{\prime}-\mathrm{H}\right), 5.82\left(1 \mathrm{H}, \mathrm{d}, J 16,2^{\prime}-\mathrm{H}\right), 6.50-6.69(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.69-6.78$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.87-7.08(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.37-8.58(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(\right.$ Acetone-D $\left._{6}, 126 \mathrm{MHz}\right) 30.4 \& 30.5(\mathrm{C}-$ $2 " \& C-2 "), 38.1 \& 38.2$ (C-1" \& C-1"'), 38.4 (C-10), 40.6 (C-4), 41.6 (C-5), 51.2 (C-6), 74.6, 75.4, 79.1 (C-1), 82.7 (C-7), 114.6, 114.7, 115.0, 115.1, 126.9, 127.0 (C-2'), 129.2, 129.3, 129.7, 132.1 (C-2'), 132.7, 132.8, 132.9, 155.4, 155.5, 156.0, 156.9. HRMS (ESI) calc for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}] 615.2713$, found 615.2717.

4-(Benzenesulfoxy)benzaldehyde 32

4-Hydroxybenzaldehyde ($2.5 \mathrm{~g}, 20.47 \mathrm{mmol}$) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml})$ under N_{2} and cooled to $0{ }^{\circ} \mathrm{C}$. Benzenesulfonyl chloride ($2.6 \mathrm{ml}, 20.47 \mathrm{mmol}$) and triethylamine ($2.8 \mathrm{ml}, 20.47 \mathrm{mmol}$) were added dropwise, the reaction was warmed to room temperature and stirred for 2 hrs . $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{ml})$ was added and the reaction mixture was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 30 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and concentrated in vacuo to give aldehyde $32(5.34 \mathrm{~g}, 20.36 \mathrm{mmol}, 99 \%)$ as a colorless solid mp 78 $79{ }^{\circ} \mathrm{C}$, lit $\mathrm{mp} 81-82{ }^{\circ} \mathrm{C}^{6}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.09-7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.48-7.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right)$, $7.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.78-7.88\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph} \& \mathrm{Ar}\right), 9.97(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 123.0, 128.4, 129.3, 131.3, 134.6, 134.9, 135.1, 153.7, 190.6 (C-1).

Spectroscopic data in accordance with literature data. ${ }^{7}$

(4'-Benzenesulfoxyphenyl)ethene 33

32

n-Butyllithium ($5 \mathrm{ml}, 7.85 \mathrm{mmol}, 1.57 \mathrm{M}$ in hexanes) was added dropwise to a stirring suspension of methyltriphenylphosphonium bromide ($2.73 \mathrm{~g}, 7.63 \mathrm{mmol}$) in THF (30 ml) at $-78{ }^{\circ} \mathrm{C}$ under N_{2}. After stirring for 0.5 hr , a solution of aldehyde $32(1.00 \mathrm{~g}, 3.81 \mathrm{mmol})$ in THF (10 ml) was added slowly. The reaction was allowed to warm to room temperature overnight then quenched with saturated ammonium chloride (60 ml) and was extracted with diethyl ether ($3 \times 50 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4}, concentrated in vacuo and purified by flash chromatography using 2% ethyl acetate in petrol as the eluent to yield styrene $\mathbf{3 3}$ as a colorless oil ($603 \mathrm{mg}, 2.32 \mathrm{mmol}, 61 \%$). $v_{\max } / \mathrm{cm}^{-1} 3069,1501$, $1372,1199,1178,862,848 ; \delta_{\text {H }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.27(1 \mathrm{H}, \mathrm{d}, J 11,2-\mathrm{HH}), 5.69(1 \mathrm{H}, \mathrm{d}, J 17.5 .2-\mathrm{HH})$,
$6.65(1 \mathrm{H}, \mathrm{dd}, J 17.5,11,1-\mathrm{H}), 6.93(2 \mathrm{H}, \mathrm{d}, J 8.5), 7.31(2 \mathrm{H}, \mathrm{d}, J 8.5), 7.53\left(2 \mathrm{H}, \mathrm{tt}, J 8,1, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.67$ $\left(1 \mathrm{H}, \mathrm{tt}, J 8,1, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.84\left(2 \mathrm{H}, \mathrm{dd}, J 8,1, \mathrm{OSO}_{2} \mathrm{Ph}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 115.0(\mathrm{C}-2), 122.4,127.3$, 128.5, 129.1, 134.2, 135.3, 135.4 (C-1), 136.6, 148.9; HRMS (ESI) calc for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]$ 283.0399 found 283.0409 .

4’-Benzenesulfoxyphenethyl boronic acid MIDA boronate 34

Styene 33 ($559 \mathrm{mg}, 2.15 \mathrm{mmol}$), vinyl boronic acid MIDA boronate ($260 \mathrm{mg}, 1.42 \mathrm{mmol}$) and Grubbs $2^{\text {nd }}$ generation catalyst ($121 \mathrm{mg}, 0.14 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and heated under reflux for 24 hrs . After cooling to room temperature, solvent was removed in vacuo and the residue was purified by column chromatography using 20% acetonitrile in diethyl ether as the eluent to yield boronate $\mathbf{3 4}$ (457 $\mathrm{mg}, 1.10 \mathrm{mmol}, 77 \%) . \mathrm{mp} 174-176{ }^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 3008,2963,1769,1750,1503,1345,1196,1174,1146$, 1027,$852 ; \delta_{\text {н }}\left(400 \mathrm{MHz}\right.$, acetone) $3.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.08(2 \mathrm{H}, \mathrm{d}, J 17), 4.26(2 \mathrm{H}, \mathrm{d}, J 17), 6.35(1 \mathrm{H}, \mathrm{d}, J$ 18), $6.91(1 \mathrm{H}, \mathrm{d}, J 18), 7.00(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 7.51(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 7.62-7.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.82$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right), 7.84-7.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OSO}_{2} \mathrm{Ph}\right)$; HRMS (CI) calc for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BNO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}] 416.0975$ found 416.0965.

NMR Spectra of novel compounds

15

References

(1) de Fátima, Â.; Kohn, L. K.; de Carvalho, J. E.; Pilli, R.. A. Bioorg. Med. Chem. 2006, 14, 622.
(2) Bunt, A. J.; Bailey, C. D.; Cons, B. D.; Edwards, S. J.; Elsworth, J. D.; Pheko, T.; Willis, C. L. Angew. Chem. Int. Ed 2012, 51, 3901.
(3) Hon, Y. -S.; Wong, Y. -C.; Chang, C.-P.; Hsieh, C. -H. Tetrahedron 2007, 63, 11325.
(4) Kramer, S.; Dooleweerdt, K.; Lindhardt, A. T.; Rottlander, M.; Skrydstrup, T. Org. Lett. 2009, 11, 4208.
(5) Guo, W.; Li, J. F.; Fan, N. J.; Wu, W. W.; Zhou, P. W.; Z. Xia, C. Z. Synth. Comm. 2005, 35, 145.
(6) Ko, H. M.; Lee, D. G.; Kim, M. A.; Kim, H. J.; Park, J.; Lah, M. S.; Lee, E. Tetrahedron 2007, 63, 5797.
(7) Tian, X.; Jaber, J. J.; Rychnovsky, S. D. J. Org. Chem. 2006, 71, 3176.

