Supporting Information for

Asymmetric Synthesis of (–)-Martinellic Acid

Stephen G. Davies*, Ai M. Fletcher, James A. Lee,

Thomas J. A. Lorkin, Paul M. Roberts, and James E. Thomson

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.

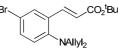
steve.davies@chem.ox.ac.uk

Table of Contents

1. Experimental	2–17
2. X-ray crystal structure determination	18
3. Copies of ¹ H and ¹³ C spectra	19–53

1. Experimental

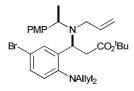
1.1. General Experimental


All reactions involving organometallic or other moisture sensitive reagents were carried out under a nitrogen or argon atmosphere using standard vacuum line techniques and glassware that was flame dried and cooled under nitrogen before use. Solvents were dried according to the procedure outlined by Grubbs and co-workers.¹ Water was purified by an Elix[®] UV–10 system. BuLi was purchased as a solution in hexanes and titrated against diphenylacetic acid before use. All other reagents were used as supplied without prior purification. Organic layers were dried over MgSO₄. Thin layer chromatography was performed on aluminium plates coated with 60 F₂₅₄ silica. Plates were visualised using UV light (254 nm), iodine, 1% aq KMnO₄, or 10% ethanolic phosphomolybdic acid. Flash column chromatography was performed on Kieselgel 60 silica.

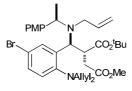
Melting points are uncorrected. Optical rotations were recorded in a water-jacketed 10 cm cell. Specific rotations are reported in 10^{-1} deg cm² g⁻¹ and concentrations in g/100 mL. IR spectra were recorded using an ATR module. Selected characteristic peaks are reported in cm⁻¹. NMR spectra were recorded in the deuterated solvent stated. Spectra were recorded at rt. The field was locked by external referencing to the relevant deuteron resonance. ¹H–¹H COSY, ¹H–¹³C HMQC, and ¹H–¹³C HMBC analyses were used to establish atom connectivity. Accurate mass measurements were run on a TOF spectrometer internally calibrated with polyalanine.

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.

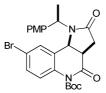
1.2. Experimental Data


tert-Butyl (E)-3-(2'-N,N-diallylamino-5'-bromophenyl)propenoate 5

Step 1: Pd(OAc)₂ (80 mg, 0.36 mmol) was added to a stirred, degassed solution of 3 (10.6 g, 35.5 mmol), P(o-Tol)₃ (216 mg, 0.71 mmol), tert-butyl acrylate (5.72 mL, 39.1 mmol) and Et₃N (9.89 mL, 71.0 mmol) in MeCN (200 mL). The resultant mixture was heated at 70 °C for 16 h, then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (200 mL) and the resultant solution was washed with H₂O (2 \times 200 mL). The combined aqueous layers were extracted with CH₂Cl₂ (200 mL) and the combined organic extracts were dried and concentrated in vacuo to give 4 as a brown oil (10.7 g, >99:1 dr); $^{2} \delta_{H}$ (400 MHz, CDCl₃) 1.53 (9H, s, CMe₃), 3.95 (2H, s, NH₂), 6.28 (1H, d, J 15.7, C(2)H), 6.58 (1H, d, J 8.7, C(3')H), 7.23 (1H, dd, J 8.7, 2.3, C(4')H), 7.48 (1H, d, J 2.3, C(6')H), 7.61 (1H, d, J 15.7, C(3)H). Step 2: Allyl iodide (9.80 mL, 107 mmol) was added to a solution of 4 (10.7 g, >99:1 dr) and K_3PO_4 (18.8 g, 88.7 mmol) in acetone (200 mL), and the resultant mixture was heated at reflux for 48 h. The reaction mixture was then allowed to cool to rt, diluted with Et₂O (300 mL), and washed with H₂O (2×200 mL). The combined aqueous layers were extracted with Et₂O (200 mL) and the combined organic extracts were dried and concentrated in vacuo. The residue was passed through a short plug of silica (eluent 30-40 °C petrol/Et₂O, 20:1) and the filtrate was concentrated *in vacuo* to give 5 as a yellow oil (12.1 g, 90% from 3, >99:1 dr); C₁₉H₂₄BrNO₂ requires C, 60.3; H, 6.4; N, 3.7%; found C, 60.4; H, 6.4; N, 3.8%; v_{max} (ATR) 3078, 2978, 2931, 2822 (C-H), 1705 (C=O), 1631, 1585 (C=C); δ_H (400 MHz, CDCl₃) 1.54 (9H, s, CMe₃), 3.61 (4H, d, J 6.3, N(CH₂CH=CH₂)₂), 5.10–5.21 (4H, m, N(CH₂CH=CH₂)₂), 5.72–5.84 (2H, m, N(CH₂CH=CH₂)₂), 6.30 (1H, d, J 15.9, C(2)H), 6.89 (1H, d, J 8.6, C(3')H), 7.36 (1H, dd, J 8.6, 2.3, C(4')H), 7.63 (1H, d, J 2.3, C(6')H), 7.92 (1H, d, J 15.9, C(3)H); δ_{C} (100 MHz, CDCl₃) 28.2 (CMe₃), 56.0 (N(CH₂CH=CH₂)), 80.5 (CMe₃), 115.5 (C(5')), 118.0 (N(CH₂CH=CH₂)₂), 120.8 (C(2)), 123.2 (C(3')), 130.4 (C(6')), 131.7 (C(1')), 132.4 (C(4')), 134.2 $(N(CH_2CH=CH_2)_2), 139.9 (C(3)), 149.6 (C(2')), 166.2 (C(1)); m/z (ESI⁺) 779 ([M(⁸¹Br)+M(⁷⁹Br)+Na]⁺.$ 100%), 400 ($[M(^{79}Br)+Na]^+$, 85%), 380 ($[M(^{81}Br)+H]^+$, 60%); HRMS (ESI⁺) C₁₉H₂₄⁸¹BrNNaO₂⁺ $([M(^{81}Br)+Na]^{+})$ requires 402.0862; found 402.0867.


² A synthesis of **4** has previously been reported, see: Slavish, P. J.; Jiang, Q.; Xiaoli. C.; Morris, S. W.; Webb, T. R. *Bioorg. Med. Chem.* **2009**, *17*, 3308.

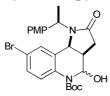
tert-Butyl (3*S*,*αR*)-3-[*N*-allyl-*N*-(*α*-methyl-4''-methoxybenzyl)amino]-3-(2'-*N*,*N*-diallylamino-5'bromophenyl)propanoate 7


BuLi (2.3 M in hexanes, 29.2 mL, 68.7 mmol) was added dropwise to a solution of (R)-N-allyl-N-(α-methyl-4methoxybenzyl)amine (13.1 g, 68.7 mmol, >99:1 er) in THF (200 mL) at -78 °C and the resultant mixture was stirred at -78 °C for 30 min. A solution of 5 (16.3 g, 42.9 mmol, >99:1 dr) in THF (200 mL) at -78 °C was added dropwise via cannula. The reaction mixture was stirred for 2 h at -78 °C then satd aq NH₄Cl (10 mL) was added. The resultant mixture was washed with 10% ag citric acid (2×150 mL) and the combined aqueous layers were extracted with Et₂O (200 mL). The combined organic extracts were then washed sequentially with satd aq NaHCO₃ (200 mL) and brine (100 mL), then dried and concentrated *in vacuo* to give 7 as a brown oil (25.0 g, quant, >99:1 dr). Purification of an aliquot via flash column chromatography (eluent 30–40 °C petrol/Et₂O, 4:1) gave an analytical sample of 7 as a pale yellow oil (>99:1 dr); $C_{31}H_{41}BrN_2O_3$ requires C, 65.4; H, 7.3; N, 4.9%; found C, 65.45; H, 7.3; N, 4.9%; $[\alpha]_{D}^{20}$ -5.6 (*c* 1.0 in CHCl₃); v_{max} (ATR) 3075, 2977, 2931, 2834 (C–H), 1727 (C=O), 1641, 1610, 1584 (C=C); δ_H (400 MHz, CDCl₃) 1.25 (3H, d, J 6.6, $C(\alpha)Me$, 1.36 (9H, s, CMe_3), 2.54 (1H, dd, J 15.2, 6.3, $C(2)H_A$), 2.86 (1H, dd, J 15.2, 8.3, $C(2)H_B$), 3.13–3.23 (1H, m, NCH_AH_BCH=CH₂), 3.30–3.39 (1H, m, NCH_AH_BCH=CH₂), 3.47–3.64 (4H, m, $N(CH_2CH=CH_2)_2$, 3.80 (3H, s, OMe), 3.89 (1H, q, J 6.6, C(α)H), 4.92–5.20 (7H, m, C(3)H, NCH₂CH=CH₂, N(CH₂CH=CH₂)₂), 5.72–5.88 (3H, m, NCH₂CH=CH₂, N(CH₂CH=CH₂)₂), 6.84 (1H, d, J 8.7, C(3")H, C(5")H), 6.96 (1H, d, J 8.6, C(3')H), 7.28 (2H, d, J 8.7, C(2")H, C(6")H), 7.31 (1H, dd, J 8.6, 2.5, C(4')H), 7.67 (1H, d, J 2.5, C(6')); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.8 (C(α)Me), 28.0 (CMe₃), 39.9 (C(2)), 48.8 (NCH₂CH=CH₂), 53.6 (C(3)), 55.2 (OMe), 56.0 $(C(\alpha))$, 56.9 $(N(CH_2CH=CH_2)_2)$, 80.2 (CMe_3) , 113.2 (C(3'')), C(5'')), 114.6 (NCH₂CH=*C*H₂), 117.4 (*Ar*), 118.1 (N(CH₂CH=*C*H₂)₂), 125.6 (*C*(3')), 128.7 (*C*(2"), *C*(6")), 130.0 (*C*(4')), 132.1 (C(6')), 134.5 (N(CH₂CH=CH₂)₂), 136.7 (Ar), 139.8 (NCH₂CH=CH₂), 141.9, 148.9 (Ar), 158.2 (C(4")), 171.2 (*C*(1)); m/z (ESI⁺) 571 ([M(⁸¹Br)+H]⁺, 100%), 569 ([M(⁷⁹Br)+H]⁺, 95%); HRMS (ESI⁺) $C_{31}H_{42}^{79}BrN_2O_3^+$ ([M(⁷⁹Br)+H]⁺) requires 569.2373; found 569.2367.

 $(2"-N, N-dially lamino-5"-brom ophenyl) propanoate \ 8$

BuLi (2.3 M in hexane, 27.4 mL, 64.4 mmol) was added dropwise to a solution of ⁱPr₂NH (9.02 mL, 64.5 mmol) in THF (200 mL) at 0 °C. The resultant mixture was stirred at 0 °C for 15 min then cooled to -78 °C and stirred at -78 °C for 30 min. A solution of 7 (24.5 g, 42.9 mmol, >99:1 dr) in THF (150 mL) at -78 °C was added dropwise via canula and the resultant mixture was stirred at -78 °C for 1 h. Methyl bromoacetate (12.2 mL, 128 mmol) was then added dropwise and the resultant mixture was allowed to warm to rt over 16 h. Satd aq NH₄Cl (10 mL) was then added and the reaction mixture was washed with 10% aq citric acid $(2 \times 100 \text{ mL})$. The combined aqueous layers were extracted with Et₂O (100 mL) and the combined organic extracts were washed sequentially with satd aq NaHCO₃ (200 mL) and brine (200 mL), then dried and concentrated in vacuo to give 8 in >98:2 dr. Purification via flash column chromatography (eluent 30-40 °C petrol/Et₂O, 83:17) gave **8** as a yellow oil (27.5 g, 81%, >98:2 dr); $[\alpha]_{D}^{20}$ -47.5 (c 1.0 in CHCl₃); v_{max} (ATR) 3076, 2977, 2951, 2835 (C–H), 1741 (C=O), 1641, 1610, 1585 (C=C); δ_H (400 MHz, CDCl₃) 1.08 (3H, d, J 6.6, C(α)Me), 1.49 (9H, s, CMe₃), 2.17 (1H, dd, J 15.7, 3.5, C(1')H_A), 2.52 (1H, dd, J 15.7, 11.1, C(1')H_B), 3.09-3.25 (2H, m, NCH₂CH=CH₂), 3.43-3.64 (5H, m, C(2)H, N(CH₂CH=CH₂)₂), 3.61 (3H, s, CO₂Me), 3.77 (3H, s, ArOMe), 4.05 (1H, q, J 6.6, C(α)H), 4.82–4.97 (3H, m, C(3)H, NCH₂CH=CH₂), 5.10–5.21 (4H, m, N(CH₂CH=CH₂)₂), 5.64–5.89 (3H, m, NCH₂CH=CH₂, N(CH₂CH=CH₂)₂), 6.76 (2H, d, J 8.8, C(3''')H, C(5")H), 7.03 (1H, d, J 8.6, C(3")H), 7.13 (2H, d, J 8.8, C(2")H, C(6")H), 7.36 (1H, dd, J 8.6, 2.5, C(4")H), 7.49 (1H, d, J 2.5, C(6")H); δ_{C} (100 MHz, CDCl₃) 18.7 (C(α)Me), 28.0 (CMe₃), 35.7 (C(1')), 46.3 (C(2)), 49.9 $(NCH_2CH=CH_2), 51.7 (CO_2Me), 55.2 (ArOMe), 56.3 (C(\alpha)), 57.1 (N(CH_2CH=CH_2)_2), 57.4 (C(3)), 80.8$ (CMe₃), 113.1 (C(3'''), C(5''')), 114.9 (NCH₂CH=CH₂), 117.7 (Ar), 118.8 (N(CH₂CH=CH₂)₂), 126.3 (C(3'')), 128.9 (C(2"), C(6")), 130.5 (Ar), 132.1 (C(6")), 133.7 (N(CH₂CH=CH₂)₂), 137.0, 137.4 (Ar), 138.6 (NCH₂*C*H=CH₂), 150.1 (*Ar*), 158.1 (*C*(4"')), 171.8, 173.4 (*C*(1), *C*(2')); *m*/*z* (ESI⁺) 643 ([M(⁸¹Br)+H]⁺, 100%), 641 ($[M(^{79}Br)+H]^+$, 95%); HRMS (ESI⁺) $C_{34}H_{46}^{-79}BrN_2O_5^+$ ($[M(^{79}Br)+H]^+$) requires 641.2585; found 641.2590.

hexahydro-1*H*-pyrrolo[3,2-*c*]quinolin-2,4-dione 11



Step 1: Pd(PPh₃)₄ (357 mg, 0.31 mmol) was added to a stirred, degassed solution of **8** (3.97 g, 6.19 mmol, >98:2 dr) and DMBA (8.68 g, 55.7 mmol) in CH₂Cl₂ (80 mL) under argon and the resultant mixture was stirred at 35 °C for 16 h. Additional Pd(PPh₃)₄ (357 mg, 0.31 mmol) was then added and the resultant mixture was stirred at 35 °C for 16 h. The reaction mixture was then concentrated *in vacuo* and the resultant mixture was dissolved in Et₂O (200 mL). The resultant solution was washed with satd aq K₂CO₃ (2 × 100 mL) and the combined aqueous layers were extracted with Et₂O (2 × 100 mL). The combined organic extracts were washed with 3.0 M aq HCl (5 × 50 mL) and 2.0 M aq NaOH was added to the combined aqueous layers until pH >10 was achieved. The aqueous layer was then extracted with CHCl₃/IPA (3:1, 3 × 50 mL) and the combined organic extracts were dried and concentrated *in vacuo* to give **9** as a yellow oil (3.97 g, >98:2 dr); $\delta_{\rm H}$ (400 MHz, CDCl₃) [selected peaks] 2.23 (1H, dd, *J* 16.9, 4.6, C(1')*H*_A), 2.42 (1H, dd, *J* 16.9, 4.4, C(1')*H*_B), 3.34 (1H, app dt, *J* 9.5, 4.7, C(2)*H*), 3.96 (1H, d, *J* 9.5, C(3)*H*), 6.37 (1H, d, *J* 8.5, *Ar*), 6.96 (1H, d, *J* 2.4, *Ar*).

Step 2: PhCO₂H (76 mg, 0.62 mmol) was added to a solution of 9 (3.97 g, >98:2 dr) in PhMe (50 mL). The resultant solution was heated at reflux for 16 h, then allowed to cool to rt and concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ (100 mL) and the resultant solution was washed with satd aq K₂CO₃ $(2 \times 50 \text{ mL})$. The combined aqueous layers were extracted with CH₂Cl₂ (50 mL) and the combined organic extracts were then dried and concentrated in vacuo to give 10 as a brown solid (1.72 g, >99:1 dr). An aliquot was purified by recrystallisation (PhMe) to give an analytical sample of 10 as a white solid; C₂₀H₁₉BrN₂O₃ requires C, 57.8; H, 4.6; N, 6.75%; found C, 57.8; H, 4.7; N, 6.7%; mp 258–262 °C; [α]_D²⁰+155 (c 0.7 in CHCl₃); v_{max} (ATR) 3228 (N–H), 3076, 2935 (C–H), 1687 (C=O); δ_H (400 MHz, CDCl₃) 0.99 (3H, d, J 7.3, $C(\alpha)Me$, 2.79 (1H, dd, J 16.7, 8.1, $C(3)H_A$), 3.02–3.09 (1H, m, C(3a)H), 3.28 (1H, app d, J 16.7, $C(3)H_B$), 3.87 (3H, s, OMe), 4.62 (1H, d, J 5.3, C(9b)H), 5.53 (1H, q, J 7.3, C(a)H), 6.24 (1H, d, J 2.3, C(9)H), 6.80 (1H, d, J 8.3, C(6)H), 6.97 (2H, d, J 9.0, C(3')H, C(5')H), 7.02 (2H, d, J 8.7, C(2')H, C(6')H), 7.42 (1H, dd, J 8.7, 2.3, C(7)H), 9.97 (1H, s, NH); δ_{C} (100 MHz, CDCl₃) 17.3 (C(α)Me), 34.0 (C(3)), 38.3 (C(3a)), 48.5 $(C(\alpha)), 55.4 (OMe), 57.1 (C(9b)), 114.1 (C(3'), C(5')), 114.8 (Ar), 117.3 (C(6)), 119.2 (Ar), 128.8 (C(2'), 119.2 (Ar)), 128.8 (C(2')), 128.8 (C(2'))), 128.8 (C(2')), 128.8 (C(2')), 128.8$ C(6'), 130.2 (Ar), 133.4 (C(7)), 134.6 (C(9)), 136.6 (Ar), 158.9 (C(4')), 170.8, 173.3 (C(2), C(4)); m/z (ESI⁺) 439 ($[M(^{81}Br)+Na]^+$, 95%), 437 ($[M(^{79}Br)+Na]^+$, 100%); HRMS (ESI⁺) C₂₀H₁₉⁷⁹BrN₂NaO₃⁺ ($[M(^{79}Br)+Na]^+$) requires 437.0471; found 437.0473.

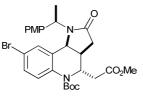
Step 3: Boc₂O (1.13 g, 5.16 mmol) was added to a solution of **10** (1.72 g, >99:1 dr), Et₃N (1.31 mL, 9.38 mmol) and DMAP (57 mg, 0.50 mmol) in CH₂Cl₂ (50 mL) and the resultant mixture was stirred at 35 °C for 16 h. The reaction mixture was then washed with 1.0 M aq HCl (50 mL) and the aqueous layer was extracted with CH₂Cl₂ (50 mL). The combined organic extracts were washed sequentially with satd aq NaHCO₃ (50 mL) and brine (50 mL), then dried and concentrated *in vacuo*. Purification via recrystallisation (PhMe) gave **11** as a white solid (1.19 g, 49% from **8**, >99:1 dr); mp 178–182 °C; $[\alpha]_D^{20}$ +97.7 (*c* 1.2 in CHCl₃); v_{max} (ATR) 2976 (C–H), 1749, 1737 (C=O); δ_H (400 MHz, CDCl₃) 1.00 (3H, d, *J* 7.3, C(α)*Me*), 1.58 (9H, s, CMe₃), 2.70 (1H, dd, *J* 16.4, 7.3, C(3)*H*_A), 3.01–3.12 (1H, m, C(3a)*H*), 3.24 (1H, app d, *J* 16.4, C(3)*H*_B), 3.84 (3H, s, OMe), 4.50 (1H, d, *J* 5.1, C(9b)*H*), 5.50 (1H, q, *J* 7.3, C(α)*H*), 6.18 (1H, d, *J* 2.0, C(9)*H*), 6.77 (1H, d, *J* 8.7, C(6)*H*), 6.93 (2H, d, *J* 8.8, C(3')*H*, C(5')*H*), 6.98 (2H, d, *J* 8.8, C(2')*H*, C(6')*H*), 7.42 (1H, dd, *J* 8.7, 2.0, C(7)*H*); δ_C (100 MHz, CDCl₃) 17.3 (C(α)*Me*), 27.5 (C*Me*₃), 34.4 (C(3)), 39.4 (C(3a)), 48.3 (C(α)), 55.4 (OMe), 56.9 (C(9b)), 86.1 (CMe₃), 114.1 (C(3'), C(5')), 116.1 (*Ar*), 117.7 (C(6)), 120.6 (*Ar*), 128.7 (C(2'), C(6')), 130.1 (*Ar*), 133.2 (C(7)), 134.8 (C(9)), 136.1 (*Ar*), 159.4 (NCO), 159.0 (C(4')), 167.4, 172.9 (C(2), C(4)); *m/z* (ESI⁺) 539 ([M(⁸ Br)+Na]⁺, 95%), 537 ([M(⁷⁹ Br)+Na]⁺, 100%); HRMS (ESI⁺) C₂₅H₂₇⁷⁹BrN₂NaO₅⁺ ([M(⁷⁹ Br)+Na]⁺) requires 537.0996; found 537.0998.

 $(3aR,4R,9bS,\alpha R)$ - or $(3aR,4S,9bS,\alpha R)$ -N(1)- $(\alpha$ -Methyl-4'-methoxybenzyl)-4-hydroxy-N(5)-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one 12³

LiAl(O^tBu)₃H (659 mg, 2.59 mmol) was added portionwise to a solution of **11** (891 mg, 1.72 mmol, >99:1 dr) in THF (20 mL) at 0 °C and the resultant mixture was stirred at 0 °C for 1 h. H₂O (1 mL) was then added and the reaction mixture was diluted with EtOAc (20 mL) and stirred at rt for 30 min, then filtered through Celite (eluent EtOAc/Et₃N, 100:1, 100 mL). The filtrate was then concentrated *in vacuo* to give **12** as a white foam (900 mg, quant, >99:1 dr); $[\alpha]_D^{20}$ +67.6 (*c* 1.0 in CHCl₃); v_{max} (ATR) 3311 (O–H), 2976, 2933, 2838 (C–H), 1699, 1665 (C=O); δ_H (400 MHz, CDCl₃) 0.89 (3H, s, C(α)*Me*), 1.45 (9H, s, C*Me*₃), 2.51 (1H, d, *J* 15.4, C(3)*H*_A), 2.75–2.90 (2H, m, C(3)*H*_B, C(3a)*H*), 3.83 (3H, s, O*Me*), 4.39 (1H, d, *J* 7.3, C(9b)*H*), 5.30 (1H, q, *J* 7.1, C(α)*H*), 5.78 (1H, s, C(4)*H*), 6.35 (1H, d, *J* 2.2, C(9)*H*), 6.91 (2H, d, *J* 8.8, C(3")*H*, C(5")*H*), 6.97 (2H, d, *J* 8.8, C(2")*H*, C(6")*H*), 7.21 (1H, d, *J* 8.5, C(6)*H*), 7.36 (1H, dd, *J* 8.5, 2.2, C(7)*H*); δ_C (100 MHz, CDCl₃) 25.3 (C(α)*Me*), 28.2 (C*Me*₃), 36.0 (*C*(3)), 42.1 (*C*(3a)), 49.4 (*C*(α)), 55.4 (O*Me*), 56.4 (*C*(9b)), 81.8 (*C*(4)), 82.3

³ Compound **12** was isolated as a single diastereoisomer of unknown configuration at C(4).

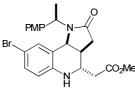
 (CMe_3) , 113.9 (C(3'), C(5')), 116.9 (Ar), 127.3 (C(6)), 129.1 (C(2'), C(6')), 129.9, 130.4 (Ar), 131.9 (C(7)), 133.5 (C(9)), 136.6 (Ar), 152.5 $(CO_2^{t}Bu)$, 158.9 (C(4')), 173.3 (C(2)); m/z (ESI⁺) 541 $([M(^{81}Br)+Na]^+, 100\%)$, 539 $([M(^{79}Br)+Na]^+, 95\%)$; HRMS $C_{25}H_{29}^{79}BrN_2NaO_5^+$ $([M(^{79}Br)+Na]^+)$ requires 539.1152; found 539.1158.


Methyl 2-[diphenyl(pyridin-2-yl)phosphoranylidene]acetate 13

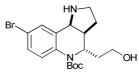
(2-pyridyl)Ph2P CO2Me

Step 1: Methyl bromoacetate (1.89 mL, 19.9 mmol) was added dropwise to a solution of diphenyl-2pyridylphosphine (5.26 g, 19.9 mmol) in PhMe (50 mL) and the resultant mixture was stirred at rt for 16 h. The reaction mixture was then filtered to collect the white precipitate, which was then washed with cold PhMe (20 mL). The filtrate was allowed to stand at rt for 16 h during which time a second crop of crystals formed. Both crops of crystals were then combined to give (2-methoxy-2-oxoethyl)diphenyl-2-pyridylphosphonium bromide as a white crystalline solid (6.87 g, 83%); mp 162–168 °C; v_{max} (ATR) 2802, 2738 (C–H), 1721 (C=O); $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.62 (3H, s, OMe), 5.62 (2H, d, *J* 13.5, C(2)*H*₂), 7.61–7.72 (5H, m, *Ar*), 7.73–7.82 (2H, m, *Ar*), 7.87–7.98 (4H, m, *Ar*), 8.05–8.13 (1H, m, *Ar*), 8.41–8.48 (1H, m, *Ar*), 8.87 (1H, d, *J* 4.6, *Ar*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 31.8 (d, *J* 59.1, *C*(2)), 53.5 (OMe), 117.1 (d, *J* 88.7, *Ar*), 128.2 (d, *J* 3.2, *Ar*), 130.1 (d, *J* 12.8, *Ar*), 131.9 (d, *J* 24.8, *Ar*), 134.3 (d, *J* 10.4, *Ar*), 135.2, (d, *J* 3.2, *Ar*), 138.3 (d, *J* 10.4, *Ar*), 144.1 (d, *J* 121.4, *Ar*), 151.7 (d, *J* 20.0, *Ar*), 165.3 (d, *J* 3.2, *C*(1)); $\delta_{\rm P}$ (162 MHz, CDCl₃) 16.0.

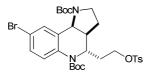
Step 2: Phosphorane **13** was prepared, as required, by treatment of a solution of (2-methoxy-2-oxoethyl)diphenyl-2-pyridylphosphonium bromide in CH_2Cl_2 with 2.0 M aq NaOH. The aqueous layer was then extracted with CH_2Cl_2 and the combined organic extracts were dried and concentrated *in vacuo* to give **13** as a pink solid.


(3a*S*,4*S*,9b*S*,α*R*)-*N*(1)-(α-Methyl-4''-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-*N*(5)-(*tert*-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinolin-2-one 14

Phosphorane **13** (2.36 g, 7.05 mmol) was added to a solution of **12** (1.03 g, 2.35 mmol, >99:1 dr) in PhMe (50 mL) and the resultant mixture was heated at 80 °C for 72 h, then allowed to cool to rt and concentrated *in vacuo*. The residue was dissolved in EtOAc (20 mL) and the resultant solution was washed with 3.0 M aq HCl (6 × 10 mL). The combined aqueous layers were extracted with EtOAc (10 mL) and the combined organic extracts were dried and concentrated *in vacuo*. Purification via flash column chromatography (eluent 30–40 °C petrol/EtOAc, 50:50) gave **14** as a colourless oil (1.01 g, 75%, >99:1 dr); $[\alpha]_D^{20}$ +109.8 (*c* 1.1 in CHCl₃);


v_{max} (ATR) 2978, 2935, 2838 (C–H), 1739, 1696 (C=O); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.89 (3H, d, *J* 7.3, C(α)*Me*), 1.49 (9H, s, C*Me*₃), 2.11 (2H, d, *J* 7.6, C(1')*H*₂), 2.60–2.76 (2H, m, C(3)*H*_A, C(3a)*H*), 2.85–2.97 (1H, m, C(3)*H*_B), 3.59 (3H, s, CO₂*Me*), 3.84 (3H, s, ArO*Me*), 4.36 (1H, d, *J* 7.8, C(9b)*H*), 4.78–4.91 (1H, m, C(4)*H*), 5.42 (1H, q, *J* 7.3, C(α)*H*), 6.40 (1H, d, *J* 2.3, C(9)*H*), 6.93 (2H, d, *J* 8.8, C(3")*H*, C(5")*H*), 7.00 (2H, d, *J* 8.8, C(2")*H*, C(6")*H*), 7.25 (1H, br s, C(6)*H*), 7.41 (1H, dd, *J* 8.6, 2.3, C(7)*H*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 17.1 (C(α)*Me*), 28.2 (C*Me*₃), 38.2 (C(3)), 38.9 (C(1')), 39.7 (C(3a)), 49.4 (C(α)), 51.8 (CO₂*Me*), 55.3 (ArO*Me*), 55.8, 56.2 (C(4), C(9b)), 81.9 (CMe₃), 113.8 (C(3"), C(5")), 117.1 (C(8)), 128.1 (C(6)), 129.1 (C(2"), C(6")), 130.0, 131.0 (*Ar*), 132.0 (C(7)), 133.4 (C(9)), 137.6 (*Ar*), 152.5, 158.9 (C(4"), NCO), 170.5, 173.5 (C(2), C(2')); *m/z* (ESI⁺) 597 ([M(⁸¹Br)+Na]⁺, 95%), 595 ([M(⁷⁹Br)+Na]⁺, 100%); HRMS (ESI⁺) C₂₈H₃₃⁷⁹BrN₂NaO₆⁺ ([M(⁷⁹Br)+Na]⁺) requires 595.1414; found 595.1412.

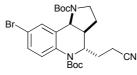
(3a*S*,4*S*,9b*S*,*αR*)-*N*(1)-(*α*-Methyl-4''-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-8-bromo-2,3,3a,4,5,9bhexahydro-1*H*-pyrrolo[3,2-*c*]quinolin-2-one 15


A solution of **14** (162 mg, 0.28 mmol, >99:1 dr) in methanolic HCl (1.25 M, 4 mL) was stirred at rt for 16 h, then concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ (20 mL) and the resultant solution was washed with 2.0 M aq NaOH (2 × 10 mL). The aqueous layer was extracted with CH₂Cl₂ (10 mL) and the combined organic extracts were then dried and concentrated *in vacuo*. Purification via recrystallisation (CHCl₃/hexane) gave **15** as a yellow solid (98 mg, 73%, >99:1 dr); mp 206–209 °C; $[\alpha]_D^{20}$ +16.3 (*c* 0.7 in CHCl₃); v_{max} (ATR) 3392, 3318 (N–H), 2952, 2935, 2938 (C–H), 1735, 1680 (C=O); δ_H (400 MHz, CDCl₃) 1.20 (3H, d, *J* 7.1, C(α)*Me*), 2.09–2.18 (1H, m, C(3a)*H*), 2.26–2.42 (2H, m, C(3)*H*_A, C(1')*H*_A), 2.63 (1H, dd, *J* 16.3, 2.4, C(1')*H*_B), 2.71 (1H, dd, *J* 16.7, 6.8, C(3)*H*_B), 3.71 (3H, s, CO₂*Me*), 3.82 (3H, s, ArO*Me*), 4.50 (1H, d, *J* 5.1, C(9b)*H*), 4.96 (1H, br s, C(4)*H*), 5.46 (1H, q, *J* 7.1, C(α)*H*), 6.28 (1H, d, *J* 2.0, C(9)*H*), 6.21 (1H, d, *J* 2.2, N*H*), 6.42 (1H, d, *J* 8.6, C(6)*H*), 6.92 (2H, d, *J* 8.7, C(3")*H*, C(5")*H*), 7.06 (2H, d, *J* 8.7, C(2")*H*, C(6")*H*), 7.12 (1H, dd, *J* 8.6, 2.0, C(7)*H*); δ_C (100 MHz, CDCl₃) 17.3 (C(α)*Me*), 35.6 (*C*(3a)), 35.7 (*C*(3)), 38.0 (*C*(1')), 48.0 (*C*(4)), 48.7 (*C*(α)), 52.1 (CO₂*Me*), 55.3 (ArO*Me*), 56.1 (*C*(9b)), 108.0 (*Ar*), 114.0 (*C*(3"), *C*(5")), 116.4 (*C*(6)), 117.4 (*C*(8)), 128.5 (*C*(2"), *C*(6")), 131.4 (*Ar*), 132.5 (*C*(7)), 134.9 (*C*(9)), 143.2 (*Ar*), 158.7 (*C*(4")), 172.4, 173.3 (*C*(2), *C*(2")); *m*/z (ESI⁺) 497 ([M(⁸¹Br)+Na]⁺, 95%), 495 ([M(⁷⁹Br)+Na]⁺, 100%); HRMS (ESI⁺) C₂₃H₂₅⁷⁹BrN₂NaO₄⁺ ([M(⁷⁹Br)+Na]⁺) requires 495.0890; found 495.0889.

(3a*R*,4*S*,9b*S*)-4-(2'-Hydroxyethyl)-*N*(5)-(*tert*-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 17

Step 1: A solution of CAN (5.64 g, 10.3 mmol) in H₂O (30 mL) was added to a solution of 14 (1.97 g, 3.44 mmol, >99:1 dr) in MeCN (30 mL) and the resultant mixture was stirred at rt for 1 h. The MeCN was then removed in vacuo and the residue was diluted with CHCl₃/IPA (3:1, 100 mL). The resultant mixture was washed with brine $(2 \times 50 \text{ mL})$ and the combined aqueous layers were extracted with CHCl₃/IPA (3:1, 2×50 mL). The combined organic extracts were then dried and concentrated *in vacuo* to give 16 as a pale yellow oil (1.95 g, >99:1 dr); $\delta_{\rm H}$ (400 MHz, CDCl₃) [selected peaks] 1.50 (9H, s, CMe₃), 3.05 (1H, app ddd, J 18.3, 9.4, 1.4, C(3a)H), 3.65 (3H, s, CO₂Me), 4.70 (1H, d, J 8.9, C(9b)H), 5.05 (1H, app t, J 7.5, C(4)H), 6.73 (1H, s, N*H*), 7.32 (1H, d, *J* 2.2, C(9)*H*), 7.36 (1H, dd, *J* 8.9, 2.2, C(7)*H*), 7.47 (1H, br d, *J* 8.9, C(6)*H*). Step 2: BH₃·THF (1.0 M in THF, 34.0 mL, 34.0 mmol) was added dropwise to a solution of 16 (1.95 g, >99:1 dr) in THF (35 mL) at 0 °C. The resultant mixture was heated at reflux for 4 h then allowed to cool to rt before being cooled further to 0 °C. Satd aq K₂CO₃ (20 mL) and EtOAc (20 mL) were then carefully added and the resultant mixture was heated at 60 °C for 1 h. The reaction mixture was then allowed to cool to rt and washed with satd aq K₂CO₃ (2 \times 30 mL). The combined aqueous layers were extracted with EtOAc (50 mL) then the organic extract was dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol/EtOAc/Et₃N, 66:34:1) gave 17[•]BH₃ as a white foam (554 mg, >99:1 dr). Further elution (CHCl₃/MeOH/Et₃N, 95:5:1) gave 17 as a pale yellow oil (288 mg, 21% from 14, >99:1 dr); C₁₈H₂₅BrN₂O₃ requires C, 54.4; H, 6.3; N, 7.05%; found C, 54.4; H, 6.3; N, 6.9%; $[\alpha]_D^{20}$ +125 (*c* 1.0 in CHCl₃); v_{max} (ATR) 3310 (O–H, N–H), 2974, 2934, 2878, 2730 (C–H), 1694 (C=O); δ_H (400 MHz, CDCl₃) 1.40–1.56 (1H, m, $C(1')H_A$, 1.45 (9H, s, CMe_3), 1.56–1.70 (2H, m, $C(3)H_A$, $C(1')H_B$), 2.00–2.10 (1H, m, $C(3)H_B$), 2.52 (1H, app q, J 8.8, C(3a)H), 2.76–2.86 (1H, m, C(2)H_A), 2.86–2.95 (1H, m, C(2)H_B), 3.23 (1H, br s, OH), 3.43–3.54 (2H, m, C(2')H₂), 4.24 (1H, d, J 8.8, C(9b)H), 4.65–4.74 (1H, m, C(4)H), 7.24–7.34 (2H, m, C(6)H, C(7)H), 7.42 (1H, s, C(9)H); δ_C (100 MHz, CDCl₃) 28.3 (CMe₃), 31.6 (C(3)), 34.8 (C(1')), 43.7 (C(3a)), 45.6 (C(2)), 52.9 (C(4)), 55.7 (C(9b)), 58.8 (C(2')), 82.0 (CMe₃), 117.3, 126.5, 130.5, 132.1, 133.2, 134.8 (Ar), 154.9 (NCO); m/z (FI⁺) 398 ([M(⁸¹Br)]⁺, 95%), 396 ([M(⁷⁹Br)]⁺, 100%); HRMS (FI⁺) C₁₈H₂₅⁷⁹BrN₂O₃⁺ ([M(⁷⁹Br)]⁺) requires 396.1043; found 396.1049. A solution of 17[.]BH₃ (554 mg, 1.34 mmol) in MeOH (30 mL) was heated at reflux for 48 h then allowed to cool to rt and concentrated *in vacuo* to give **17** as a colourless oil (525 mg, 39% from **14**, >99:1 dr).

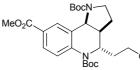
(*S*,*S*,*S*)-*N*(1),*N*(5)-(Di-*tert*-butoxycarbonyl)-4-[2'-(4''-toluenesulfonyloxy)ethyl]-8-bromo-2,3,3a,4,5,9bhexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 19



Step 1: Boc₂O (148 mg, 0.68 mmol), DMAP (8 mg, 62 µmol) and Et₃N (0.26 mL, 1.85 mmol) were added sequentially to a solution of **17** (245 mg, 0.62 mmol, >99:1 dr) in CH₂Cl₂ (10 mL) and the resultant mixture was stirred at 35 °C for 5 h. The reaction mixture was then diluted with CH₂Cl₂ (20 mL) and the resultant solution was washed with 1.0 M aq HCl (10 mL). The aqueous layer was extracted with CHCl₃/IPA (3:1, 2 × 20 mL) and the combined organic extracts were washed sequentially with satd aq NaHCO₃ (10 mL) and brine (10 mL), then dried and concentrated *in vacuo* to give **18** (300 mg, >99:1 dr); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.27–1.89 (3H, m, C(3a)H, C(1')H₂), 1.52 (18H, s, 2 × CMe₃), 2.00–2.15 (1H, br m, C(3)H_A), 2.40–2.58 (1H, m, C(3)H_B), 3.27–3.49 (2H, br m, C(2)H₂), 3.50–3.69 (2H, br m, C(2')H₂), 4.62–5.17 (2H, br m, C(4)H, C(9b)H), 7.21–7.43 (2H, br m, C(6)H, C(7)H), 8.09 (1H, s, C(9)H).

Step 2: TsCl (141 mg, 0.74 mmol), DMAP (8 mg, 62 µmol) and Et₃N (0.26 mL, 1.85 mmol) were added sequentially to a solution of 18 (300 mg, >99:1 dr) in CH₂Cl₂ (10 mL) and the resultant mixture was stirred at 35 °C for 16 h. The reaction mixture was then diluted with CH₂Cl₂ (20 mL) and was washed with 1.0 M aq HCl (10 mL). The aqueous layer was extracted with CHCl₃/IPA (3:1, 2×20 mL) and the combined organic extracts were washed sequentially with satd aq NaHCO₃ (10 mL) and brine (10 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol/Et₂O/Et₃N, 50:50:1) gave **19** as a colourless oil (275 mg, 69% from **17**, >99:1 dr); $[\alpha]_{D}^{20}$ -57.0 (*c* 1.0 in CHCl₃); v_{max} (ATR) 2976, 2933 (C-H), 1693 (C=O); δ_H (500 MHz, PhMe-d₈, 363K) 1.29–1.30 (2H, m, C(1')H₂), 1.45 (9H, s, CMe₃), 1.50 (9H, s, CMe₃), 1.54–1.66 (2H, m, C(3)H₂), 1.79–1.89 (1H, m, C(3a)H), 2.04 (3H, s, C(4")Me), 2.99–3.13 (1H, m, C(2) H_A), 3.18–3.34 (1H, m, C(2) H_B), 3.80–3.90 (1H, m, C(2') H_A), 3.90–3.99 (1H, m, C(2')H_B), 4.47–4.60 (1H, m, C(4)H), 4.86 (1H, br d, J 6.9, C(9b)H), 6.88 (2H, d, J 8.4, C(3")H, C(5")H), 7.15 (1H, dd, J 8.8, 2.2, C(7)H), 7.39 (1H, d, J 8.8, C(6)H), 7.68 (2H, d, J 8.4, C(2")H, C(6")H), 8.32 (1H, br s, C(9)H; δ_C (125 MHz, PhMe- d_8 , 363K) 21.0 (C(4")Me), 27.9 (C(3)), 28.2, 28.5 (2 × CMe_3), 32.1 (C(1')), 42.6 $(C(3a)), 45.6 (C(2)), 52.3 (C(4)), 54.3 (C(9b)), 67.0 (C(2')), 79.8, 81.4 (2 \times CMe_3), 117.7 (Ar), 127.1 (C(6)),$ $129.7 (C(3"), C(5")), 130.6 (C(7)), 132.2 (Ar), 133.9 (C(9)), 134.7, 135.1, 144.1 (Ar), 153.8, 155.2 (2 \times NCO);^4$ m/z (ESI⁺) 675 ([M(⁸¹Br)+Na]⁺, 100%), 673 ([M(⁷⁹Br)+Na]⁺, 95%); HRMS (ESI⁺) C₃₀H₃₉⁷⁹BrN₂NaO₇S⁺ $([M(^{79}Br)+Na]^{+})$ requires 673.1554; found 673.1559.

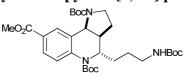
⁴ The remaining peak in the ¹³C NMR spectrum, corresponding to C(2") and C(6") within **19**, was obscured by the resonances corresponding to PhMe- d_8 .


(*S*,*S*,*S*)-*N*(1),*N*(5)-(Di-*tert*-butoxycarbonyl)-4-(2'-cyanoethyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 20

NaCN (28 mg, 0.58 mmol) was added to a solution of **19** (252 mg, 0.39 mmol, >99:1 dr) in NMP (4 mL) and the resultant mixture was stirred at 60 °C for 16 h.⁵ The reaction mixture was then diluted with EtOAc (20 mL) and washed with H₂O (2 × 10 mL). The aqueous layer was extracted with EtOAc (2 × 10 mL) and the combined organic extracts were dried and concentrated *in vacuo*. Purification via flash column chromatography (eluent 30–40 °C petrol/EtOAc/Et₃N, 83:17:1) gave **20** as a colourless oil (167 mg, 86%, >99:1 dr); C₂₄H₃₂BrN₃O₄ requires C, 56.9; H, 6.4; N, 8.3%; found C, 57.1; H, 6.5; N, 8.3%; [α]₂₀²⁰–61.3 (*c* 1.0 in CHCl₃); v_{max} (ATR) 2976, 2933 (C–H), 2247 (C=N), 1693 (C=O); $\delta_{\rm H}$ (500 MHz, PhMe- d_8 , 363K) 0.81–0.90 (1H, m, C(1') $H_{\rm A}$), 0.98–1.09 (1H, m, C(1') $H_{\rm B}$), 1.29 (9H, s, C Me_3), 1.34 (9H, s, C Me_3), 1.38–1.68 (5H, m, C(3) H_2 , C(3a)H), C(2') H_2), 1.51–1.68 (1H, m, C(2) H_A), 2.86–2.95 (1H, m, C(2) $H_{\rm B}$), 4.21 (1H, app d, *J* 10.7, C(4)H), 4.68 (1H, d, *J* 6.3, C(9b)H), 7.03 (1H, dd, *J* 8.8, 1.9, C(7)H), 7.25 (1H, d, *J* 8.8, C(6)H), 8.15 (1H, br s, C(9)H); $\delta_{\rm C}$ (125 MHz, PhMe- d_8 , 363K) 9.3 (C(2')), 23.1 (C(3)), 23.3, 23.6 (2 × C Me_3), 40.5 (C(3a)), 49.3, 49.6 (C(4), C(9b)), 72.6, 74.9 (2 × CMe₃), 113.0, 113.3, 122.3, 125.8, 127.1, 128.9, 129.3 (Ar, C(3')), 149.1 (2 × NCO);⁶ m/z (ESI⁺) 530 ([M(⁸¹Br)+Na]⁺, 95%), 528 ([M(⁷⁹Br)+Na]⁺, 100%); HRMS (ESI⁺) C₂₄H₃₂⁷⁹BrN₃NaO₄⁺ ([M(⁷⁹Br)+Na]⁺) requires 528.1468; found 528.1475.

hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 21

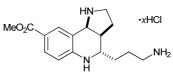
Pd(OAc)₂ (15 mg, 68 μ mol) and Xantphos (79 mg, 0.14 mmol) were added sequentially to a round bottomed flask containing **20** (342 mg, 0.68 mmol, >99:1 dr). Degassed Et₃N (5 mL) and degassed MeOH (1 mL) were then added sequentially.⁷ The resultant mixture was stirred at rt and the apparatus was evacuated and refilled with N₂ three times; the apparatus was then evacuated and refilled with CO three times. The reaction mixture was stirred vigorously under CO (1 atm) at 70 °C for 16 h, then allowed to cool to rt and filtered through a pad


⁵ For an example of the use of NMP as the solvent in displacement reactions with NaCN, see: Davies, S. G.; Whitham, G. H. *J. Chem. Soc., Perkin Trans. 1* **1976**, 2279.

⁶ The remaining peaks in the ¹³C NMR spectrum, corresponding to C(2) and C(1') within **20**, were obscured by the resonances corresponding to PhMe- d_8 .

⁷ These solvents were dried over 4 Å molecular sieves and degassed using the vacuum-refill technique under N_2 gas.

of Celite (eluent MeOH/Et₃N, 100:1). The filtrate was then concentrated *in vacuo* and the residue was resubjected to the reaction conditions twice more, using the procedure described above. Purification via flash column chromatography (eluent 30–40 °C petrol/EtOAc/Et₃N, 75:25:1) gave **21** as a white foam (228 mg, 69%, >99:1 dr); $[\alpha]_D^{20}$ –39.1 (*c* 1.0 in CHCl₃); v_{max} (ATR) 2977, 2953, 2933 (C–H), 2247 (C=N), 1717, 1693 (C=O); δ_H (500 MHz, PhMe- d_8 , 363K) 1.07–1.17 (1H, m, C(1') H_A), 1.23–1.35 (1H, m, C(1') H_B), 1.45 (9H, s, *CMe*₃), 1.50 (9H, s, *CMe*₃), 1.52–1.71 (2H, m, C(3) H_2), 1.74–1.96 (3H, m, C(3a)H, C(2') H_2), 3.11 (1H, br td, *J* 9.6, 3.5, C(2) H_A), 3.31–3.42 (1H, br m, C(2) H_B), 3.63 (3H, s, OMe), 4.39–4.45 (1H, br m, C(4)H), 4.97 (1H, d, *J* 7.6, C(9b)H), 7.64 (1H, d, *J* 8.8, C(6)H), 7.91 (1H, dd, *J* 8.8, 1.6, C(7)H), 8.80 (1H, m, C(9)H); δ_C (125 MHz, PhMe- d_8 , 363 K) 13.8 (*C*(2')), 27.4, 27.5, 27.8, 28.1, 28.2 (*C*(3), *C*(3a), *C*(1'), 2 × *CMe*₃), 45.0 (*C*(2)), 50.8 (OMe), 53.9 (*C*(9b)), 54.5 (*C*(4)), 79.6, 81.6 (2 × *CMe*₃), 118.0 (*C*(3')), 126.7 (*C*(6)), 127.8 (Ar), 128.7 (*C*(7)), 129.2 (Ar), 132.4 (*C*(9)), 138.8 (Ar), 153.7, 165.7 (2 × NCO), 175.3 (CO₂Me); *m*/z (ESI⁺) 508 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₂₆H₃₅N₃NaO₆⁺ ([M+Na]⁺) requires 508.2418; found 508.2414.


(*S*,*S*,*S*)-*N*(1),*N*(5)-(Di-*tert*-butoxycarbonyl)-4-[3'-(*N*-*tert*-butoxycarbonylamino)propyl]-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 22

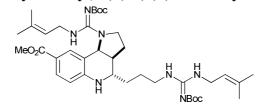
Boc₂O (199 mg, 0.91 mmol) was added to a solution of NiCl₂·6H₂O (21.7 mg, 91 µmol) and **21** (222 mg, 0.45 mmol, >99:1 dr) in dry MeOH (5 mL) and the resultant mixture was stirred at 0 °C for 5 min. NaBH₄ (241 mg, 6.38 mmol) was then added portionwise over a period of 15 min, during which time a fine black precipitate formed and a gas was evolved. The reaction mixture was stirred at 0 °C for 1 h then diethylenetriamine (49 µL, 0.46 mmol) was added and the resultant mixture was allowed to stir for 30 min at 0 °C before being concentrated *in vacuo*. The residue was dissolved in EtOAc (30 mL) and the resultant solution was washed with satd aq NaHCO₃ (2 × 10 mL). The combined aqueous layers were extracted with EtOAc (30 mL) and the combined organic extracts were then dried and concentrated *in vacuo*. Purification via flash column chromatography (eluent 30–40 °C petrol/Et₂O/Et₃N, 75:25:1) gave **22** as a colourless oil (244 mg, 91%, >99:1 dr); $[\alpha]_{D}^{20}$ –9.3 (*c* 1.0 in CHCl₃); v_{max} (ATR) 3362 (N–H), 2977, 2933 (C–H), 1695 (C=O); δ_{H} (400 MHz, C₆D₆) 0.87–1.05 (1H, br s, C(2')H_A), 1.05–1.18 (1H, br s, C(2')H_B), 1.71 (2H, app s, C(3)H₂), 1.39 (9H, s, CMe₃), 1.41 (9H, s, CMe₃), 1.42 (9H, s, CMe₃), 1.77–1.91 (1H, br s, C(3)H), 2.69–3.32 (4H, br m, C(2)H₂, C(1')H₂), 3.51 (3H, s, OMe), 4.26–4.56 (2H, br m, C(3')H₂), 4.86–5.32 (2H, br m, C(4)H, C(9b)H), 7.72 (1H, d, *J* 8.6, C(6)H), 7.93–8.13 (1H, br m, C(7)H), 8.91 (1H, br s, C(9)H); δ_{C} (100 MHz, C₆D₆) [selected peaks] 26.8 (C(3)), 29.2 (C(2')), 27.8, 28.2, 28.2 (3 × CMe₃), 42.5 (C(3a)), 45.3 (C(2)), 51.1 (OMe), 53.9, 54.3 (C(4),

C(9b)), 125.0 (C(6)), 125.9 (Ar), 128.3 (C(7)), 129.5 (Ar), 132.3 (C(9)), 139.6 (Ar), 153.8, 155.6, 155.9 (3 × NCO), 166.0 (CO₂Me);⁸ m/z (ESI⁺) 590 ([M+H]⁺, 100%); HRMS (ESI⁺) C₃₁H₄₇N₃NaO₈⁺ ([M+Na]⁺) requires 612.3255; found 612.3258.

(*S*,*S*,*S*)-4-(3'-Aminopropyl)-8-(methoxycarbonyl)- 2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline-xHCl ["Ma's intermediate"] 23·xHCl

A solution of **22** (37 mg, 62 µmol, >99:1 dr) in methanolic HCl (1.25 M, 4 mL) was stirred at rt for 6 h then concentrated *in vacuo*. Methanolic HCl (1.25 M, 2 mL) was then added and the resultant mixture was concentrated *in vacuo* again to give **23**[•]xHCl as a white amorphous solid (24 mg, quant, >99:1 dr); $[\alpha]_D^{20} - 48.7$ (*c* 0.3 in MeOH);⁹ {lit.¹⁰ $[\alpha]_D^{20} - 49.9$ (*c* 1.25 in MeOH); lit.¹¹ $[\alpha]_D^{18} - 54.4$ (*c* 0.29 in MeOH); lit.¹² $[\alpha]_D^{29} - 57.7$ (*c* 0.3 in MeOH); v_{max} (ATR) 2950, 2892 (N–H), 2748, 2576 (C–H), 1704 (C=O); δ_H (500 MHz, MeOD-*d*₄) 1.67–1.79 (1H, br m, C(1')*H*_A), 1.81–2.01 (3H, br m, C(1')*H*_B, C(2')*H*₂), 2.12–2.23 (1H, br m, C(3)*H*_A), 2.39–2.54 (2H, br m, C(3)*H*_B, C(3a)*H*), 2.96–3.09 (2H, br m, C(3')*H*₂), 3.09–3.17 (1H, br m, C(4)*H*), 3.38–3.45 (2H, br m, C(2)*H*₂), 3.86 (3H, s, O*Me*), 4.66–4.73 (1H, br d, C(9b)*H*), 6.86 (1H, d, *J* 8.5, C(6)*H*), 7.76–7.82 (1H, br m, C(7)*H*), 8.02 (1H, d, *J* 1.3, C(9)*H*); δ_C (125 MHz, MeOD-*d*₄) 23.9 (*C*(2')), 28.0 (*C*(3)), 30.5 (*C*(1')), 39.4 (*C*(3a)), 40.9 (*C*(3')), 43.6 (*C*(2)), 50.9 (*C*(4)), 52.3 (O*Me*), 59.3 (*C*(9b)), 113.4 (*Ar*), 115.8 (*C*(6)), 119.3 (*Ar*), 132.8 (*C*(7)), 134.0 (*C*(9)), 151.1 (*Ar*), 168.5 (*C*O₂Me); *m/z* (ESI⁺) 290 ([M+H]⁺, 100%); HRMS (ESI⁺) C₁₆H₂₄N₃O₂⁺ ([M+H]⁺) requires 290.1863; found 290.1864.

⁸ Some of the peaks in the ¹³C NMR spectrum of **22** in C₆D₆ at rt are broad, and the peaks corresponding to the C(1'), C(3') and $3 \times CMe_3$ carbons were not observed in this spectrum.


⁹ In our hands triamine $23 \cdot x$ HCl was insoluble at concentrations of >3 mg/mL.

¹⁰ Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. **2001**, *3*, 2189.

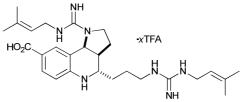
¹¹ Yoshitomi, Y.; Arai, H.; Makino, K.; Hamada, Y. *Tetrahedron* **2008**, *64*, 11568.

¹² Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem. Commun. 2007, 504.

(*S*,*S*,*S*)-*N*(1)-[*N*'-(*tert*-Butoxycarbonyl)-*N*''-prenylcarbamimidoyl]-4-{3'-[*N*'-(*tert*-butoxycarbonyl)-*N*''-prenylguanidino]propyl}-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 25

Et₃N (0.38 mL, 2.75 mmol) was added to a solution of 23 xHCl (92 mg, 0.23 mmol, >99:1 dr) and thiourea 24¹³ (296 mg, 1.14 mmol) in MeCN/MeOH (2:1, 7 mL) at 40 °C. A solution of AgNO₃ (272 mg, 1.60 mmol) in MeCN (2 mL) was added dropwise via syringe (in the dark) over a period of 30 min. The resultant mixture was stirred at 40 °C (in the dark) for 16 h. The reaction mixture was then filtered through a short pad of Celite (eluent CHCl₃/Et₃N, 100:1) and the filtrate was concentrated in vacuo. The residue was dissolved in CHCl₃ (20 mL) and the resultant solution was washed with H₂O (10 mL). The aqueous layer was extracted with CHCl₃ (20 mL) and the combined organic extracts were dried and concentrated in vacuo. Purification via flash column chromatography (eluent CHCl₃/MeOH, 30:1) gave 25 as a colourless oil (104 mg, 64%, >99:1 dr); $[\alpha]_{p}^{20}$ -142.5 (c 0.8 in CHCl₃); {lit.¹⁴ $[\alpha]_{p}^{20}$ -94.2 (c 0.28 in CHCl₃); lit.¹⁵ $[\alpha]_{p}^{28}$ -179.1 (c 0.80 in CHCl₃); lit.¹⁶ [α]_D-95.2 (c 0.58 in CHCl₃)}; v_{max} (ATR) 3281 (N-H), 2974 (C-H), 1708, 1606 (C=O); δ_H (500 MHz, CDCl₃) 1.12–1.35 (2H, m, C(1')H₂), 1.49 (9H, s, CMe₃), 1.52 (9H, s, CMe₃), 1.54–1.68 (2H, m, C(2')H₂), 1.65 $(6H, s, 2 \times NCH_2CH=CMe_AMe_B)$, 1.68 $(6H, s, 2 \times NCH_2CH=CMe_AMe_B)$, 1.89–2.21 $(2H, m, C(3)H_2)$, 2.31–2.42 (1H, m, C(3a)H), 3.10–3.20 (1H, m, C(3') H_A), 3.27–3.50 (4H, m, C(2) H_2 , C(4)H, C(3') H_B), 3.67-3.93 (4H, m, 2 × NCH₂CH=CMe₂), 3.81 (3H, s, OMe), 5.16-5.33 (2H, m, 2 × NCH₂CH=CMe₂), 5.75(1H, d, J 6.9, C(9b)H), 6.60 (1H, d, J 8.3, C(6)H), 7.10 (1H, br s, NH), 7.67 (1H, dd, J 8.3, 1.9, C(7)H), 7.97 (1H, br s, C(9)H), 8.95 (1H, br s, NH); δ_{C} (125 MHz, CDCl₃) 18.0, 18.0 (2 × NCH₂CH=CMe_AMe_B), 25.6, 25.6 $(2 \times \text{NCH}_2\text{CH}=\text{CMe}_AMe_B)$, 27.9 (C(3)), 28.3 (C(2')), 28.4, 28.5 (2 × CMe_3), 29.7 (C(1')), 39.4, 39.4 (C(3a), NCH₂CH=CMe₂), 42.5 (NCH₂CH=CMe₂), 46.8, 46.8 (C(2), C(3')), 50.5 (C(4)), 51.4 (OMe), 53.4 (C(9b)), 77.8, 78.3 (2 × CMe₃), 113.8 (C(6)), 118.1 (Ar), 119.5, 120.2 (2 × NCH₂CH=CMe₂), 127.8, 128.8 (Ar), 130.0 (C(7)), 131.7 (C(9)), 137.2, 137.3 $(2 \times \text{NCH}_2\text{CH}=C\text{Me}_2)$, 146.3, 159.9, 163.7 $(2 \times \text{NCO}, 2 \times \text{NCN})$, 167.4 (CO_2Me) ;¹⁷ m/z (ESI⁺) 710 ([M+H]⁺, 100%); HRMS (ESI⁺) $C_{38}H_{60}N_7O_6^+$ ([M+H]⁺) requires 710.4600; found 710.4601.

¹³ Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189.


¹⁴ Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189.

¹⁵ Ikeda, S.; Shibuya, M.; Iwabuchi, Y. *Chem Commun.* **2007**, 504.

¹⁶ Badarinarayana, V.; Lovely, C. J. *Tetrahedron Lett.* **2007**, *48*, 2607.

¹⁷ Some of the peaks in the ¹³C NMR spectrum of **25** in CDCl₃ at rt are broad.

hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline:*x*TFA [(–)-martinellic acid] 1:*x*TFA

Step 1: A solution of 0.2 M aq NaOH (2 mL) was added to a solution of **25** (39 mg, 55 μ mol, >99:1 dr) in MeOH (6 mL) and the resultant mixture was heated at reflux for 16 h. The reaction mixture was then partially concentrated *in vacuo* to approximately 25% of its original volume and the residue was poured onto satd aq NH₄Cl (25 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL) and the combined organic extracts were washed with brine (10 mL), then dried and concentrated *in vacuo*.

Step 2: Anisole (60 µL, 0.55 mmol) and TFA (0.12 mL, 1.62 mmol) were added sequentially to a solution of the residue in CH₂Cl₂ (3.5 mL) and the resultant mixture was stirred at rt for 16 h. The reaction mixture was then concentrated *in vacuo* and the residue was purified by preparative HPLC^{18,19,20} to give 1:*x*TFA as a pale yellow oil (13.3 mg, 34% from **25**, >99:1 dr); $[\alpha]_{D}^{20}$ -118 (*c* 0.3 in MeOH); {lit.²¹ for sample isolated from natural source $[\alpha]_{D}$ -8.5 (*c* 0.01 in MeOH); lit.²² $[\alpha]_{D}^{20}$ -122.7 (*c* 0.31 in MeOH); lit.²³ $[\alpha]_{D}^{29}$ -164.3 (*c* 0.14 in MeOH); lit.²⁴ $[\alpha]_{D}^{23}$ -164.8 (*c* 0.33 in MeOH)}; v_{max}(ATR) 3338, 3207 (N–H, O–H) 2980, 2932 (C–H), 1673 (C=O), 1611, 1526, 1452; δ_{H} (500 MHz, DMSO-*d*₆) 1.35–1.52 (2H, m, C(1')*H*₂), 1.51–1.76 (3H, m, C(3)*H*_A, C(2')*H*₂), 1.63 (3H, s, NCH₂CH=C*Me*Me), 1.68 (3H, s, NCH₂CH=C*Me*Me), 1.69 (3H, s, NCH₂CH=C*Me*Me), 1.73 (3H, s, NCH₂CH=C*Me*Me), 2.03–2.14 (1H, m, C(3)*H*_B), 2.37–2.48 (1H, m, C(3a)*H*), 3.04–3.20 (2H, m, C(3')*H*₂), 3.27 (1H, br s, C(4)*H*), 3.33–3.43 (2H, m, C(2)*H*₂), 3.66–3.77 (2H, m, NC*H*₂CH=CMe₂), 3.79–3.87 (1H, m, NCH_AH_BCH=CMe₂), 3.88–3.89 (1H, m, NCH_ACH=CMe₂), 5.13–5.20 (1H, m, NCH₂CH=CMe₂), 5.25 (1H, d, *J* 6.4, C(9b)*H*), 5.27–5.34 (1H, m, NCH₂CH=CMe₂), 6.58 (1H, d, *J* 8.5, C(6)*H*), 7.07 (1H, br s, NH), 7.43 (2H, br s, 2 × NH), 7.54 (1H, dd, *J* 8.5, 1.5, C(7)*H*), 7.51–7.62 (2H, br m, 2 × NH), 7.66 (1H, br s, NH), 7.43 (2H, br s, 2 × NH), 7.54 (1H, dd, *J* 8.5, 1.5, C(7)*H*), 7.51–7.62 (2H, br m, 2 × NH), 7.66 (1H, br s, C(4)H), 5.27–5.34 (1H, m, NCH₂CH=CMe₂), 6.58 (1H, d, *J* 8.5, C(6)*H*), 7.06 (1H, br s, NH), 7.43 (2H, br s, 2 × NH), 7.54 (1H, dd, *J* 8.5, 1.5, C(7)*H*), 7.51–7.62 (2H, br m, 2 × NH), 7.66 (1H, br s, NH), 7.44 (2H, br s, 2 × NH), 7.54 (1H, dd, *J* 8.5, 1.5, C(7)*H*), 7.51–7.62 (2H, br m, 2 × NH), 7.66 (1H, br s, NH), 7.54 (1H, dd, *J* 8.5, 1.5, C(7)*H*), 7.51–7.62 (2H, br m, 2 × NH), 7.66 (1H, br s, NH), 7.54 (1H, dd,

¹⁸ The authors would like to thank Veronique Gouverneur and Stefan Verhoog for their assistance with the purification of 1 xTFA.

¹⁹ Purification of $1 \times TFA$ was conducted using a SunFireTM preparative column (C₁₈, 10 µm, 10 × 250 mm) eluting with H₂O/MeOH/CF₃CO₂H (80:20:0.1 \rightarrow 20:80:0.1, gradient elution) 40 mins with a flow rate of 2.50 mL/min. The detector was set to 330 nm and the major component had a rentention time of 19.1 min.

²⁰ Although several literature reports begin the solvent gradient in 80:20 H₂O/MeOH, this is not a suitable solvent system to load the crude material. After optimisation, it was found best to dissolve the crude sample in \sim 500µL of MeOH and perform purification with several ~125 µL injections.

²¹ Witherup, K. M.; Ransom, R. W.; Graham, A. C.; Bernard, A. M.; Salvatore, M. J.; Lumma, W. C.; Anderson, P. S.; Pitzenberger, S. M.; Varga, S. L. *J. Am. Chem. Soc.* **1995**, *117*, 6682.

²² Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. **2001**, *3*, 2189.

²³ Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem. Commun. 2007, 504.

²⁴ Shirai, A.; Miyata, O.; Tohnai, N.; Miyata, M.; Procter, D. J.; Sucunza, D.; Naito, T. J. Org. Chem. **2007**, 73, 4464.

C(9)*H*), 7.70 (1H, br s, N*H*), 7.78 (1H, br s, N*H*); $\delta_{\rm C}$ (125 MHz, DMSO-*d*₆) 17.8, 17.9, 25.2, 25.2 (2 × NCH₂CH=C*Me*₂), 25.3 (*C*(2')), 26.3 (*C*(3)), 33.4 (*C*(1')), 39.5, 39.8 (2 × NCH₂CH=CMe₂), 40.7 (*C*(3')), 45.8 (*C*(2)), 49.2 (*C*(4)), 53.0 (*C*(9b)), 113.3 (*C*(6)), 115.7 (*C*(9a)), 116.6 (br q, *J* 299, *C*F₃), 117.1 (*C*(8)), 119.2, 119.6 (2 × NCH₂CH=CMe₂), 130.0 (*C*(7)), 130.5 (*C*(9)), 135.6, 136.0 (2 × NCH₂CH=CMe₂), 146.3 (*C*(5a)), 154.3, 155.5 (2 × NCN), 158.2 (q, *J* 33.4, CF₃CO₂⁻), 167.2 (*C*O₂H);²⁵ $\delta_{\rm F}$ (470 MHz, DMSO-*d*₆) –73.7 (CF₃); *m*/*z* (ESI⁺) 496 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₇H₄₂N₇O₂⁺ ([M+H]⁺) requires 496.3395; found 496.3377.

²⁵ The remaining peak in the ¹³C NMR spectrum, corresponding to C(3a) within 1·*x*TFA, was obscured by the resonances corresponding to PhMe- d_8 .

2. X-ray crystal structure determination for 11 and 15

Data were collected using a Nonius κ -CCD diffractometer with graphite monochromated Mo-K α radiation, using standard procedures at 150 K. The structures were solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS.^{26,27}

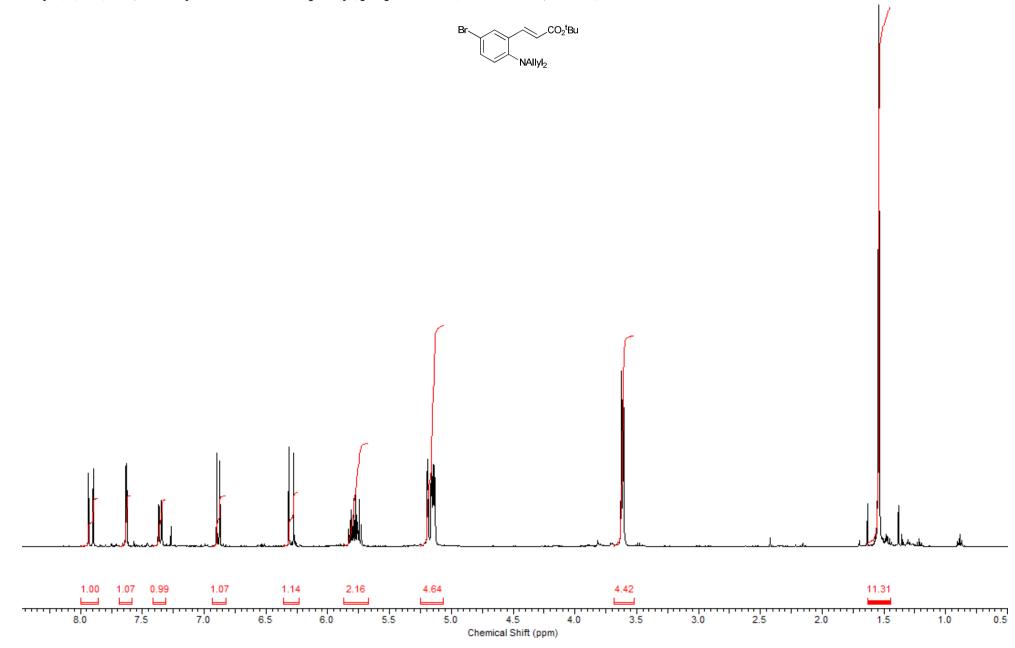
X-ray crystal structure data for **11** [C₂₅H₂₇BrN₂O₅]: M = 515.40, orthorhombic, space group $P \ 2_1 \ 2_1 \ 2_1$, a = 9.6810(2) Å, b = 12.7183(2) Å, c = 19.2223(4) Å, V = 2366.76(8) Å³, Z = 4, $\mu = 1.446$ mm⁻¹, colourless block, crystal dimensions = $0.14 \times 0.17 \times 0.36$ mm. A total of 3028 unique reflections were measured for $5 < \theta < 27$ and 5258 reflections were used in the refinement. The final parameters were $wR_2 = 0.076$ and $R_1 = 0.047$ [$I > -3.0\sigma(I)$], with Flack enantiopole = 0.011(8).²⁸

X-ray crystal structure data for **15** [C₂₃H₂₅BrN₂O₄]: M = 473.37, orthorhombic, space group $P \ 2_1 \ 2_1 \ 2_1$, a = 6.8274(1) Å, b = 11.2253(2) Å, c = 27.9028(5) Å, V = 2138.46(6) Å³, Z = 4, $\mu = 1.955$ mm⁻¹, colourless block, crystal dimensions = $0.17 \times 0.21 \times 0.30$ mm. A total of 2774 unique reflections were measured for $5 < \theta < 27$ and 4675 reflections were used in the refinement. The final parameters were $wR_2 = 0.082$ and $R_1 = 0.047$ [*I*>–3.0 σ (*I*)], with Flack enantiopole = 0.014(9).²⁹

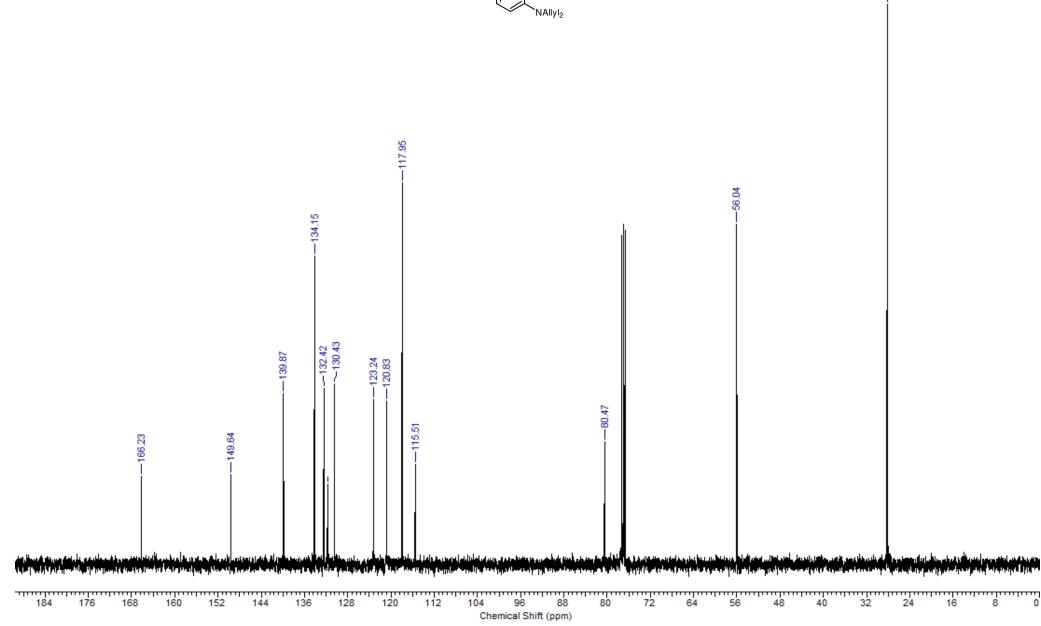
²⁶ Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, C. K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487.

²⁷ Crystallographic data (excluding structure factors) for compounds **11** and **15** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 926034 and 926035, respectively. Copies of these data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

²⁸ (a) Flack, H. D. Acta. Crystallogr., Sect. A **1983**, 39, 876. (b) Flack, H. D.; Bernardinelli, G. Acta.

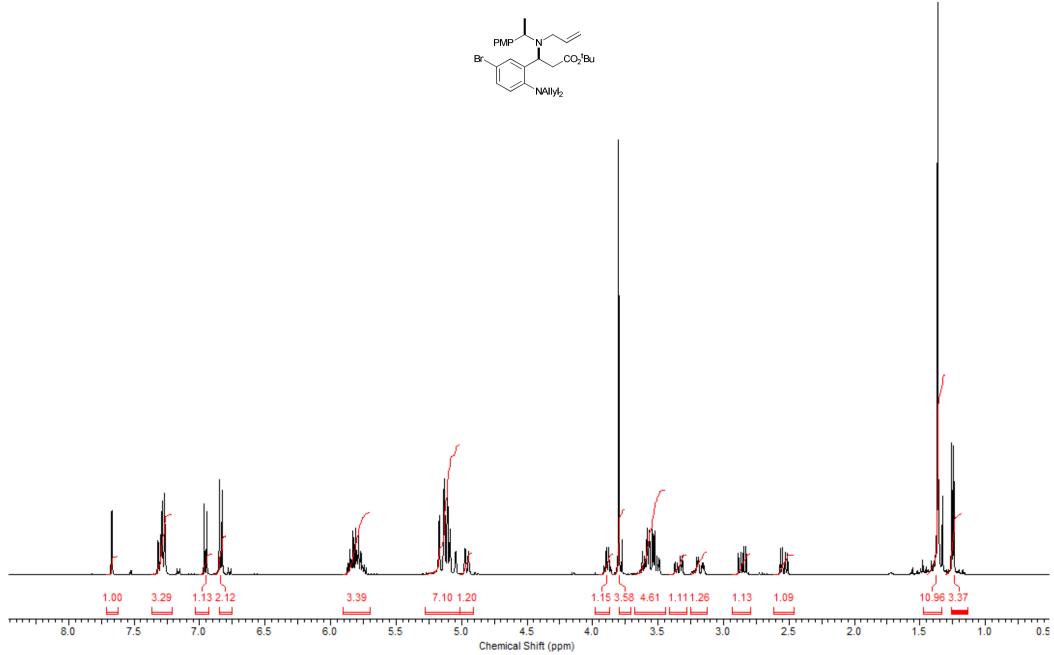

Crystallogr., Sect. A 1999, 55, 908. (c) Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143.

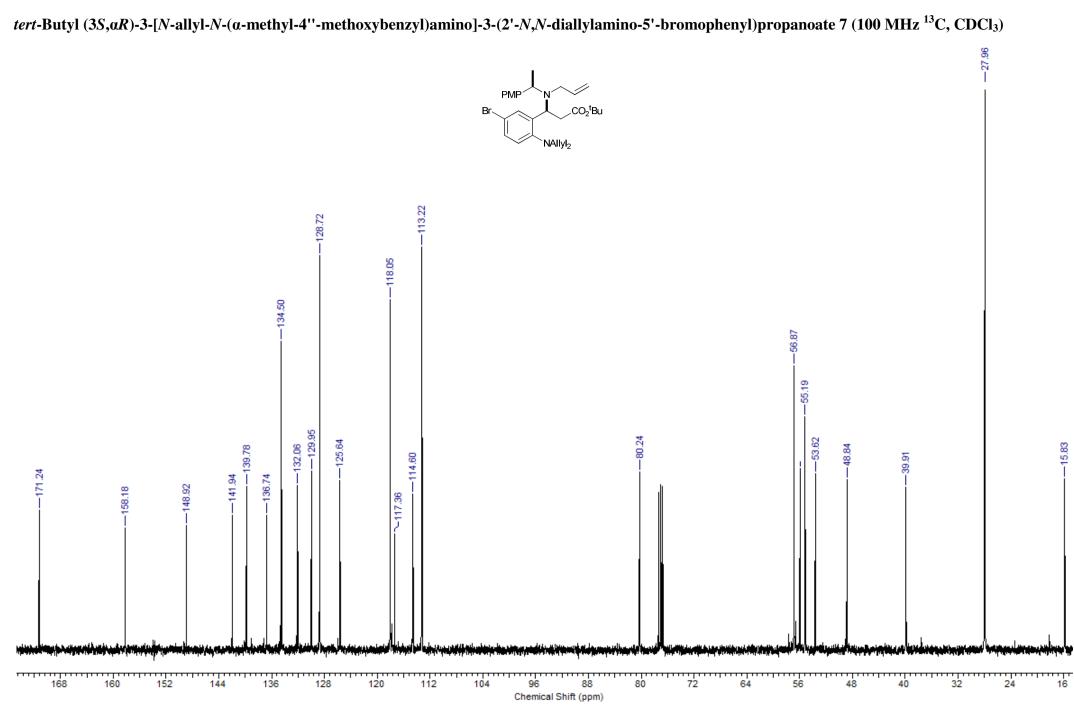
²⁹ (a) Flack, H. D. Acta. Crystallogr., Sect. A **1983**, 39, 876. (b) Flack, H. D.; Bernardinelli, G. Acta.

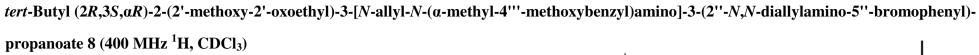

Crystallogr., Sect. A 1999, 55, 908. (c) Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143.

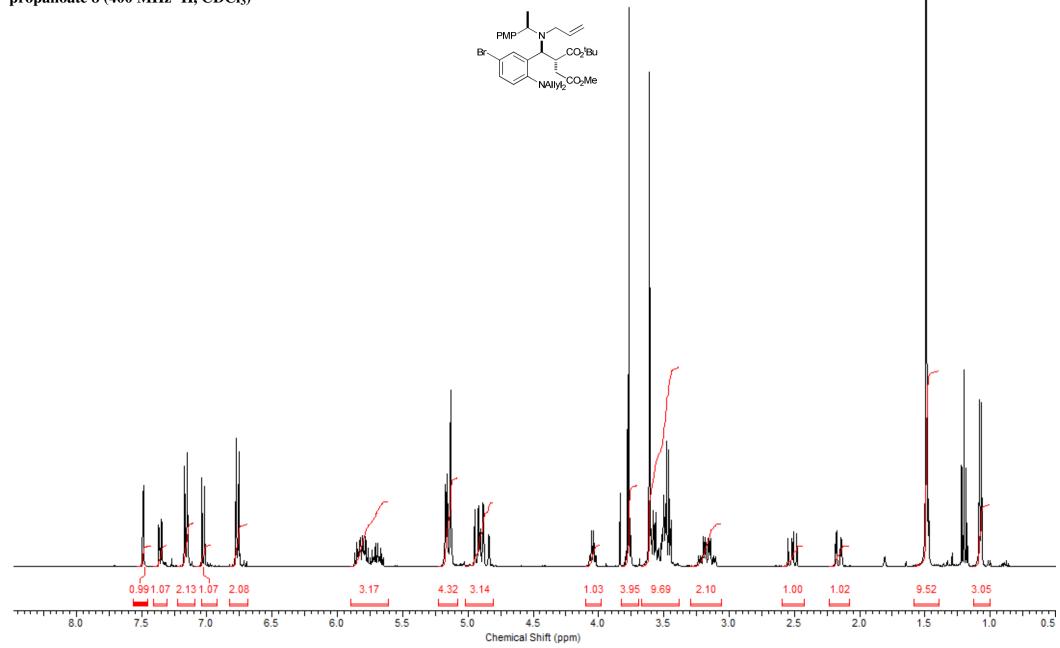
3. Copies of ¹H and ¹³C NMR spectra

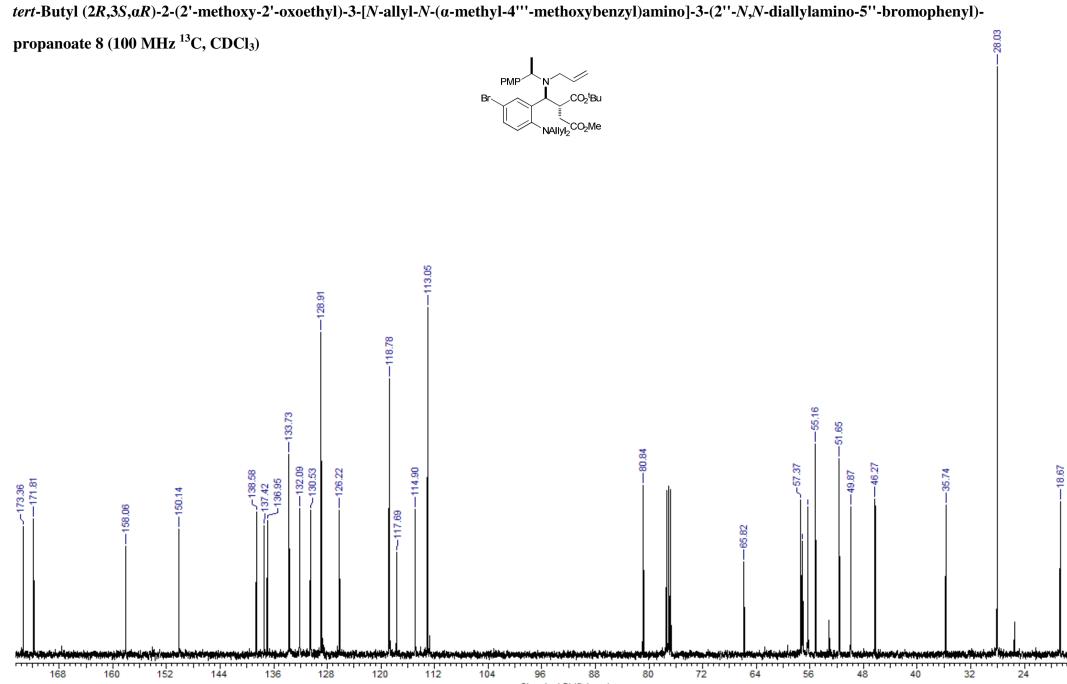
tert-Butyl (*E*)-3-(2'-*N*,*N*-diallylamino-5'-bromophenyl)propenoate 5 (400 MHz ¹H, CDCl₃)

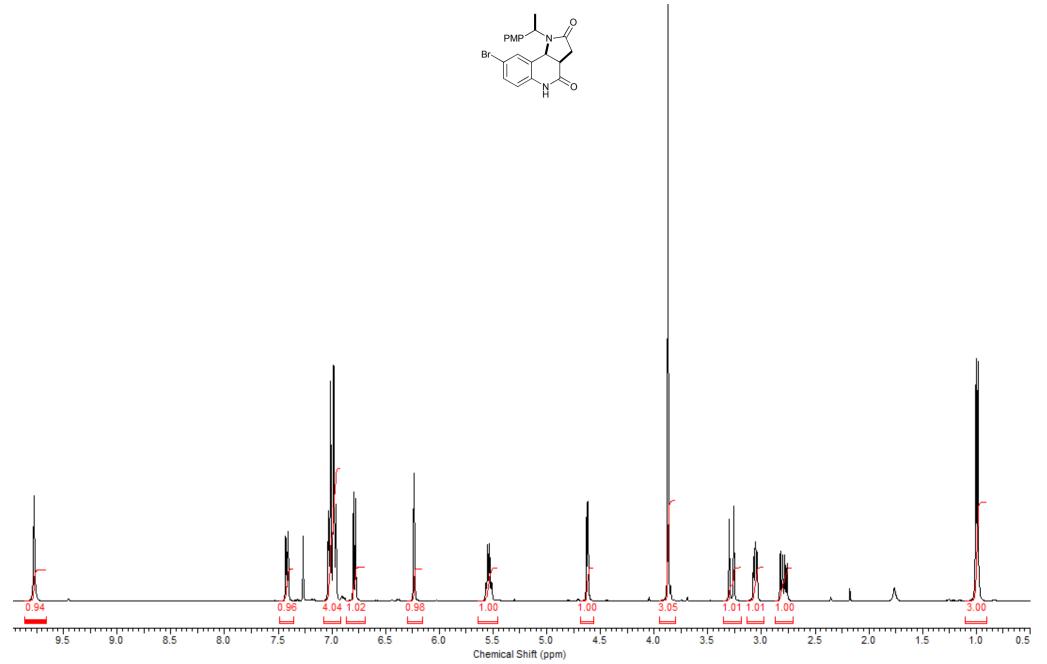


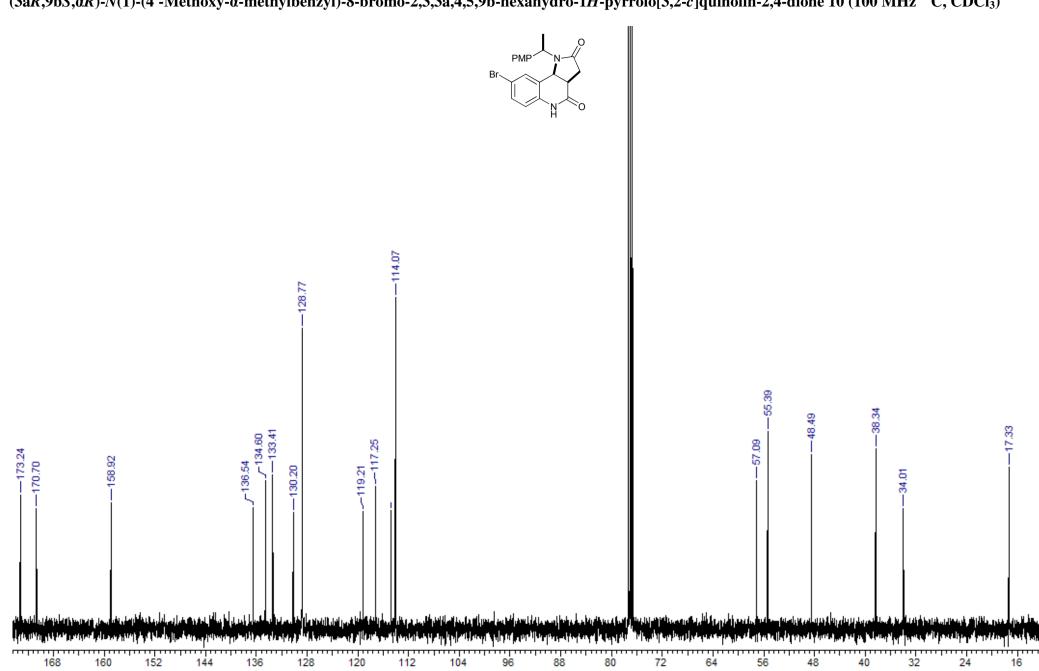

tert-Butyl (*E*)-3-(2'-*N*,*N*-diallylamino-5'-bromophenyl)propenoate 5 (100 MHz ¹³C, CDCl₃)




28.20

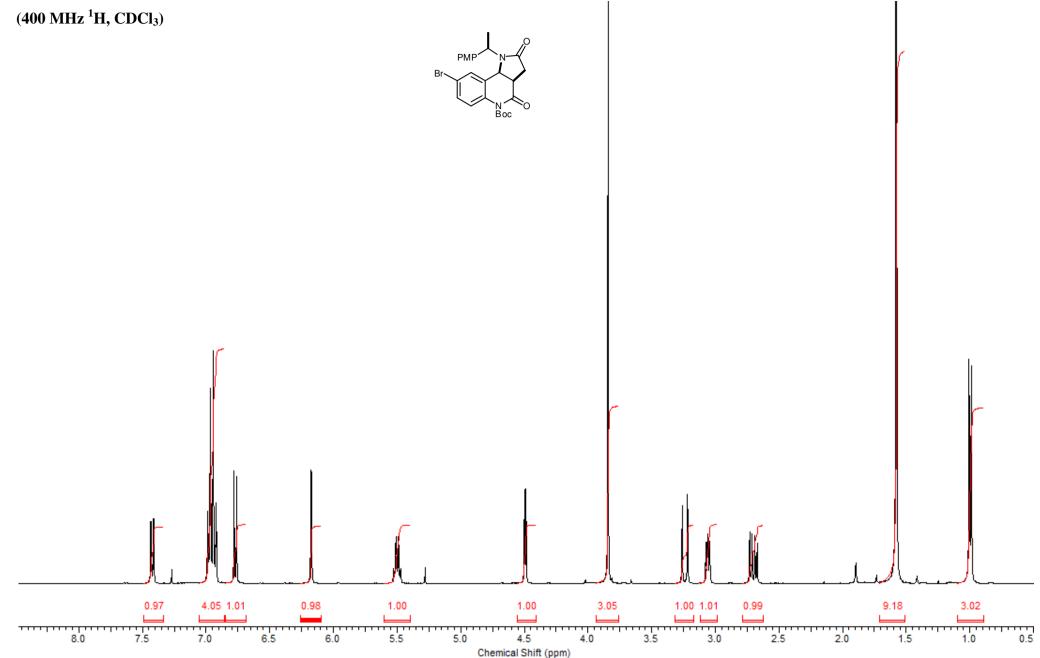

tert-Butyl (3*S*,*αR*)-3-[*N*-allyl-*N*-(*α*-methyl-4''-methoxybenzyl)amino]-3-(2'-*N*,*N*-diallylamino-5'-bromophenyl)propanoate 7 (400 MHz ¹H, CDCl₃)

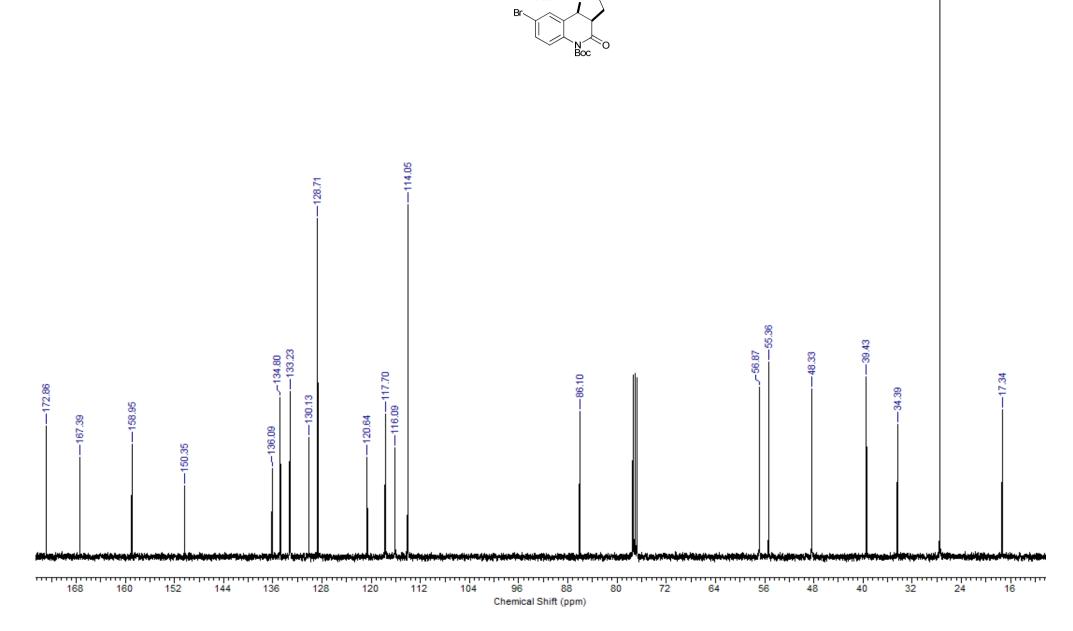




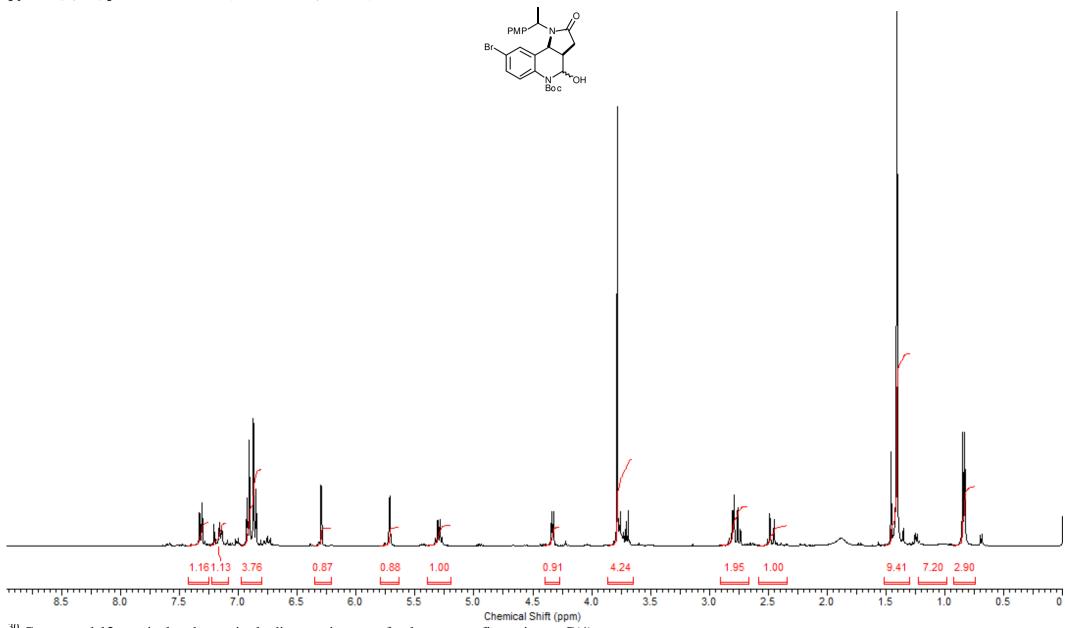
Chemical Shift (ppm)

 $(3aR,9bS,\alpha R)-N(1)-(4'-Methoxy-\alpha-methylbenzyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c] quinolin-2,4-dione 10 (400 \text{ MHz} ^{1}\text{H, CDCl}_{3})-1000 \text{ C}^{-1}\text{H}^$

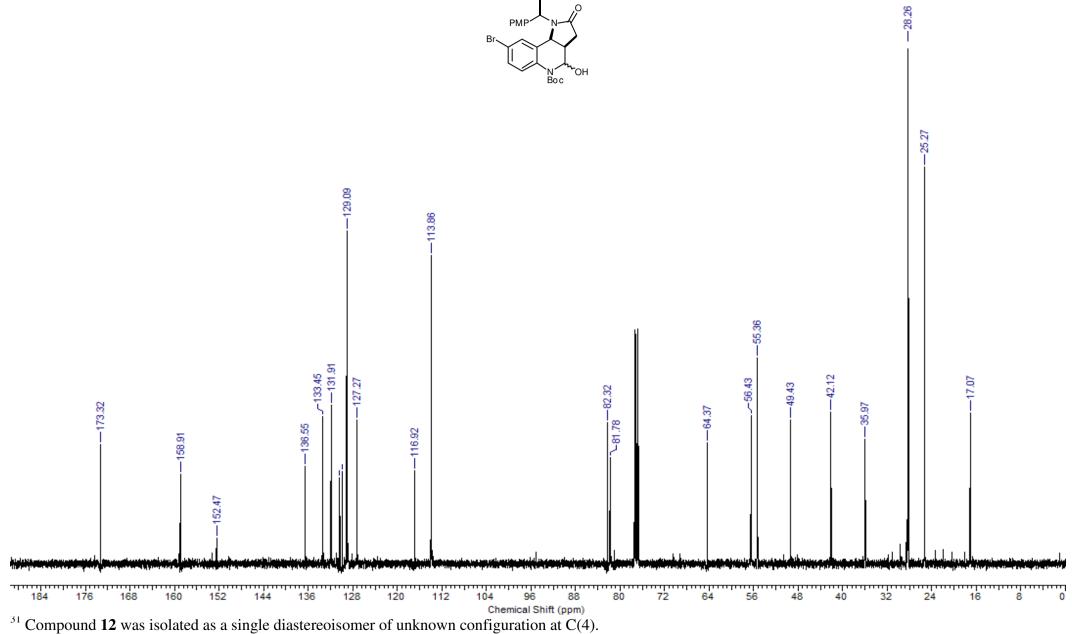


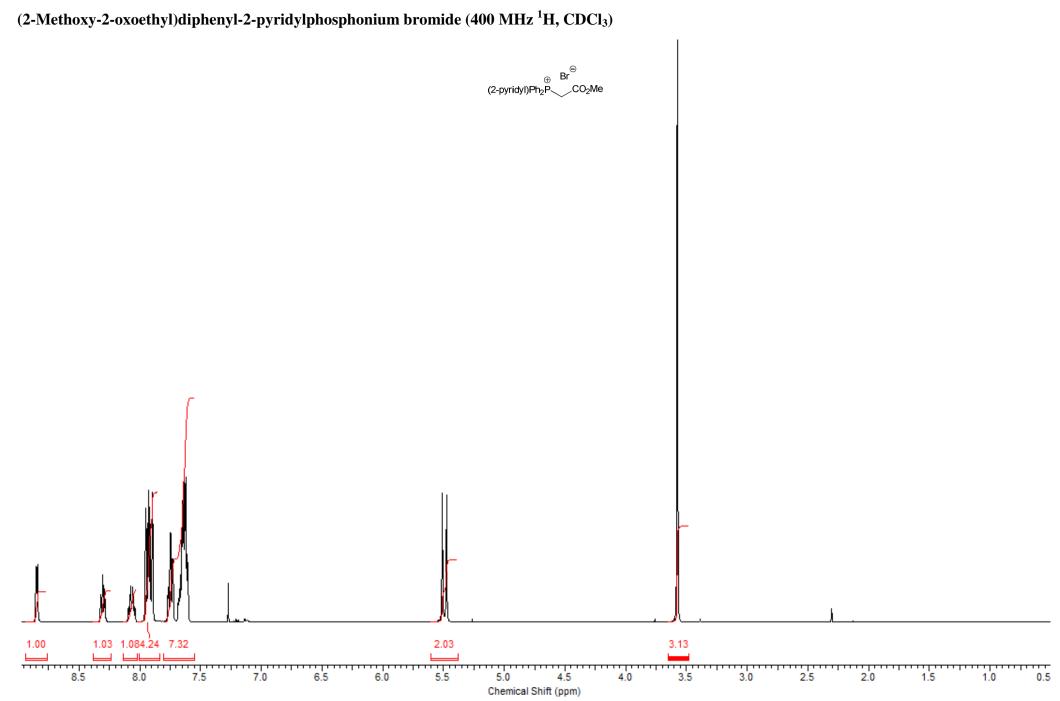

Chemical Shift (ppm)

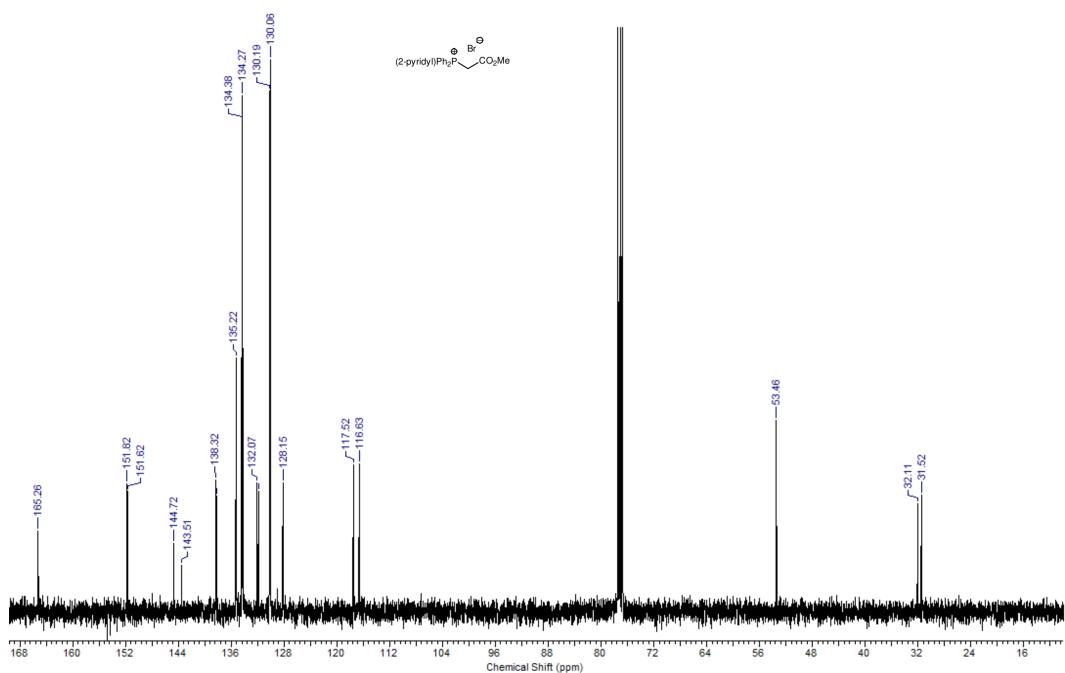
(3a*R*,9b*S*,α*R*)-*N*(1)-(4'-Methoxy-α-methylbenzyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinolin-2,4-dione 10 (100 MHz ¹³C, CDCl₃)


 $(3aR,9bS,\alpha R) - 1 - (4'-Methoxy-\alpha-methylbenzyl) - 5 - (\textit{tert}-butoxycarbonyl) - 8 - bromo - 2,3,3a,4,5,9b - hexahydro - 1H - pyrrolo[3,2-c] quinolin - 2,4 - dione 11 - 2,4 - 2$

(3a*R*,9b*S*,*αR*)-1-(4'-Methoxy-*α*-methylbenzyl)-5-(*tert*-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinolin-2,4-dione 11 (100 MHz ¹³C, CDCl₃)

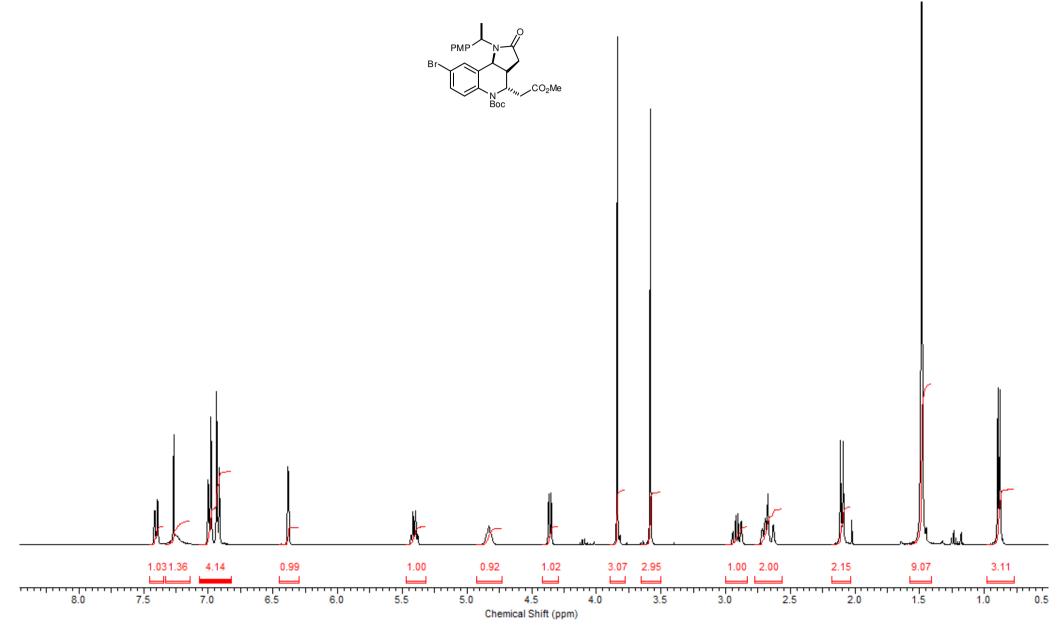


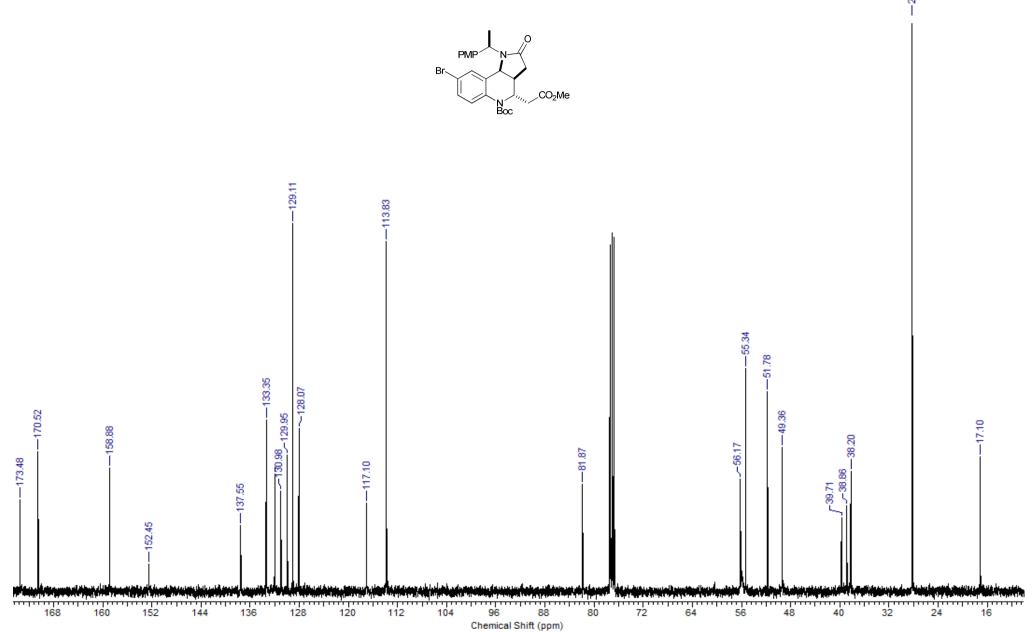

 $(3aR,4R,9bS,\alpha R)$ - or $(3aR,4S,9bS,\alpha R)$ -N(1)- $(\alpha$ -Methyl-4'-methoxybenzyl)-4-hydroxy-N(5)-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one 12 (400 MHz ¹H, CDCl₃)³⁰



 30 Compound **12** was isolated as a single diastereoisomer of unknown configuration at C(4).

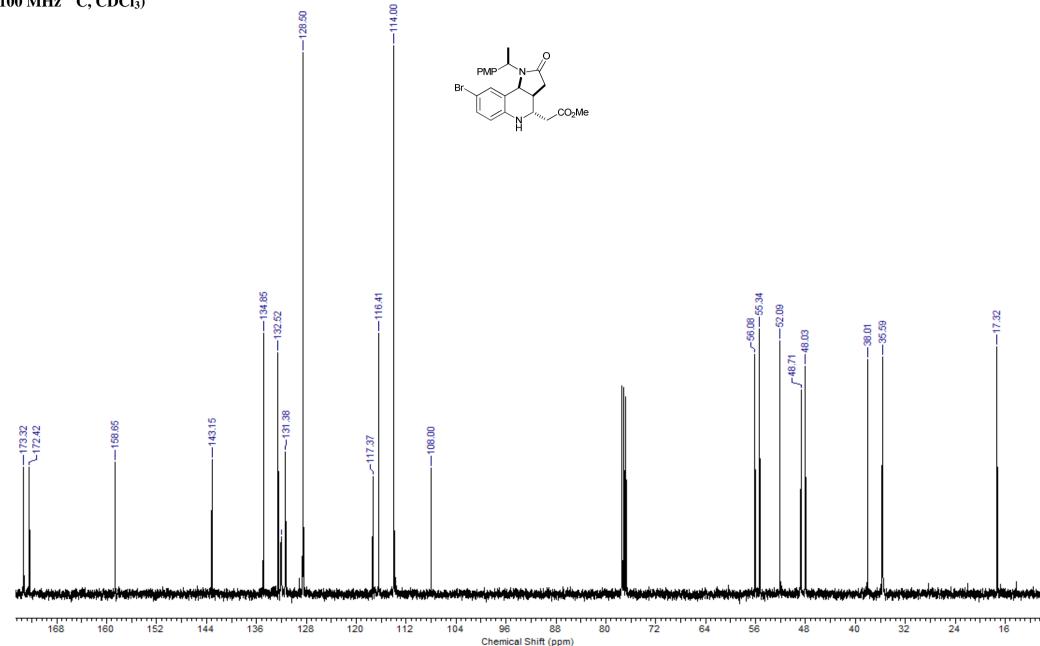
 $(3aR,4R,9bS,\alpha R)$ - or $(3aR,4S,9bS,\alpha R)$ -N(1)- $(\alpha$ -Methyl-4'-methoxybenzyl)-4-hydroxy-N(5)-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one 12 (100 MHz ¹³C, CDCl₃) ³¹

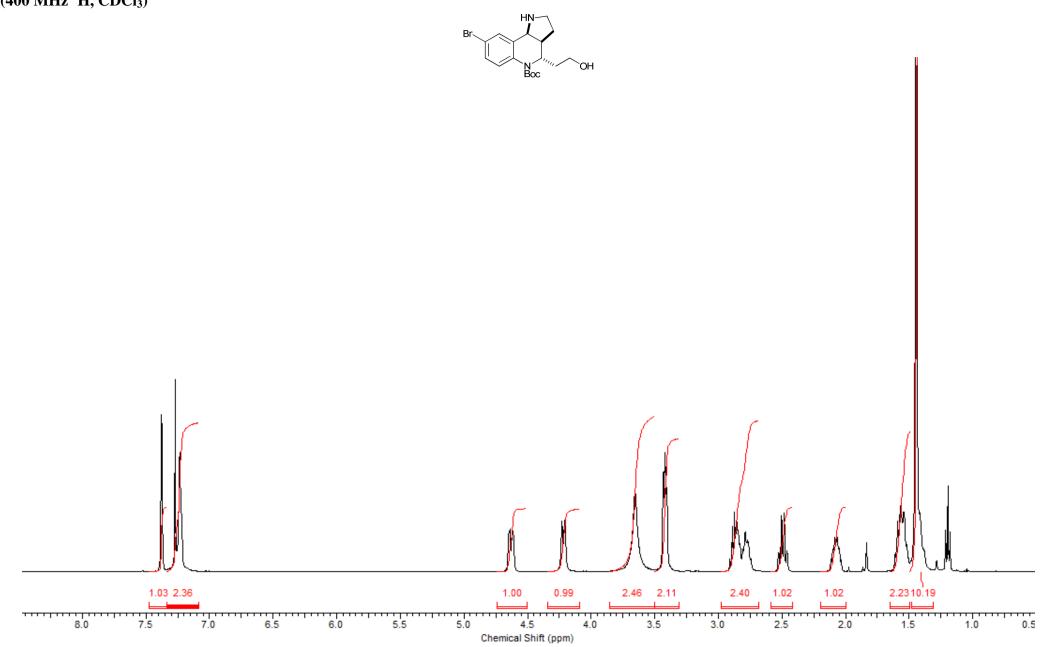


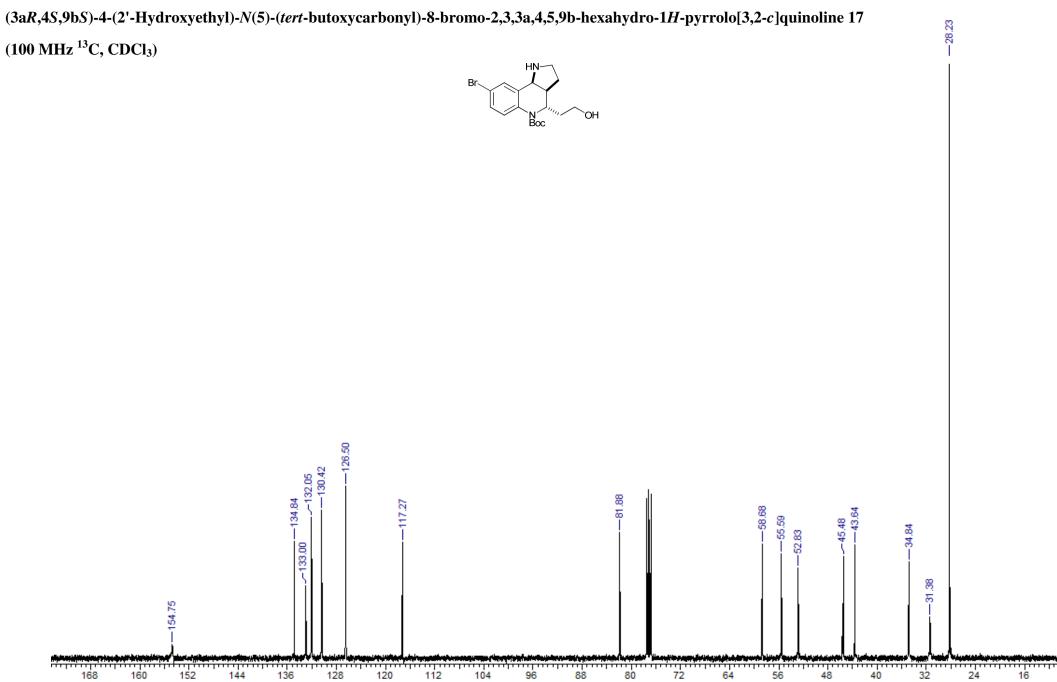


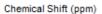
(2-Methoxy-2-oxoethyl)diphenyl-2-pyridylphosphonium bromide (100 MHz ¹³C, CDCl₃)

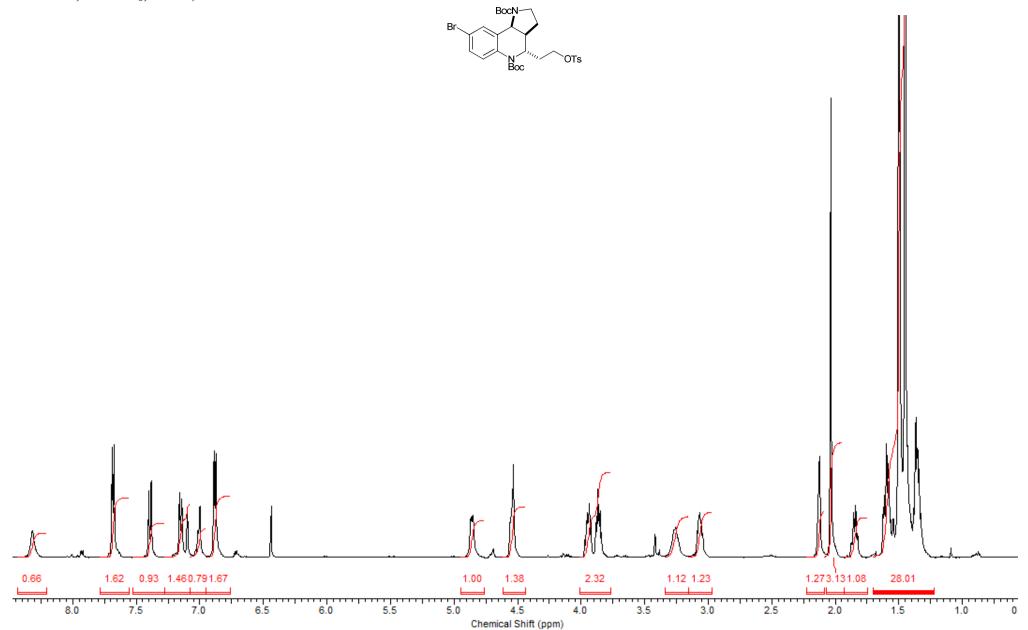
(3aS,4S,9bS,αR)-N(1)-(α-Methyl-4''-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-N(5)-(*tert*-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinolin-2-one 14 (400 MHz ¹H, CDCl₃)

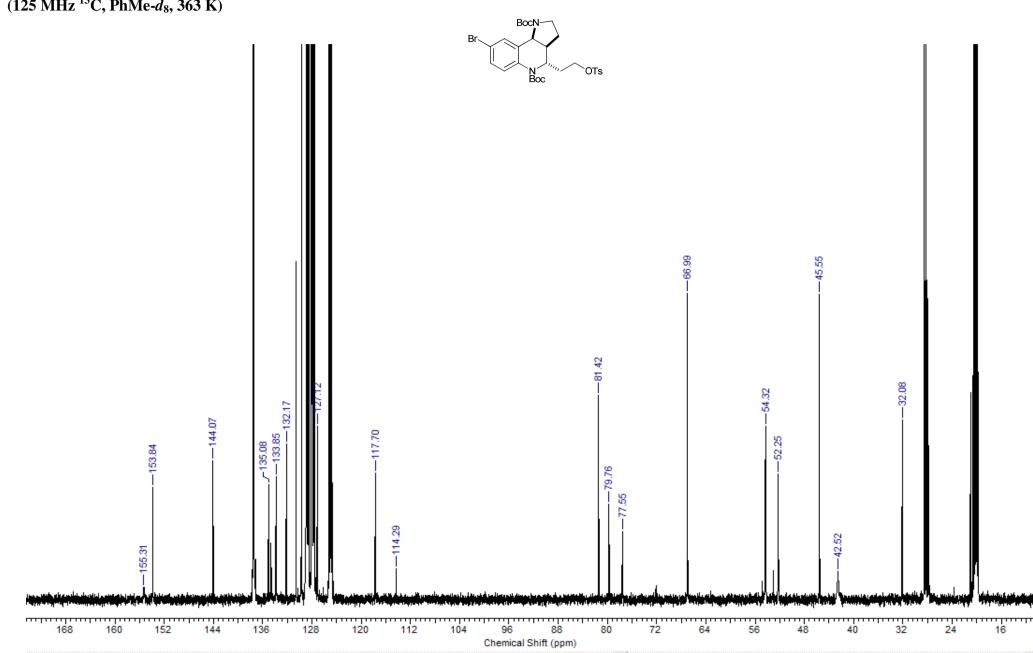

(3aS,4S,9bS,αR)-N(1)-(α-Methyl-4''-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-N(5)-(*tert*-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinolin-2-one 14 (100 MHz ¹³C, CDCl₃)

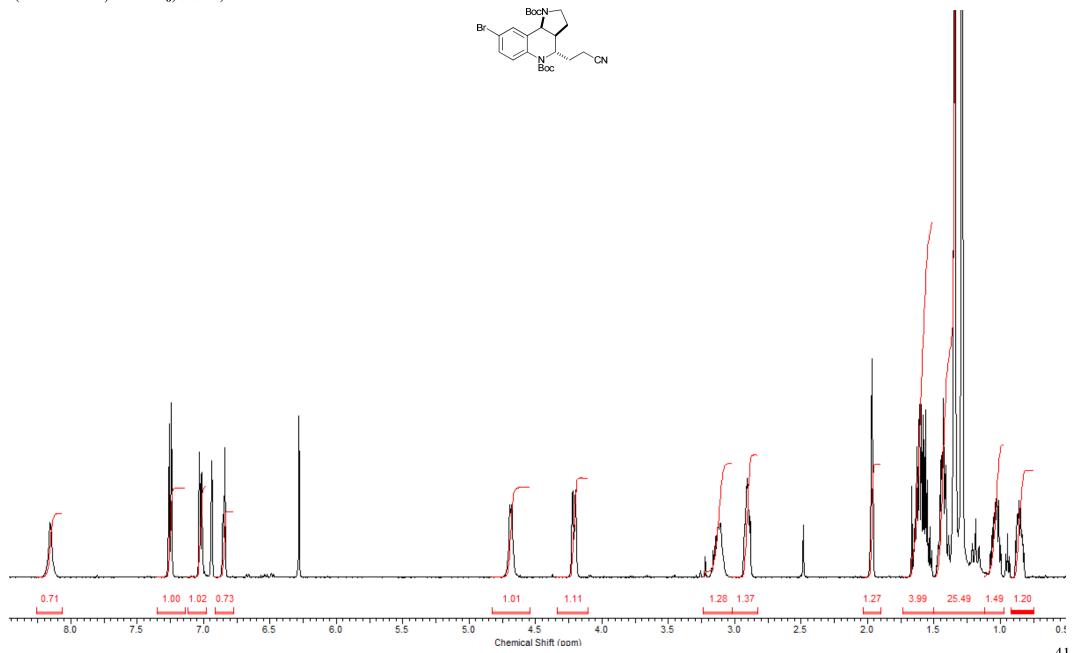

(3a*S*,4*S*,9b*S*,α*R*)-*N*(1)-(α-Methyl-4''-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinolin-2-one 15 (400 MHz ¹H, CDCl₃)



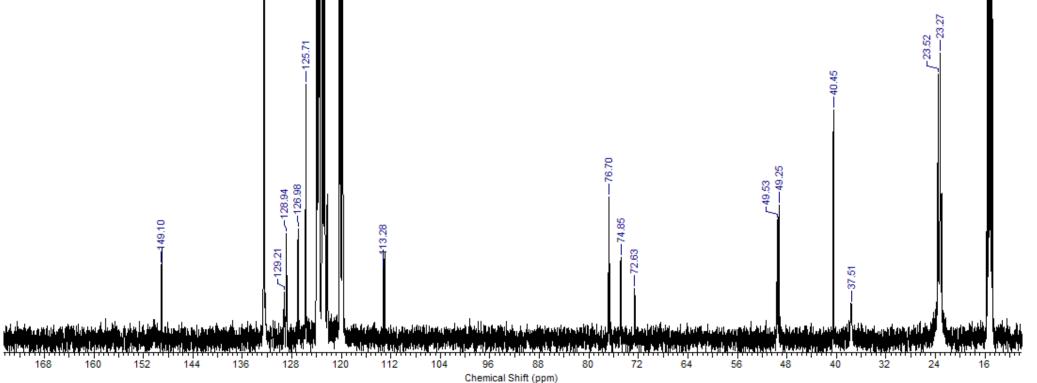

(3aS,4S,9bS,αR)-N(1)-(α-Methyl-4''-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinolin-2-one 15 (100 MHz ¹³C, CDCl₃)

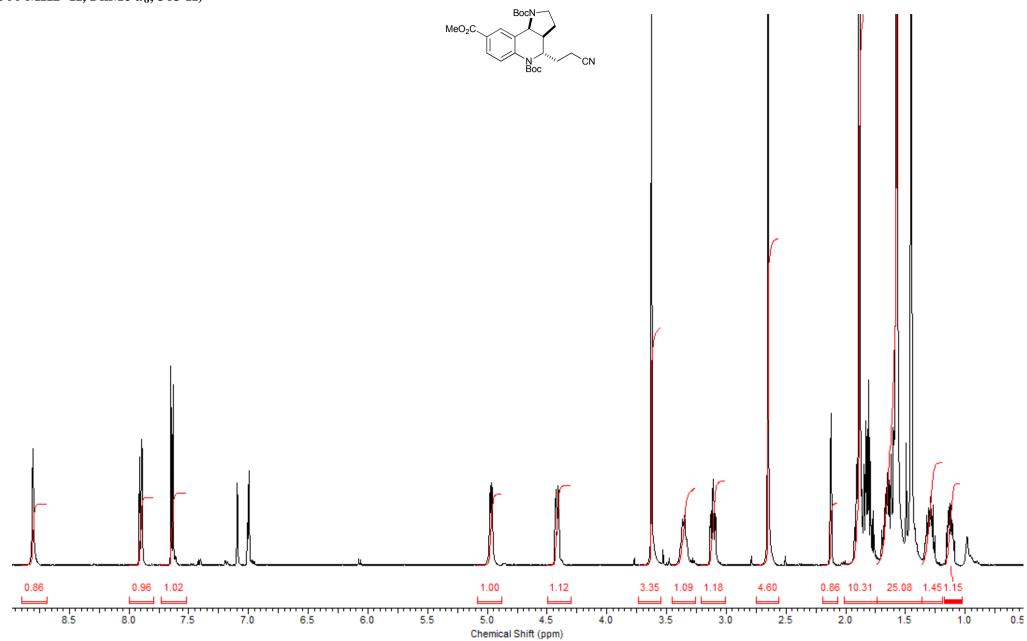

(3a*R*,4*S*,9b*S*)-4-(2'-Hydroxyethyl)-*N*(5)-(*tert*-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 17 (400 MHz ¹H, CDCl₃)

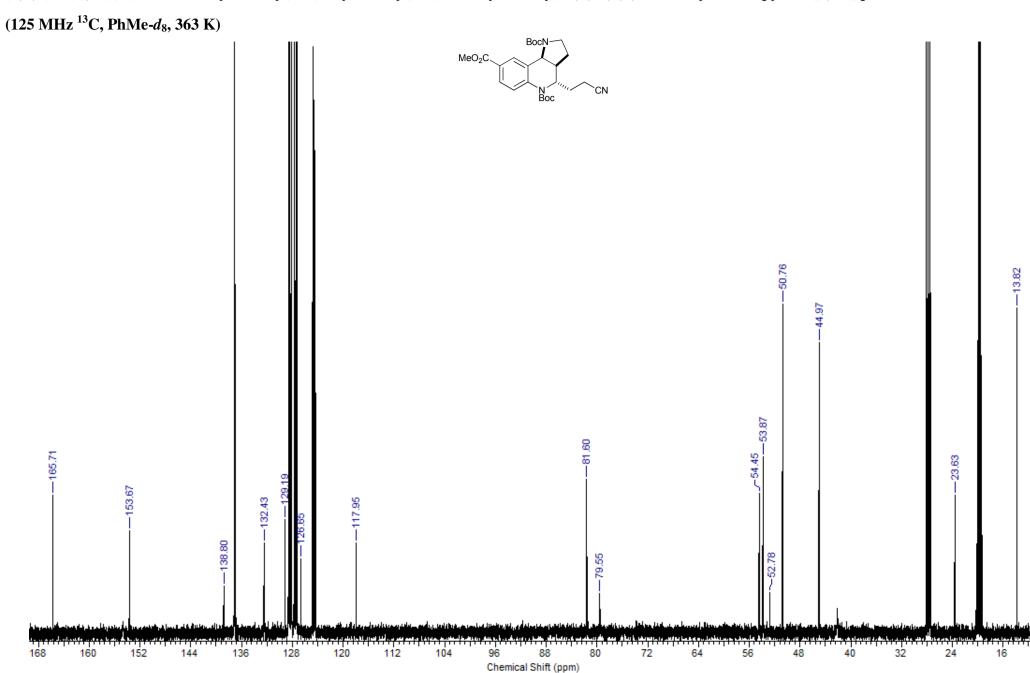




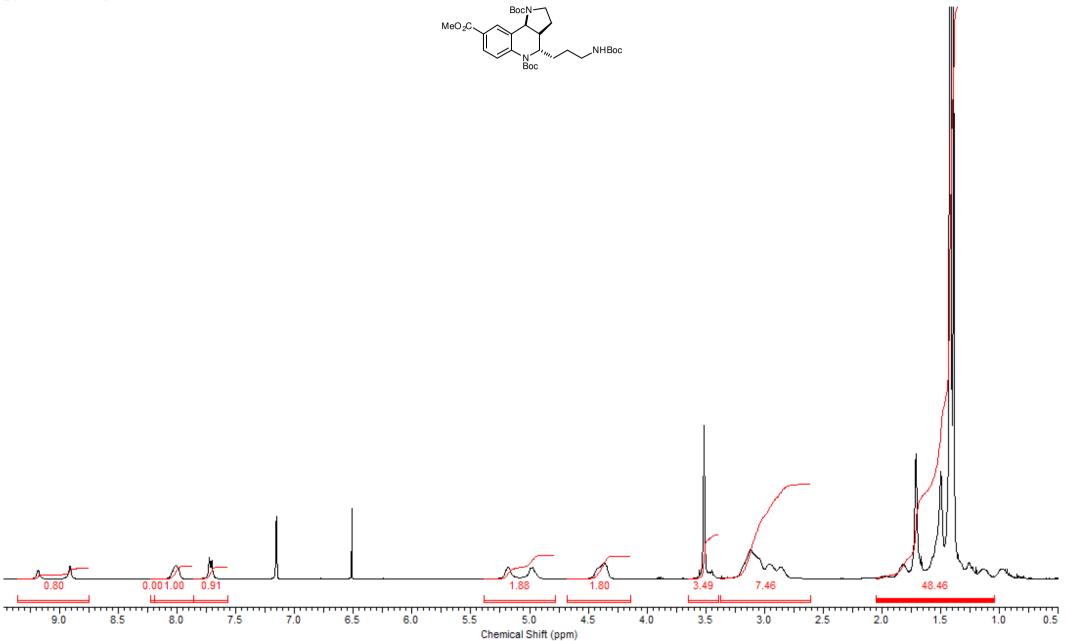
(*S*,*S*,*S*)-*N*(1),*N*(5)-(Di-*tert*-butoxycarbonyl)-4-[2'-(4''-toluenesulfonyloxy)ethyl]-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 19 (500 MHz ¹H, PhMe-*d*₈, 363 K)

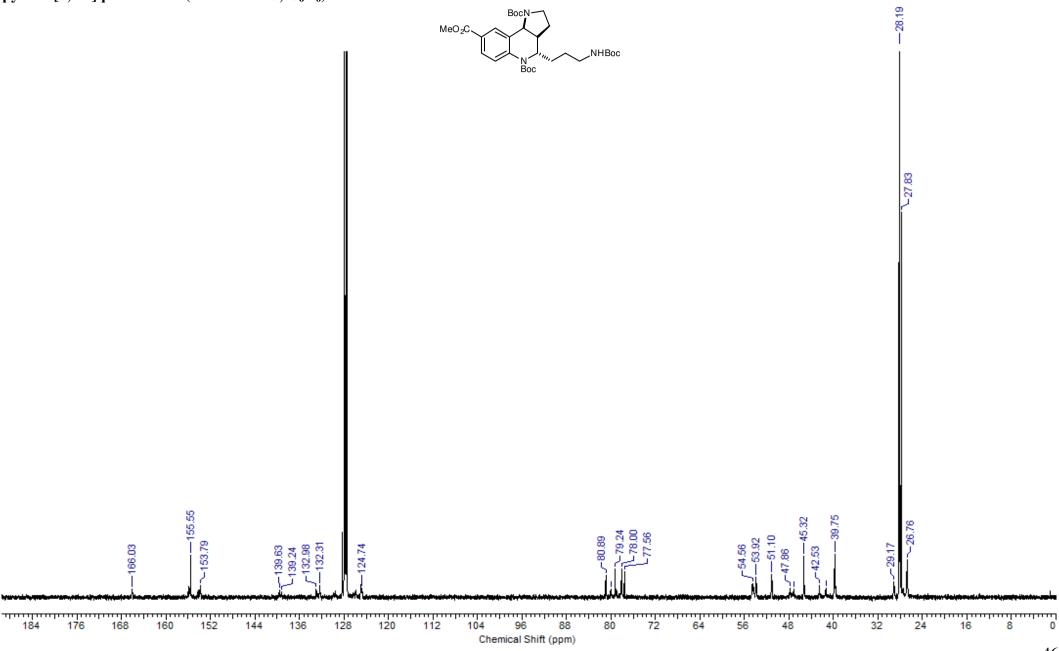



(*S*,*S*,*S*)-*N*(1),*N*(5)-(Di-*tert*-butoxycarbonyl)-4-[2'-(4''-toluenesulfonyloxy)ethyl]-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 19 (125 MHz ¹³C, PhMe-*d*₈, 363 K) (*S*,*S*,*S*)-*N*(1),*N*(5)-(Di-*tert*-butoxycarbonyl)-4-(2'-cyanoethyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 20 (500 MHz ¹H, PhMe-*d*₈, 363 K)

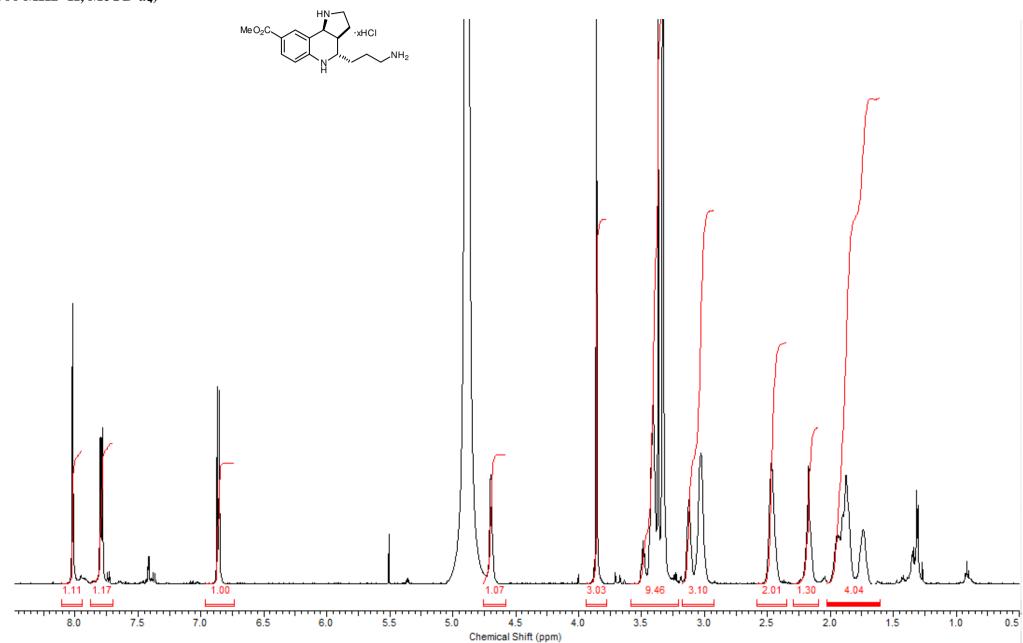


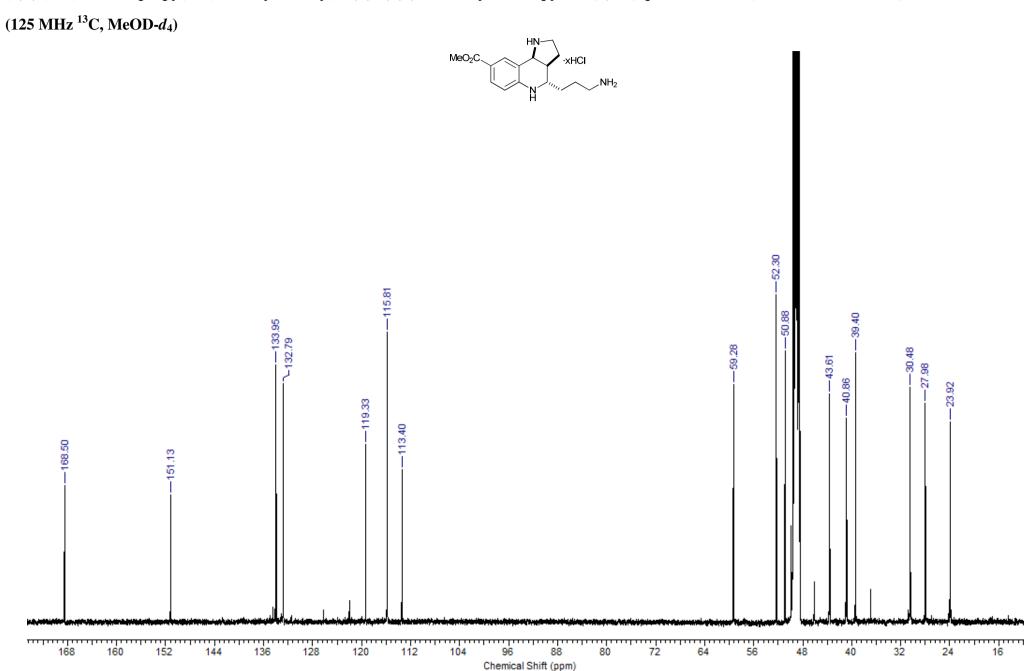
(S,S,S)-N(1),N(5)-(Di-*tert*-butoxycarbonyl)-4-(2'-cyanoethyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 20 (125 MHz ¹³C, PhMe-*d*₈, 363 K) BOCN CN Boc 26.71


(*S*,*S*,*S*)-*N*(1),*N*(5)-(Di-*tert*-butoxycarbonyl)-4-(2'-cyanoethyl)-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 21 (500 MHz ¹H, PhMe-*d*₈, 363 K)

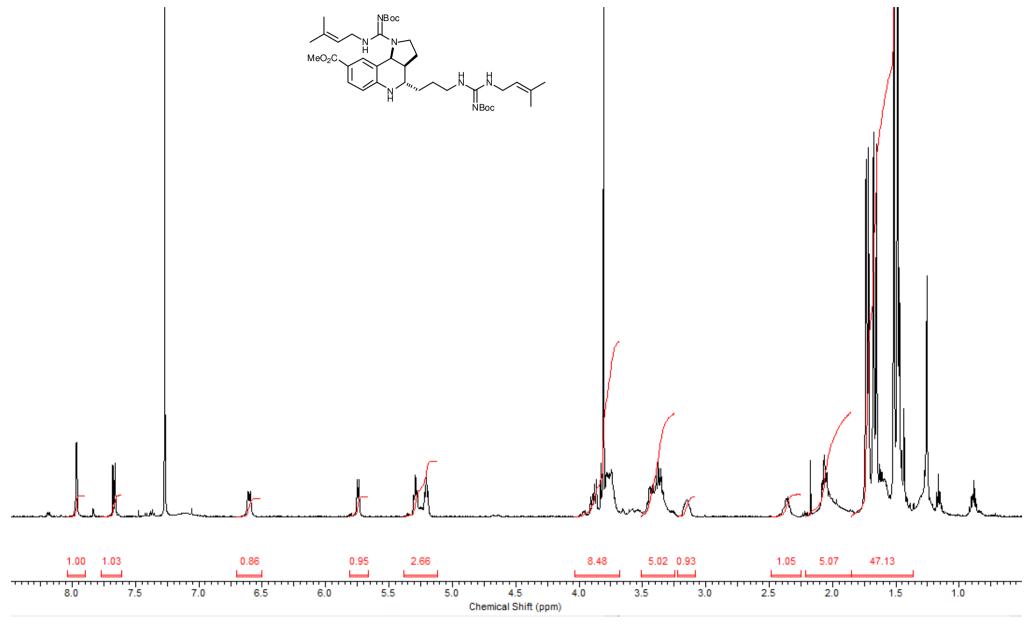


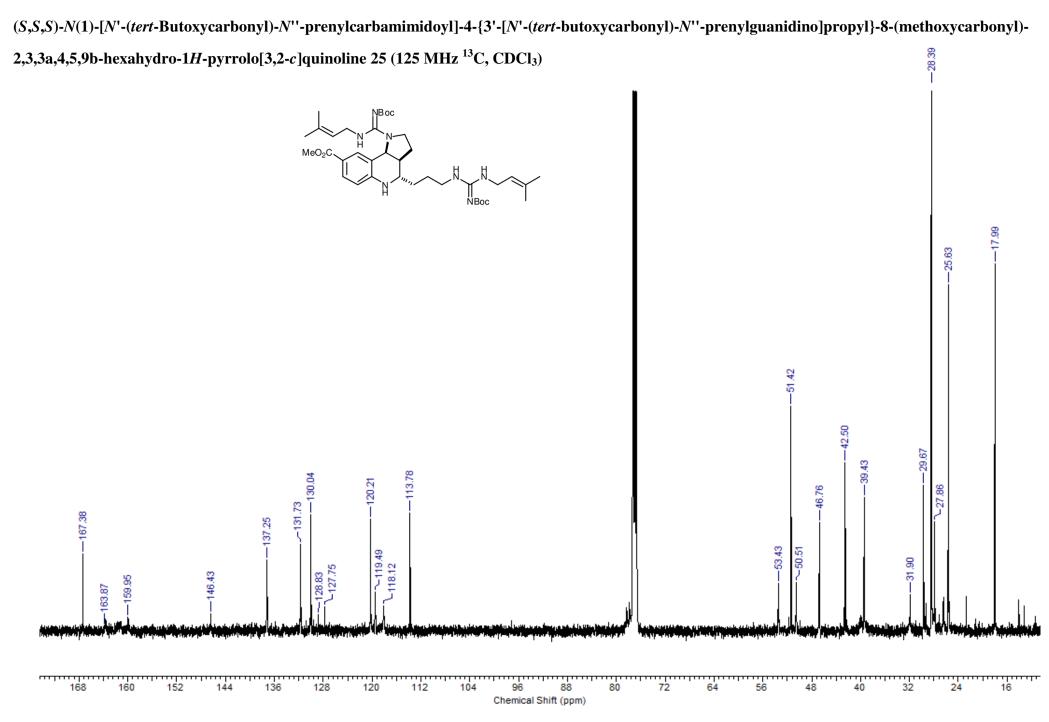
(S,S,S)-N(1), N(5)-(Di-tert-butoxycarbonyl)-4-(2'-cyanoethyl)-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline 21

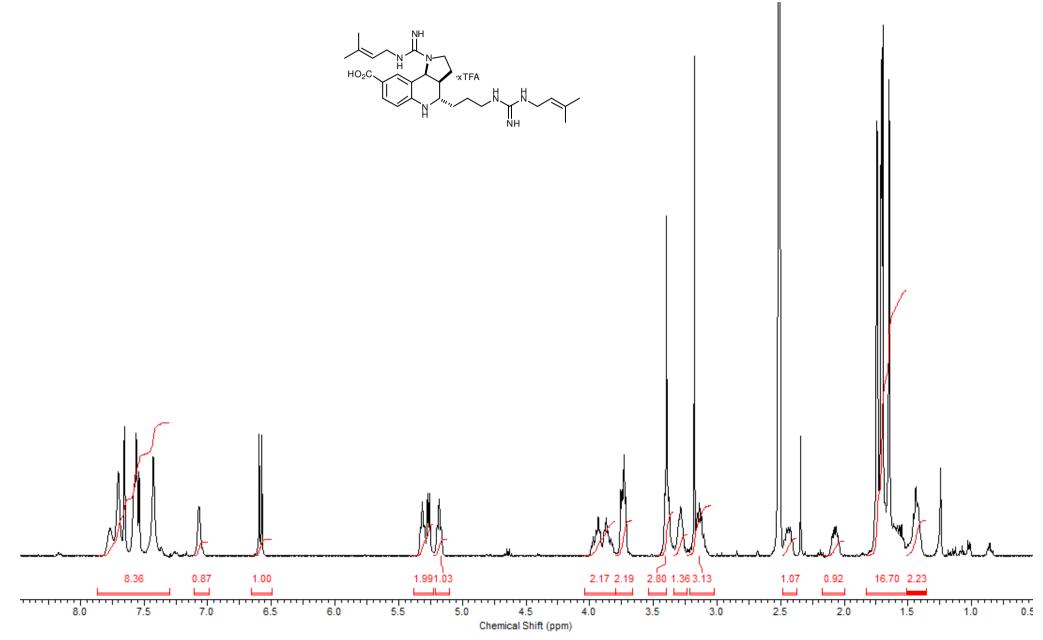

(*S*,*S*,*S*)-*N*(1),*N*(5)-(Di-*tert*-butoxycarbonyl)-4-[3'-(*N*-*tert*-butoxycarbonylamino)propyl]-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 22 (400 MHz ¹H, C₆D₆)

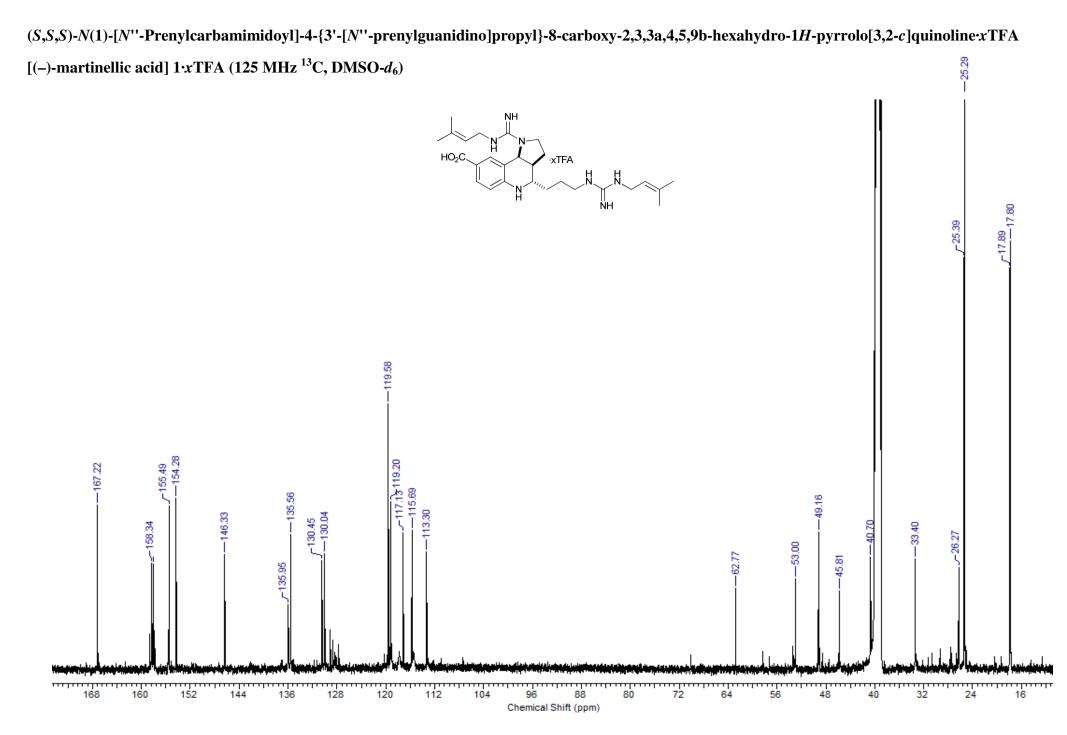


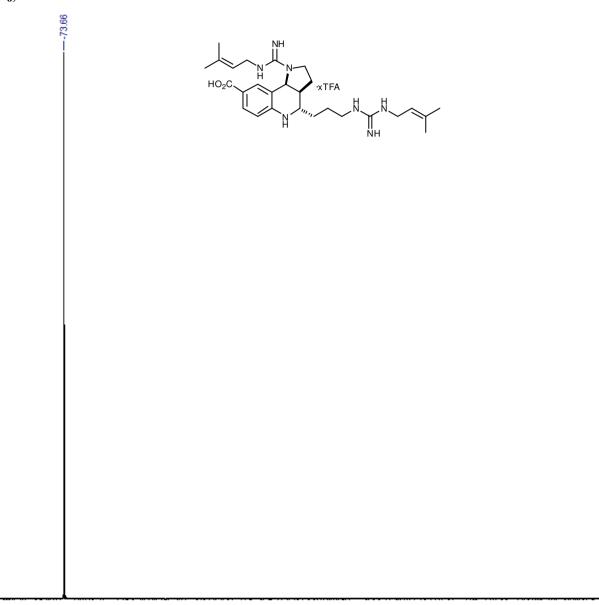
(*S*,*S*,*S*)-*N*(1),*N*(5)-(Di-*tert*-butoxycarbonyl)-4-[3'-(*N*-*tert*-butoxycarbonylamino)propyl]-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 22 (100 MHz ¹³C, C₆D₆)


(*S*,*S*,*S*)-4-(3'-Aminopropyl)-8-(methoxycarbonyl)- 2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]-quinoline·*x*HCl ["Ma's intermediate"] 23·*x*HCl (500 MHz ¹H, MeOD-*d*₄)




(S,S,S)-4-(3'-Aminopropyl)-8-(methoxycarbonyl)- 2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]-quinoline-xHCl ["Ma's intermediate"] 23-xHCl


(*S*,*S*,*S*)-*N*(1)-[*N*'-(*tert*-Butoxycarbonyl)-*N*''-prenylcarbamimidoyl]-4-{3'-[*N*'-(*tert*-butoxycarbonyl)-*N*''-prenylguanidino]propyl}-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline 25 (500 MHz ¹H, CDCl₃)



(*S*,*S*,*S*)-*N*(1)-[*N*''-Prenylcarbamimidoyl]-4-{3'-[*N*''-prenylguanidino]propyl}-8-carboxy-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline-*x*TFA [(-)-martinellic acid] 1·*x*TFA (500 MHz ¹H, DMSO-*d*₆)

(*S*,*S*,*S*)-*N*(1)-[*N*''-Prenylcarbamimidoyl]-4-{3'-[*N*''-prenylguanidino]propyl}-8-carboxy-2,3,3a,4,5,9b-hexahydro-1*H*-pyrrolo[3,2-*c*]quinoline-*x*TFA [(-)-martinellic acid] 1·*x*TFA (470 MHz ¹⁹F, DMSO-*d*₆)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 Chemical Shift (ppm)