Supporting Information for

Asymmetric Synthesis of (-)-Martinellic Acid

Stephen G. Davies*, Ai M. Fletcher, James A. Lee, Thomas J. A. Lorkin, Paul M. Roberts, and James E. Thomson
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OXI 3TA, U.K.
steve.davies@chem.ox.ac.uk

Table of Contents

1. Experimental 2-17
2. X-ray crystal structure determination 18
3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra 19-53

1. Experimental

1.1. General Experimental

All reactions involving organometallic or other moisture sensitive reagents were carried out under a nitrogen or argon atmosphere using standard vacuum line techniques and glassware that was flame dried and cooled under nitrogen before use. Solvents were dried according to the procedure outlined by Grubbs and co-workers. ${ }^{1}$ Water was purified by an Elix ${ }^{\circledR}$ UV-10 system. BuLi was purchased as a solution in hexanes and titrated against diphenylacetic acid before use. All other reagents were used as supplied without prior purification. Organic layers were dried over MgSO_{4}. Thin layer chromatography was performed on aluminium plates coated with $60 \mathrm{~F}_{254}$ silica. Plates were visualised using UV light (254 nm), iodine, 1% aq KMnO_{4}, or 10% ethanolic phosphomolybdic acid. Flash column chromatography was performed on Kieselgel 60 silica.

Melting points are uncorrected. Optical rotations were recorded in a water-jacketed 10 cm cell. Specific rotations are reported in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$ and concentrations in $\mathrm{g} / 100 \mathrm{~mL}$. IR spectra were recorded using an ATR module. Selected characteristic peaks are reported in cm^{-1}. NMR spectra were recorded in the deuterated solvent stated. Spectra were recorded at rt. The field was locked by external referencing to the relevant deuteron resonance. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY},{ }^{1} \mathrm{H}^{13} \mathrm{C} \mathrm{HMQC}$, and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC analyses were used to establish atom connectivity. Accurate mass measurements were run on a TOF spectrometer internally calibrated with polyalanine.

[^0]
1.2. Experimental Data

tert-Butyl (\boldsymbol{E})-3-(2'-N,N-diallylamino-5'-bromophenyl)propenoate 5

Step 1: $\mathrm{Pd}(\mathrm{OAc})_{2}(80 \mathrm{mg}, 0.36 \mathrm{mmol})$ was added to a stirred, degassed solution of $\mathbf{3}(10.6 \mathrm{~g}, 35.5 \mathrm{mmol})$, $\mathrm{P}(o-\mathrm{Tol})_{3}(216 \mathrm{mg}, 0.71 \mathrm{mmol})$, tert-butyl acrylate $(5.72 \mathrm{~mL}, 39.1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(9.89 \mathrm{~mL}, 71.0 \mathrm{mmol})$ in $\mathrm{MeCN}(200 \mathrm{~mL})$. The resultant mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 16 h , then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and the resultant solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and the combined organic extracts were dried and concentrated in vacuo to give 4 as a brown oil (10.7 g , $\left.>99: 1 \mathrm{dr}){ }^{2} \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.53(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} 3), 3.95(2 \mathrm{H}, \mathrm{s}, \mathrm{NH})_{2}\right), 6.28(1 \mathrm{H}, \mathrm{d}, J 15.7, \mathrm{C}(2) H), 6.58(1 \mathrm{H}$, d, J 8.7, C(3')H), $7.23\left(1 \mathrm{H}, \mathrm{dd}, J\right.$ 8.7, 2.3, C(4')H), $7.48\left(1 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{C}\left(6^{\prime}\right) H\right), 7.61(1 \mathrm{H}, \mathrm{d}, J 15.7, \mathrm{C}(3) H)$.

Step 2: Allyl iodide ($9.80 \mathrm{~mL}, 107 \mathrm{mmol}$) was added to a solution of $\mathbf{4}(10.7 \mathrm{~g},>99: 1 \mathrm{dr})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(18.8 \mathrm{~g}$, 88.7 mmol) in acetone (200 mL), and the resultant mixture was heated at reflux for 48 h . The reaction mixture was then allowed to cool to rt, diluted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$, and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and the combined organic extracts were dried and concentrated in vacuo. The residue was passed through a short plug of silica (eluent $30-40{ }^{\circ} \mathrm{C} \mathrm{petrol} / \mathrm{Et}_{2} \mathrm{O}$, 20:1) and the filtrate was concentrated in vacuo to give 5 as a yellow oil ($12.1 \mathrm{~g}, 90 \%$ from $\mathbf{3},>99: 1 \mathrm{dr}$); $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrNO}_{2}$ requires $\mathrm{C}, 60.3 ; \mathrm{H}, 6.4 ; \mathrm{N}, 3.7 \%$; found $\mathrm{C}, 60.4 ; \mathrm{H}, 6.4 ; \mathrm{N}, 3.8 \%$; $v_{\max }$ (ATR) 3078 , 2978, 2931, $2822(\mathrm{C}-\mathrm{H}), 1705(\mathrm{C}=\mathrm{O}), 1631,1585(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.54\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 3.61(4 \mathrm{H}, \mathrm{d}, J 6.3$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 5.10-5.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 5.72-5.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 6.30(1 \mathrm{H}, \mathrm{d}$, J 15.9, C(2)H), $6.89\left(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{C}\left(3^{\prime}\right) H\right), 7.36\left(1 \mathrm{H}, \mathrm{dd}, J 8.6,2.3, \mathrm{C}\left(4^{\prime}\right) H\right), 7.63\left(1 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{C}\left(6^{\prime}\right) H\right), 7.92$ $(1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{C}(3) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.2\left(\mathrm{CMe}_{3}\right), 56.0\left(\mathrm{~N}^{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{\mathrm{CH}} \mathrm{CH}_{2}\right)\right), 80.5\left(\mathrm{CMe}_{3}\right), 115.5$ $\left(C\left(5^{\prime}\right)\right), 118.0\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}=C \mathrm{H}_{2}\right)_{2}\right), 120.8(C(2)), 123.2\left(C\left(3^{\prime}\right)\right), 130.4\left(C\left(6^{\prime}\right)\right), 131.7\left(C\left(1^{\prime}\right)\right), 132.4\left(C\left(4^{\prime}\right)\right), 134.2$ $\left(\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 139.9(C(3)), 149.6\left(C\left(2^{\prime}\right)\right), 166.2(C(1)) ; m / z\left(\mathrm{ESI}^{+}\right) 779\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right.$, $100 \%), 400\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, \quad 85 \%\right), 380\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, \quad 60 \%\right) ; \quad \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{19} \mathrm{H}_{24}{ }^{81} \mathrm{BrNNaO}_{2}{ }^{+}$ $\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right)$requires 402.0862; found 402.0867

[^1]tert-Butyl (3S, α R)-3-[N-allyl- N-(α-methyl-4'-methoxybenzyl)amino]-3-(2'- N, N-diallylamino-5'bromophenyl)propanoate 7

BuLi (2.3 M in hexanes, $29.2 \mathrm{~mL}, 68.7 \mathrm{mmol}$) was added dropwise to a solution of (R)- N -allyl- N - $(\alpha$-methyl-4methoxybenzyl)amine ($13.1 \mathrm{~g}, 68.7 \mathrm{mmol},>99: 1 \mathrm{er}$) in THF (200 mL) at $-78^{\circ} \mathrm{C}$ and the resultant mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . A solution of $5(16.3 \mathrm{~g}, 42.9 \mathrm{mmol},>99: 1 \mathrm{dr})$ in THF (200 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise via cannula. The reaction mixture was stirred for 2 h at $-78{ }^{\circ} \mathrm{C}$ then satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$ was added. The resultant mixture was washed with 10% aq citric acid $(2 \times 150 \mathrm{~mL})$ and the combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The combined organic extracts were then washed sequentially with satd aq $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine (100 mL), then dried and concentrated in vacuo to give 7 as a brown oil (25.0 g , quant, $>99: 1 \mathrm{dr}$). Purification of an aliquot via flash column chromatography (eluent $30-40{ }^{\circ} \mathrm{C}$ petrol $/ \mathrm{Et}_{2} \mathrm{O}, 4: 1$) gave an analytical sample of 7 as a pale yellow oil ($>99: 1 \mathrm{dr}$); $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{BrN}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 65.4 ; \mathrm{H}, 7.3 ; \mathrm{N}, 4.9 \%$; found $\mathrm{C}, 65.45 ; \mathrm{H}, 7.3 ; \mathrm{N}, 4.9 \%$; $[\alpha]_{\mathrm{D}}^{20}-5.6$ (c 1.0 in CHCl_{3}); $v_{\max }$ (ATR) 3075, 2977, 2931, $2834(\mathrm{C}-\mathrm{H}), 1727(\mathrm{C}=\mathrm{O})$, 1641, 1610, $1584(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.25(3 \mathrm{H}, \mathrm{d}$, $J 6.6, \mathrm{C}(\alpha) M e), 1.36\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.54\left(1 \mathrm{H}, \mathrm{dd}, J 15.2,6.3, \mathrm{C}(2) H_{\mathrm{A}}\right), 2.86\left(1 \mathrm{H}, \mathrm{dd}, J 15.2,8.3, \mathrm{C}(2) H_{\mathrm{B}}\right)$, 3.13-3.23 ($1 \mathrm{H}, \mathrm{m}, ~ \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}$), $3.30-3.39\left(1 \mathrm{H}, \mathrm{m}, ~ \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.47-3.64(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(1 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{C}(\alpha) H), 4.92-5.20\left(7 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 5.72-5.88\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 6.84\left(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{C}\left(3^{\prime \prime}\right) H, \mathrm{C}\left(5^{\prime \prime}\right) H\right)$, $6.96\left(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{C}\left(3^{\prime}\right) H\right), 7.28\left(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{C}\left(2^{\prime \prime}\right) H, \mathrm{C}\left(6^{\prime \prime}\right) H\right), 7.31\left(1 \mathrm{H}, \mathrm{dd}, J 8.6,2.5, \mathrm{C}\left(4^{\prime}\right) H\right), 7.67(1 \mathrm{H}, \mathrm{d}$, J 2.5, $\left.\mathrm{C}\left(6^{\prime}\right)\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.8(\mathrm{C}(\alpha) M e), 28.0\left(\mathrm{CMe}_{3}\right), 39.9(C(2)), 48.8\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 53.6$ $(C(3)), 55.2(\mathrm{OMe}), 56.0(C(\alpha)), 56.9\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 80.2\left(C \mathrm{Me}_{3}\right), 113.2\left(C\left(3^{\prime \prime}\right), C\left(5^{\prime \prime}\right)\right), 114.6$ $\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 117.4(\mathrm{Ar}), 118.1\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 125.6\left(C\left(3^{\prime}\right)\right), 128.7\left(C\left(2^{\prime \prime}\right), C\left(6^{\prime \prime}\right)\right), 130.0\left(C\left(4^{\prime}\right)\right)$,
 $171.2(C(1)) ; \quad m / z \quad\left(\mathrm{ESI}^{+}\right) \quad 571\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, \quad 100 \%\right), 569\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, \quad 95 \%\right) ; \quad$ HRMS $\left(\mathrm{ESI}^{+}\right)$ $\mathrm{C}_{31} \mathrm{H}_{42}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}\right)$requires 569.2373; found 569.2367.
tert-Butyl (2R,3S, α R)-2-(2'-methoxy-2'-oxoethyl)-3-[N-allyl- N-(α-methyl-4' '-methoxybenzyl)amino]-3-(2''-N,N-diallylamino-5'-bromophenyl)propanoate 8

BuLi (2.3 M in hexane, $27.4 \mathrm{~mL}, 64.4 \mathrm{mmol}$) was added dropwise to a solution of ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NH}(9.02 \mathrm{~mL}, 64.5$ $\mathrm{mmol})$ in THF (200 mL) at $0^{\circ} \mathrm{C}$. The resultant mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min then cooled to $-78{ }^{\circ} \mathrm{C}$ and stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . A solution of $7(24.5 \mathrm{~g}, 42.9 \mathrm{mmol},>99: 1 \mathrm{dr})$ in THF $(150 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise via canula and the resultant mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Methyl bromoacetate $(12.2 \mathrm{~mL}, 128 \mathrm{mmol})$ was then added dropwise and the resultant mixture was allowed to warm to rt over 16 h . Satd aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was then added and the reaction mixture was washed with 10% aq citric acid $(2 \times 100 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the combined organic extracts were washed sequentially with satd aq $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine (200 mL), then dried and concentrated in vacuo to give $\mathbf{8}$ in $>98: 2$ dr. Purification via flash column chromatography (eluent $30-40{ }^{\circ} \mathrm{C}$ petrol/ $\mathrm{Et}_{2} \mathrm{O}, 83: 17$) gave $\mathbf{8}$ as a yellow oil ($27.5 \mathrm{~g}, 81 \%$, $>98: 2 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-47.5\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\max }$ (ATR) 3076, 2977, 2951, $2835(\mathrm{C}-\mathrm{H}), 1741(\mathrm{C}=\mathrm{O})$, 1641, 1610, $1585(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.08(3 \mathrm{H}, \mathrm{d}$, $J 6.6, \mathrm{C}(\alpha) M e), 1.49\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 2.17\left(1 \mathrm{H}, \mathrm{dd}, J 15.7,3.5, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{A}}\right), 2.52\left(1 \mathrm{H}, \mathrm{dd}, J 15.7,11.1, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{B}}\right)$, 3.09-3.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.43-3.64 (5H, m, C(2)H, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 3.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.77$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), $4.05(1 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{C}(\alpha) H), 4.82-4.97\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.10-5.21(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 5.64-5.89\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 6.76\left(2 \mathrm{H}, \mathrm{d}, J 8.8, C\left(3{ }^{\prime \prime}\right) H\right.$, $\left.C\left(5^{\prime \prime \prime}\right) H\right), 7.03\left(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{C}\left(3^{\prime \prime}\right) H\right), 7.13\left(2 \mathrm{H}, \mathrm{d}, J 8.8, C\left(2^{\prime \prime}\right) H, C\left(6^{\prime \prime}\right) H\right), 7.36(1 \mathrm{H}, \mathrm{dd}, J 8.6,2.5, \mathrm{C}(4 ") H)$, $7.49\left(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{C}\left(6^{\prime \prime}\right) H\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.7(\mathrm{C}(\alpha) M e), 28.0\left(\mathrm{CMe}_{3}\right), 35.7\left(C\left(1^{\prime}\right)\right), 46.3(C(2)), 49.9$ $\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $51.7\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 55.2 (ArOMe), $56.3(C(\alpha)), 57.1\left(\mathrm{~N}_{(~}^{\left.\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right), 57.4(C(3)), 80.8}\right.$
 $128.9\left(C\left(2^{\prime \prime \prime}\right), C\left(6^{\prime \prime \prime}\right)\right), 130.5(A r), 132.1\left(C\left(6^{\prime \prime}\right)\right), 133.7\left(\mathrm{~N}\left(\mathrm{CH}_{2} C H=\mathrm{CH}_{2}\right)_{2}\right), 137.0,137.4$ (Ar), 138.6 $\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $150.1(\mathrm{Ar}), 158.1\left(C\left(4^{\prime \prime}\right)\right), 171.8,173.4\left(C(1), C\left(2^{\prime}\right)\right) ; m / z\left(\mathrm{ESI}^{+}\right) 643\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 100 \%\right)$, $641\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 95 \%\right)$; HRMS ($\left.\mathrm{ESI}^{+}\right) \mathrm{C}_{34} \mathrm{H}_{46}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{5}{ }^{+}\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}\right)$requires 641.2585; found 641.2590 .
(3aR,9bS, αR)- $N(1)$-(4'-Methoxy- α-methylbenzyl)-5-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2,4-dione 11

Step 1: $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(357 \mathrm{mg}, 0.31 \mathrm{mmol})$ was added to a stirred, degassed solution of $8(3.97 \mathrm{~g}, 6.19 \mathrm{mmol}$, $>98: 2 \mathrm{dr}$) and DMBA ($8.68 \mathrm{~g}, 55.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ under argon and the resultant mixture was stirred at $35{ }^{\circ} \mathrm{C}$ for 16 h . Additional $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(357 \mathrm{mg}, 0.31 \mathrm{mmol})$ was then added and the resultant mixture was stirred at $35^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then concentrated in vacuo and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The resultant solution was washed with satd aq $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \times 100 \mathrm{~mL})$ and the combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with 3.0 M aq $\mathrm{HCl}(5 \times 50 \mathrm{~mL})$ and 2.0 M aq NaOH was added to the combined aqueous layers until $\mathrm{pH}>10$ was achieved. The aqueous layer was then extracted with $\mathrm{CHCl}_{3} / \mathrm{IPA}(3: 1,3 \times 50 \mathrm{~mL})$ and the combined organic extracts were dried and concentrated in vacuo to give 9 as a yellow oil ($3.97 \mathrm{~g},>98: 2 \mathrm{dr}$); $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] $2.23\left(1 \mathrm{H}, \mathrm{dd}, J 16.9,4.6, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{A}}\right), 2.42\left(1 \mathrm{H}, \mathrm{dd}, J 16.9,4.4, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{B}}\right), 3.34$ (1H, app dt, $J 9.5,4.7, \mathrm{C}(2) H), 3.96(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{C}(3) H), 6.37(1 \mathrm{H}, \mathrm{d}, J 8.5, A r), 6.96(1 \mathrm{H}, \mathrm{d}, J 2.4, A r)$.

Step 2: $\mathrm{PhCO}_{2} \mathrm{H}(76 \mathrm{mg}, 0.62 \mathrm{mmol})$ was added to a solution of $9(3.97 \mathrm{~g},>98: 2 \mathrm{dr})$ in $\mathrm{PhMe}(50 \mathrm{~mL})$. The resultant solution was heated at reflux for 16 h , then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the resultant solution was washed with satd aq $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(2 \times 50 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the combined organic extracts were then dried and concentrated in vacuo to give 10 as a brown solid ($1.72 \mathrm{~g},>99: 1 \mathrm{dr}$). An aliquot was purified by recrystallisation (PhMe) to give an analytical sample of $\mathbf{1 0}$ as a white solid; $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 57.8 ; \mathrm{H}, 4.6 ; \mathrm{N}, 6.75 \%$; found $\mathrm{C}, 57.8 ; \mathrm{H}, 4.7 ; \mathrm{N}, 6.7 \% ; \mathrm{mp} 258-262{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+155(c 0.7$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{ATR}) 3228(\mathrm{~N}-\mathrm{H}), 3076,2935(\mathrm{C}-\mathrm{H}), 1687(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.99(3 \mathrm{H}, \mathrm{d}, J 7.3$, $\mathrm{C}(\alpha) M e), 2.79\left(1 \mathrm{H}, \mathrm{dd}, J 16.7,8.1, \mathrm{C}(3) H_{\mathrm{A}}\right), 3.02-3.09(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3 \mathrm{a}) H), 3.28\left(1 \mathrm{H}\right.$, app d$\left., J 16.7, \mathrm{C}(3) H_{\mathrm{B}}\right)$, $3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.62(1 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{C}(9 \mathrm{~b}) H), 5.53(1 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{C}(\alpha) H), 6.24(1 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{C}(9) H), 6.80$ $(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{C}(6) H), 6.97\left(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{C}\left(3^{\prime}\right) H, \mathrm{C}\left(5^{\prime}\right) H\right), 7.02\left(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{C}\left(2^{\prime}\right) H, \mathrm{C}\left(6^{\prime}\right) H\right), 7.42(1 \mathrm{H}, \mathrm{dd}$, J 8.7, 2.3, $\mathrm{C}(7) H), 9.97(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.3$ ($\left.\mathrm{C}(\alpha) M e\right), 34.0(C(3)), 38.3(C(3 \mathrm{a})), 48.5$ $(C(\alpha)), 55.4(\mathrm{OMe}), 57.1(C(9 \mathrm{~b})), 114.1\left(C\left(3^{\prime}\right), C\left(5^{\prime}\right)\right), 114.8(A r), 117.3(C(6)), 119.2$ (Ar), 128.8 ($C\left(2^{\prime}\right)$, $C\left(6^{\prime}\right)$), $130.2(A r), 133.4(C(7)), 134.6(C(9)), 136.6(A r), 158.9\left(C\left(4^{\prime}\right)\right), 170.8,173.3(C(2), C(4)) ; m / z\left(\mathrm{ESI}^{+}\right)$ $439\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 95 \%\right), 437\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 100 \%\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{20} \mathrm{H}_{19}{ }^{79} \mathrm{BrN}_{2} \mathrm{NaO}_{3}{ }^{+}\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right)$ requires 437.0471; found 437.0473 .

Step 3: $\mathrm{Boc}_{2} \mathrm{O}(1.13 \mathrm{~g}, 5.16 \mathrm{mmol})$ was added to a solution of $\mathbf{1 0}(1.72 \mathrm{~g},>99: 1 \mathrm{dr}), \mathrm{Et}_{3} \mathrm{~N}(1.31 \mathrm{~mL}$, 9.38 mmol) and DMAP ($57 \mathrm{mg}, 0.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the resultant mixture was stirred at $35{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then washed with $1.0 \mathrm{M} \mathrm{aq} \mathrm{HCl}(50 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic extracts were washed sequentially with satd aq $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, then dried and concentrated in vacuo. Purification via recrystallisation (PhMe) gave 11 as a white solid ($1.19 \mathrm{~g}, 49 \%$ from 8, $>99: 1 \mathrm{dr}$); mp $178-182{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+97.7\left(c 1.2\right.$ in CHCl_{3}); $v_{\max }(\mathrm{ATR}) 2976(\mathrm{C}-\mathrm{H}), 1749,1737(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{C}(\alpha) M e), 1.58(9 \mathrm{H}, \mathrm{s}$, CMe 3), $2.70\left(1 \mathrm{H}, \mathrm{dd}, J 16.4,7.3, \mathrm{C}(3) H_{\mathrm{A}}\right), 3.01-3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3 \mathrm{a}) H), 3.24\left(1 \mathrm{H}\right.$, app d, $\left.J 16.4, \mathrm{C}(3) H_{\mathrm{B}}\right), 3.84$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.50(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{C}(9 \mathrm{~b}) H), 5.50(1 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{C}(\alpha) H), 6.18(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{C}(9) H), 6.77(1 \mathrm{H}, \mathrm{d}, J$ 8.7, C(6)H), $6.93\left(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}\left(3^{\prime}\right) H, \mathrm{C}\left(5^{\prime}\right) H\right), 6.98\left(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}\left(2^{\prime}\right) H, \mathrm{C}\left(6^{\prime}\right) H\right), 7.42(1 \mathrm{H}, \mathrm{dd}, J 8.7,2.0$, $\mathrm{C}(7) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.3(\mathrm{C}(\alpha) M e), 27.5\left(\mathrm{CMe} e_{3}\right), 34.4(C(3)), 39.4(C(3 \mathrm{a})), 48.3(C(\alpha)), 55.4(\mathrm{OMe})$, $56.9(C(9 \mathrm{~b})), 86.1\left(C \mathrm{Me}_{3}\right), 114.1\left(C\left(3^{\prime}\right), C\left(5^{\prime}\right)\right), 116.1(A r), 117.7(C(6)), 120.6(A r), 128.7\left(C\left(2^{\prime}\right), C\left(6^{\prime}\right)\right), 130.1$ (Ar), $133.2(C(7)), 134.8(C(9)), 136.1(A r), 150.4(\mathrm{NCO}), 159.0\left(C\left(4^{\prime}\right)\right), 167.4,172.9(C(2), C(4)) ; m / z\left(\mathrm{ESI}^{+}\right)$ $539\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 95 \%\right), 537\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 100 \%\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{25} \mathrm{H}_{27}{ }^{79} \mathrm{BrN}_{2} \mathrm{NaO}_{5}{ }^{+}\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right)$ requires 537.0996; found 537.0998.
($3 \mathrm{a} R, 4 R, 9 \mathrm{bS}, \alpha R)$ - or ($3 \mathrm{a} R, 4 S, 9 \mathrm{bS}, \alpha R)$ - $N(1)$-(α-Methyl-4'-methoxybenzyl)-4-hydroxy- $N(5)$-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one 12^{3}

$\mathrm{LiAl}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3} \mathrm{H}(659 \mathrm{mg}, 2.59 \mathrm{mmol})$ was added portionwise to a solution of $\mathbf{1 1}(891 \mathrm{mg}, 1.72 \mathrm{mmol},>99: 1 \mathrm{dr})$ in THF (20 mL) at $0^{\circ} \mathrm{C}$ and the resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was then added and the reaction mixture was diluted with EtOAc (20 mL) and stirred at rt for 30 min , then filtered through Celite (eluent $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}, 100: 1,100 \mathrm{~mL}$). The filtrate was then concentrated in vacuo to give $\mathbf{1 2}$ as a white foam (900 mg , quant, $>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}+67.6\left(c 1.0\right.$ in CHCl_{3}); $v_{\max }(\mathrm{ATR}) 3311(\mathrm{O}-\mathrm{H}), 2976,2933,2838(\mathrm{C}-\mathrm{H})$, $\left.1699,1665(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\alpha) M e), 1.45(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe})_{3}\right), 2.51(1 \mathrm{H}, \mathrm{d}, J 15.4$, $\left.\mathrm{C}(3) H_{\mathrm{A}}\right), 2.75-2.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{\mathrm{B}}, \mathrm{C}(3 \mathrm{a}) H\right), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.39(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{C}(9 \mathrm{~b}) H), 5.30(1 \mathrm{H}, \mathrm{q}, J$ 7.1, $\mathrm{C}(\alpha) H), 5.78(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) H), 6.35(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{C}(9) H), 6.91\left(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}\left(3^{\prime \prime}\right) H, \mathrm{C}\left(5^{\prime \prime}\right) H\right), 6.97(2 \mathrm{H}, \mathrm{d}, J$ 8.8, C(2")H, C(6")H), $7.21(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(6) H), 7.36(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.2, \mathrm{C}(7) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.3$ $\left.(\mathrm{C}(\alpha) M e), 28.2(\mathrm{CMe})_{3}\right), 36.0(C(3)), 42.1(C(3 \mathrm{a})), 49.4(C(\alpha)), 55.4(\mathrm{OMe}), 56.4(C(9 \mathrm{~b})), 81.8(C(4)), 82.3$

[^2]$\left(C \mathrm{Me}_{3}\right), 113.9\left(C\left(3^{\prime}\right), C\left(5^{\prime}\right)\right), 116.9(A r), 127.3(C(6)), 129.1\left(C\left(2^{\prime}\right), C\left(6^{\prime}\right)\right), 129.9,130.4(A r), 131.9(C(7))$, $133.5(C(9)), 136.6(A r), 152.5\left(C \mathrm{O}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 158.9\left(C\left(4^{\prime}\right)\right), 173.3(C(2)) ; m / z\left(\mathrm{ESI}^{+}\right) 541\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 100 \%\right)$, $539\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 95 \%\right)$; $\mathrm{HRMS} \mathrm{C}_{25} \mathrm{H}_{29}{ }^{79} \mathrm{BrN}_{2} \mathrm{NaO}_{5}{ }^{+}\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right)$requires 539.1152; found 539.1158.

Methyl 2-[diphenyl(pyridin-2-yl)phosphoranylidene]acetate 13

$\left(2\right.$-pyridyl) $\mathrm{Ph}_{2} \mathrm{P}_{>}<\mathrm{CO}_{2} \mathrm{Me}$
Step 1: Methyl bromoacetate ($1.89 \mathrm{~mL}, 19.9 \mathrm{mmol}$) was added dropwise to a solution of diphenyl-2pyridylphosphine ($5.26 \mathrm{~g}, 19.9 \mathrm{mmol}$) in $\mathrm{PhMe}(50 \mathrm{~mL})$ and the resultant mixture was stirred at rt for 16 h . The reaction mixture was then filtered to collect the white precipitate, which was then washed with cold PhMe (20 mL). The filtrate was allowed to stand at rt for 16 h during which time a second crop of crystals formed. Both crops of crystals were then combined to give (2-methoxy-2-oxoethyl)diphenyl-2-pyridylphosphonium bromide as a white crystalline solid ($6.87 \mathrm{~g}, 83 \%$); mp $162-168{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }(\mathrm{ATR}) 2802,2738(\mathrm{C}-\mathrm{H}), 1721(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.62\left(2 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{C}(2) H_{2}\right), 7.61-7.72(5 \mathrm{H}, \mathrm{m}, A r), 7.73-7.82(2 \mathrm{H}$, $\mathrm{m}, A r), 7.87-7.98(4 \mathrm{H}, \mathrm{m}, A r), 8.05-8.13(1 \mathrm{H}, \mathrm{m}, A r), 8.41-8.48(1 \mathrm{H}, \mathrm{m}, A r), 8.87(1 \mathrm{H}, \mathrm{d}, J 4.6, A r) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 31.8 (d, J 59.1, C(2)), 53.5 (OMe), 117.1 (d, J 88.7, Ar), 128.2 (d, J 3.2, Ar), 130.1 (d, J 12.8, $A r), 131.9$ (d, J 24.8, Ar), 134.3 (d, J 10.4, Ar), 135.2, (d, J 3.2, Ar), 138.3 (d, J 10.4, Ar), 144.1 (d, J 121.4, $A r), 151.7(\mathrm{~d}, J 20.0, A r), 165.3(\mathrm{~d}, J 3.2, C(1)) ; \delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 16.0.

Step 2: Phosphorane 13 was prepared, as required, by treatment of a solution of (2-methoxy-2-oxoethyl)diphenyl-2-pyridylphosphonium bromide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 2.0 M aq NaOH . The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried and concentrated in vacuo to give $\mathbf{1 3}$ as a pink solid.
(3aS,4S,9bS, αR)-N(1)-(α-Methyl-4'-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-N(5)-(tert-

butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one 14

Phosphorane $13(2.36 \mathrm{~g}, 7.05 \mathrm{mmol})$ was added to a solution of $\mathbf{1 2}(1.03 \mathrm{~g}, 2.35 \mathrm{mmol},>99: 1 \mathrm{dr})$ in PhMe $(50 \mathrm{~mL})$ and the resultant mixture was heated at $80^{\circ} \mathrm{C}$ for 72 h , then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in EtOAc (20 mL) and the resultant solution was washed with 3.0 M aq HCl $(6 \times 10 \mathrm{~mL})$. The combined aqueous layers were extracted with EtOAc $(10 \mathrm{~mL})$ and the combined organic extracts were dried and concentrated in vacuo. Purification via flash column chromatography (eluent $30-40^{\circ} \mathrm{C}$ petrol/EtOAc, 50:50) gave 14 as a colourless oil $(1.01 \mathrm{~g}, 75 \%$, $>99: 1 \mathrm{dr}) ;[\alpha]_{\mathrm{D}}^{20}+109.8$ (c 1.1 in CHCl_{3});
$v_{\max }(\mathrm{ATR})$ 2978, 2935, $2838(\mathrm{C}-\mathrm{H}), 1739,1696(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{C}(\alpha) M e)$, $1.49(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} 3), 2.11\left(2 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{C}\left(1^{\prime}\right) H_{2}\right), 2.60-2.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{\mathrm{A}}, \mathrm{C}(3 \mathrm{a}) H\right), 2.85-2.97(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(3) H_{\mathrm{B}}\right), 3.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 4.36(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{C}(9 \mathrm{~b}) H), 4.78-4.91(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H)$, $5.42(1 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{C}(\alpha) H), 6.40(1 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{C}(9) H), 6.93\left(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}\left(3^{\prime \prime}\right) H, \mathrm{C}\left(5^{\prime \prime}\right) H\right), 7.00(2 \mathrm{H}, \mathrm{d}, J 8.8$, $\left.\mathrm{C}\left(2^{\prime \prime}\right) H, \mathrm{C}\left(6^{\prime \prime}\right) H\right), 7.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(6) H), 7.41(1 \mathrm{H}, \mathrm{dd}, J 8.6,2.3, \mathrm{C}(7) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.1$ $(\mathrm{C}(\alpha) \mathrm{Me}), 28.2\left(\mathrm{CMe}_{3}\right)$, $38.2(C(3)), 38.9\left(C\left(1^{\prime}\right)\right), 39.7(C(3 \mathrm{a})), 49.4(C(\alpha)), 51.8\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $55.3(\mathrm{ArOMe})$, 55.8, $56.2(C(4), C(9 \mathrm{~b})), 81.9\left(C \mathrm{Me}_{3}\right), 113.8\left(C\left(3^{\prime \prime}\right), C\left(5^{\prime \prime}\right)\right), 117.1(C(8)), 128.1(C(6)), 129.1\left(C\left(2^{\prime \prime}\right), C\left(6^{\prime \prime}\right)\right)$, 130.0, 131.0 (Ar), 132.0 ($C(7)$), 133.4 ($C(9)$), 137.6 (Ar), 152.5, 158.9 ($C(4 "), \mathrm{NCO}), 170.5,173.5$ (C(2), $\left.C\left(2^{\prime}\right)\right) ; m / z\left(\mathrm{ESI}^{+}\right) 597\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 95 \%\right), 595\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 100 \%\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{28} \mathrm{H}_{33}{ }^{79} \mathrm{BrN}_{2} \mathrm{NaO}_{6}{ }^{+}$ $\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right)$requires 595.1414; found 595.1412
(3aS,4S,9bS, αR)-N(1)-(α-Methyl-4'-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one 15

A solution of $\mathbf{1 4}(162 \mathrm{mg}, 0.28 \mathrm{mmol},>99: 1 \mathrm{dr})$ in methanolic $\mathrm{HCl}(1.25 \mathrm{M}, 4 \mathrm{~mL})$ was stirred at rt for 16 h , then concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the resultant solution was washed with 2.0 M aq $\mathrm{NaOH}(2 \times 10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the combined organic extracts were then dried and concentrated in vacuo. Purification via recrystallisation $\left(\mathrm{CHCl}_{3} /\right.$ hexane) gave 15 as a yellow solid ($98 \mathrm{mg}, 73 \%,>99: 1 \mathrm{dr}$); mp $206-209{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+16.3(c 0.7 \mathrm{in}$ CHCl_{3}); $v_{\text {max }}(\mathrm{ATR}) 3392,3318(\mathrm{~N}-\mathrm{H}), 2952$, 2935, $2938(\mathrm{C}-\mathrm{H}), 1735,1680(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.20(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{C}(\alpha) M e), 2.09-2.18(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3 \mathrm{a}) H), 2.26-2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{\mathrm{A}}, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{A}}\right), 2.63(1 \mathrm{H}, \mathrm{dd}$, J 16.3, 2.4, C $\left.\left(1^{\prime}\right) H_{\mathrm{B}}\right), 2.71\left(1 \mathrm{H}, \mathrm{dd}, J 16.7,6.8, \mathrm{C}(3) H_{\mathrm{B}}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 4.50(1 \mathrm{H}$, d, J 5.1, C(9b)H), $4.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(4) H), 5.46(1 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{C}(\alpha) H), 6.28(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{C}(9) H), 6.21(1 \mathrm{H}, \mathrm{d}$, J 2.2, NH), $6.42(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{C}(6) H), 6.92\left(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{C}\left(3^{\prime \prime}\right) H, \mathrm{C}\left(5^{\prime \prime}\right) H\right), 7.06\left(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{C}\left(2^{\prime \prime}\right) H\right.$, $\left.\mathrm{C}\left(6^{\prime \prime}\right) H\right), 7.12(1 \mathrm{H}, \mathrm{dd}, J 8.6,2.0, \mathrm{C}(7) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.3(\mathrm{C}(\alpha) M e), 35.6(C(3 \mathrm{a})), 35.7(C(3)), 38.0$ $\left(C\left(1^{\prime}\right)\right), 48.0(C(4)), 48.7(C(\alpha)), 52.1\left(\mathrm{CO}_{2} M e\right), 55.3$ (ArOMe), $56.1(C(9 \mathrm{~b})), 108.0(A r), 114.0\left(C\left(3^{\prime \prime}\right), C\left(5^{\prime \prime}\right)\right)$, $116.4(C(6)), 117.4(C(8)), 128.5\left(C\left(2^{\prime \prime}\right), C\left(6^{\prime \prime}\right)\right), 131.4(A r), 132.5(C(7)), 134.9(C(9)), 143.2(A r), 158.7$ $\left(C\left(4^{\prime \prime}\right)\right), 172.4,173.3\left(C(2), C\left(2^{\prime}\right)\right) ; m / z\left(\mathrm{ESI}^{+}\right) 497\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 95 \%\right), 495\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 100 \%\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{23} \mathrm{H}_{25}{ }^{79} \mathrm{BrN}_{2} \mathrm{NaO}_{4}{ }^{+}\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right)$requires 495.0890; found 495.0889.
(3aR,4S,9bS)-4-(2'-Hydroxyethyl)-N(5)-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline 17

Step 1: A solution of CAN $(5.64 \mathrm{~g}, 10.3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added to a solution of $\mathbf{1 4}(1.97 \mathrm{~g}$, $3.44 \mathrm{mmol},>99: 1 \mathrm{dr})$ in $\mathrm{MeCN}(30 \mathrm{~mL})$ and the resultant mixture was stirred at rt for 1 h . The MeCN was then removed in vacuo and the residue was diluted with $\mathrm{CHCl}_{3} / \mathrm{IPA}(3: 1,100 \mathrm{~mL})$. The resultant mixture was washed with brine ($2 \times 50 \mathrm{~mL}$) and the combined aqueous layers were extracted with $\mathrm{CHCl}_{3} / \mathrm{IPA}(3: 1$, $2 \times 50 \mathrm{~mL}$). The combined organic extracts were then dried and concentrated in vacuo to give $\mathbf{1 6}$ as a pale yellow oil ($1.95 \mathrm{~g},>99: 1 \mathrm{dr}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ [selected peaks] $1.50(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} 3$), $3.05(1 \mathrm{H}$, app ddd, $J 18.3,9.4,1.4, \mathrm{C}(3 \mathrm{a}) H), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} M e\right), 4.70(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{C}(9 \mathrm{~b}) H), 5.05(1 \mathrm{H}, \mathrm{app} \mathrm{t}, J 7.5, \mathrm{C}(4) H), 6.73$ (1H, s, NH), 7.32 (1H, d, J 2.2, C(9)H), 7.36 (1H, dd, J 8.9, 2.2, C(7)H), 7.47 (1H, br d, J 8.9, C(6)H).

Step 2: $\mathrm{BH}_{3} \cdot$ THF (1.0 M in THF, $34.0 \mathrm{~mL}, 34.0 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1 6}(1.95 \mathrm{~g},>99: 1$ dr) in THF (35 mL) at $0^{\circ} \mathrm{C}$. The resultant mixture was heated at reflux for 4 h then allowed to cool to rt before being cooled further to $0{ }^{\circ} \mathrm{C}$. Satd aq $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$ were then carefully added and the resultant mixture was heated at $60^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then allowed to cool to rt and washed with satd aq $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \times 30 \mathrm{~mL})$. The combined aqueous layers were extracted with EtOAc $(50 \mathrm{~mL})$ then the organic extract was dried and concentrated in vacuo. Purification via flash column chromatography (eluent $30-40{ }^{\circ} \mathrm{C}$ petrol/EtOAc/Et N , 66:34:1) gave $17 \cdot \mathrm{BH}_{3}$ as a white foam ($554 \mathrm{mg},>99: 1 \mathrm{dr}$). Further elution $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}, 95: 5: 1\right)$ gave 17 as a pale yellow oil ($288 \mathrm{mg}, 21 \%$ from 14, $>99: 1 \mathrm{dr}$); $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 54.4 ; \mathrm{H}, 6.3 ; \mathrm{N}, 7.05 \%$; found $\mathrm{C}, 54.4 ; \mathrm{H}, 6.3 ; \mathrm{N}, 6.9 \% ;[\alpha]_{\mathrm{D}}^{20}+125\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{ATR})$ $3310(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 2974,2934,2878,2730(\mathrm{C}-\mathrm{H}), 1694(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40-1.56(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}\left(1^{\prime}\right) H_{\mathrm{A}}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 1.56-1.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{\mathrm{A}}, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{B}}\right), 2.00-2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{\mathrm{B}}\right), 2.52(1 \mathrm{H}, \mathrm{app}$ q, J 8.8, C(3a)H), 2.76-2.86 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H_{\mathrm{A}}\right), 2.86-2.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H_{\mathrm{B}}\right), 3.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.43-3.54(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}\left(2^{\prime}\right) H_{2}\right), 4.24(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}(9 \mathrm{~b}) H), 4.65-4.74(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H), 7.24-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) H, \mathrm{C}(7) H), 7.42$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(9) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.3$ (CMe_{3}), 31.6 ($C(3)$), 34.8 ($\left.C\left(1^{\prime}\right)\right)$, 43.7 ($C(3 \mathrm{a})$), $45.6(C(2)), 52.9$ ($C(4)$), $55.7(C(9 \mathrm{~b})), 58.8\left(C\left(2^{\prime}\right)\right), 82.0\left(\mathrm{CMe}_{3}\right), 117.3,126.5,130.5,132.1,133.2,134.8(A r), 154.9(\mathrm{NCO})$; $m / z\left(\mathrm{FI}^{+}\right) 398\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 95 \%\right), 396\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 100 \%\right)$; HRMS $\left(\mathrm{FI}^{+}\right) \mathrm{C}_{18} \mathrm{H}_{25}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}\right)$requires 396.1043; found 396.1049. A solution of $\mathbf{1 7} \cdot \mathrm{BH}_{3}(554 \mathrm{mg}, 1.34 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was heated at reflux for 48 h then allowed to cool to rt and concentrated in vacuo to give $\mathbf{1 7}$ as a colourless oil ($525 \mathrm{mg}, 39 \%$ from $14,>99: 1 \mathrm{dr})$.
$(S, S, S)-N(1), N(5)$-(Di-tert-butoxycarbonyl)-4-[2'-(4''toluenesulfonyloxy)ethyl]-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline 19

Step 1: $\mathrm{Boc}_{2} \mathrm{O}(148 \mathrm{mg}, 0.68 \mathrm{mmol})$, DMAP ($\left.8 \mathrm{mg}, 62 \mu \mathrm{~mol}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}(0.26 \mathrm{~mL}, 1.85 \mathrm{mmol})$ were added sequentially to a solution of $\mathbf{1 7}(245 \mathrm{mg}, 0.62 \mathrm{mmol},>99: 1 \mathrm{dr})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the resultant mixture was stirred at $35{ }^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the resultant solution was washed with 1.0 M aq $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CHCl}_{3} / \mathrm{IPA}(3: 1$, $2 \times 20 \mathrm{~mL}$) and the combined organic extracts were washed sequentially with satd aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (10 mL), then dried and concentrated in vacuo to give $18(300 \mathrm{mg},>99: 1 \mathrm{dr}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.27-1.89 (3H, m, C(3a)H, C(1') $\left.H_{2}\right), 1.52\left(18 H, s, 2 \times \mathrm{CMe}_{3}\right), 2.00-2.15\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(3) H_{\mathrm{A}}\right), 2.40-2.58(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}(3) H_{\mathrm{B}}\right), 3.27-3.49\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(2) H_{2}\right), 3.50-3.69\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}\left(2^{\prime}\right) H_{2}\right), 4.62-5.17$ (2H, br m, $\mathrm{C}(4) H$, $\mathrm{C}(9 \mathrm{~b}) H$), $7.21-7.43$ (2H, br m, C(6)H, C(7)H), 8.09 (1H, s, C(9)H).

Step 2: $\mathrm{TsCl}(141 \mathrm{mg}, 0.74 \mathrm{mmol})$, DMAP $(8 \mathrm{mg}, 62 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.26 \mathrm{~mL}, 1.85 \mathrm{mmol})$ were added sequentially to a solution of $\mathbf{1 8}(300 \mathrm{mg},>99: 1 \mathrm{dr})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the resultant mixture was stirred at $35{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and was washed with 1.0 M aq $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CHCl}_{3} / \mathrm{IPA}(3: 1,2 \times 20 \mathrm{~mL})$ and the combined organic extracts were washed sequentially with satd aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, then dried and concentrated in vacuo. Purification via flash column chromatography (eluent $30-40{ }^{\circ} \mathrm{C}$ petrol/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$, 50:50:1) gave 19 as a colourless oil ($275 \mathrm{mg}, 69 \%$ from 17, $>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-57.0\left(c 1.0 \mathrm{in} \mathrm{CHCl}_{3}\right.$); $v_{\text {max }}$ (ATR) 2976, $2933(\mathrm{C}-\mathrm{H}), 1693(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{PhMe}-d_{8}, 363 \mathrm{~K}\right) 1.29-1.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(1^{\prime}\right) H_{2}\right), 1.45(9 \mathrm{H}, \mathrm{s}$, CMe $)_{3}$, 1.50 ($9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}$), 1.54-1.66 (2H, m, C(3) H_{2}), 1.79-1.89 (1H, m, C(3a)H), 2.04 (3H, s, C(4")Me), 2.99-3.13 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H_{\mathrm{A}}\right), 3.18-3.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H_{\mathrm{B}}\right), 3.80-3.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(2^{\prime}\right) H_{\mathrm{A}}\right), 3.90-3.99(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}\left(2^{\prime}\right) H_{\mathrm{B}}\right), 4.47-4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) H), 4.86(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 6.9, \mathrm{C}(9 \mathrm{~b}) H), 6.88\left(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{C}\left(3^{\prime \prime}\right) H, \mathrm{C}\left(5^{\prime \prime}\right) H\right), 7.15$ (1H, dd, J 8.8, 2.2, C(7)H), $7.39(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}(6) H), 7.68\left(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{C}\left(2^{\prime \prime}\right) H, \mathrm{C}\left(6^{\prime \prime}\right) H\right), 8.32(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{C}(9) H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{PhMe}-d_{8}, 363 \mathrm{~K}\right) 21.0(\mathrm{C}(4$ " $) M e)$, 27.9 ($C(3)$), 28.2, 28.5 ($2 \times \mathrm{CMe} e_{3}$), 32.1 ($C\left(1^{\prime}\right)$), 42.6 $(C(3 \mathrm{a})), 45.6(C(2)), 52.3(C(4)), 54.3(C(9 \mathrm{~b})), 67.0\left(C\left(2^{\prime}\right)\right), 79.8,81.4\left(2 \times C \mathrm{Me}_{3}\right), 117.7(A r), 127.1(C(6))$, $129.7\left(C\left(3^{\prime \prime}\right), C\left(5^{\prime \prime}\right)\right), 130.6(C(7)), 132.2(A r), 133.9(C(9)), 134.7,135.1,144.1(A r), 153.8,155.2(2 \times \mathrm{NCO}) ;{ }^{4}$ $m / z\left(\mathrm{ESI}^{+}\right) 675\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 100 \%\right), 673\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 95 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{30} \mathrm{H}_{39}{ }^{79} \mathrm{BrN}_{2} \mathrm{NaO}_{7} \mathrm{~S}^{+}$ $\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right)$requires 673.1554; found 673.1559.

[^3]pyrrolo[3,2-c]quinoline 20

$\mathrm{NaCN}(28 \mathrm{mg}, 0.58 \mathrm{mmol})$ was added to a solution of $19(252 \mathrm{mg}, 0.39 \mathrm{mmol},>99: 1 \mathrm{dr})$ in NMP (4 mL) and the resultant mixture was stirred at $60^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .{ }^{5}$ The reaction mixture was then diluted with EtOAc (20 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{EtOAc}(2 \times 10 \mathrm{~mL})$ and the combined organic extracts were dried and concentrated in vacuo. Purification via flash column chromatography (eluent $30-40{ }^{\circ} \mathrm{C}$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}, 83: 17: 1$) gave 20 as a colourless oil ($167 \mathrm{mg}, 86 \%$, $>99: 1 \mathrm{dr}) ; \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}_{4}$ requires C, 56.9; H, 6.4; $\mathrm{N}, 8.3 \%$; found C , $57.1 ; \mathrm{H}, 6.5 ; \mathrm{N}, 8.3 \% ;[\alpha]_{\mathrm{D}}^{20}-61.3$ (c 1.0 in CHCl_{3}); $v_{\text {max }}$ (ATR) 2976, $2933(\mathrm{C}-\mathrm{H}), 2247(\mathrm{C} \equiv \mathrm{N}), 1693(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{PhMe}-d_{8}, 363 \mathrm{~K}\right) 0.81-0.90$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{A}}\right), 0.98-1.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{B}}\right), 1.29\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 1.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 1.38-1.68(5 \mathrm{H}, \mathrm{m}$, $\left.\left.\mathrm{C}(3) H_{2}, \mathrm{C}(3 \mathrm{a}) H\right), \mathrm{C}\left(2^{\prime}\right) H_{2}\right), 1.51-1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H_{\mathrm{A}}\right), 2.86-2.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) H_{\mathrm{B}}\right), 4.21(1 \mathrm{H}$, app d,$J 10.7$, $\mathrm{C}(4) H), 4.68(1 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{C}(9 \mathrm{~b}) H), 7.03(1 \mathrm{H}, \mathrm{dd}, J 8.8,1.9, \mathrm{C}(7) H), 7.25(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}(6) H), 8.15(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{C}(9) H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{PhMe}-d_{8}, 363 \mathrm{~K}\right) 9.3$ ($\left.C\left(2^{\prime}\right)\right)$, 23.1 ($C(3)$), 23.3, $23.6\left(2 \times \mathrm{CMe}_{3}\right), 40.5$ ($C(3 \mathrm{a})$), 49.3, 49.6 $(C(4), C(9 \mathrm{~b})), 72.6,74.9\left(2 \times C \mathrm{Me}_{3}\right), 113.0,113.3,122.3,125.8,127.1,128.9,129.3\left(A r, C\left(3^{\prime}\right)\right), 149.1$ $\left.(2 \times \mathrm{NCO}) ;{ }^{6} \mathrm{~m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 530\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 95 \%\right), 528\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 100 \%\right) ; \mathrm{HRMS}^{(E S I}\right)$ $\mathrm{C}_{24} \mathrm{H}_{32}{ }^{79} \mathrm{BrN}_{3} \mathrm{NaO}_{4}{ }^{+}\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right)$requires 528.1468; found 528.1475.

(S, S, S)) $N(1), N(5)$-(Di-tert-butoxycarbonyl)-4-(2'-cyanoethyl)-8-(methoxycarbonyl)-2,3,3a,4,5,9b-

hexahydro-1H-pyrrolo[3,2-c]quinoline 21

$\mathrm{Pd}(\mathrm{OAc})_{2}(15 \mathrm{mg}, 68 \mu \mathrm{~mol})$ and Xantphos $(79 \mathrm{mg}, 0.14 \mathrm{mmol})$ were added sequentially to a round bottomed flask containing $20(342 \mathrm{mg}, 0.68 \mathrm{mmol},>99: 1 \mathrm{dr})$. Degassed $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{~mL})$ and degassed $\mathrm{MeOH}(1 \mathrm{~mL})$ were then added sequentially. ${ }^{7}$ The resultant mixture was stirred at rt and the apparatus was evacuated and refilled with N_{2} three times; the apparatus was then evacuated and refilled with CO three times. The reaction mixture was stirred vigorously under $\mathrm{CO}(1 \mathrm{~atm})$ at $70^{\circ} \mathrm{C}$ for 16 h , then allowed to cool to rt and filtered through a pad

[^4]of Celite (eluent $\mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}, 100: 1$). The filtrate was then concentrated in vacuo and the residue was resubjected to the reaction conditions twice more, using the procedure described above. Purification via flash column chromatography (eluent $30-40^{\circ} \mathrm{C}$ petrol/ $\mathrm{EtOAc}_{\mathrm{Ct}} \mathrm{E} \mathrm{N}$, $75: 25: 1$) gave 21 as a white foam (228 mg , 69%, $>99: 1 \mathrm{dr}) ;[\alpha]_{\mathrm{D}}^{20}-39.1\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{ATR})$ 2977, 2953, $2933(\mathrm{C}-\mathrm{H}), 2247(\mathrm{C} \equiv \mathrm{N}), 1717,1693$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{PhMe}-d_{8}, 363 \mathrm{~K}\right) 1.07-1.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{A}}\right), 1.23-1.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{B}}\right), 1.45(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe} e_{3}\right), 1.50\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 1.52-1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{2}\right), 1.74-1.96\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}(3 \mathrm{a}) H, \mathrm{C}\left(2^{\prime}\right) H_{2}\right), 3.11(1 \mathrm{H}, \mathrm{br}$ td, J 9.6, 3.5, C $\left.(2) H_{\mathrm{A}}\right), 3.31-3.42\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(2) H_{\mathrm{B}}\right), 3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.39-4.45(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(4) H), 4.97(1 \mathrm{H}$, d, J 7.6, C(9b)H), $7.64(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}(6) H), 7.91(1 \mathrm{H}, \mathrm{dd}, J 8.8,1.6, \mathrm{C}(7) H), 8.80(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(9) H) ; \delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz}, \mathrm{PhMe}-d_{8}, 363 \mathrm{~K}\right) 13.8$ ($C\left(2^{\prime}\right)$), 27.4, 27.5, 27.8, 28.1, 28.2 ($C(3), C(3 \mathrm{a}), C\left(1^{\prime}\right), 2 \times \mathrm{CMe}_{3}$), $45.0(C(2))$, 50.8 (OMe), 53.9 ($C(9 \mathrm{~b})$), $54.5(C(4)), 79.6,81.6\left(2 \times \mathrm{CMe}_{3}\right), 118.0\left(C\left(3^{\prime}\right)\right), 126.7(C(6)), 127.8(A r), 128.7$ $(C(7)), 129.2(A r), 132.4(C(9)), 138.8(A r), 153.7,165.7(2 \times \mathrm{NCO}), 175.3\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; m / z\left(\mathrm{ESI}^{+}\right) 508$ $\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$requires 508.2418; found 508.2414.

(S,S,S)-N(1),N(5)-(Di-tert-butoxycarbonyl)-4-[3'-(N-tert-butoxycarbonylamino)propyl]-8-

 (methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline 22
$\mathrm{Boc}_{2} \mathrm{O}(199 \mathrm{mg}, 0.91 \mathrm{mmol})$ was added to a solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(21.7 \mathrm{mg}, 91 \mu \mathrm{~mol})$ and $21(222 \mathrm{mg}, 0.45$ $\mathrm{mmol},>99: 1 \mathrm{dr}$) in dry $\mathrm{MeOH}(5 \mathrm{~mL})$ and the resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min} . \mathrm{NaBH}_{4}(241 \mathrm{mg}$, 6.38 mmol) was then added portionwise over a period of 15 min , during which time a fine black precipitate formed and a gas was evolved. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h then diethylenetriamine $(49 \mu \mathrm{~L}$, 0.46 mmol) was added and the resultant mixture was allowed to stir for 30 min at $0{ }^{\circ} \mathrm{C}$ before being concentrated in vacuo. The residue was dissolved in EtOAc (30 mL) and the resultant solution was washed with satd aq $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$. The combined aqueous layers were extracted with EtOAc (30 mL) and the combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent $30-40^{\circ} \mathrm{C}$ petrol/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}, 75: 25: 1$) gave 22 as a colourless oil ($244 \mathrm{mg}, 91 \%,>99: 1$ dr); $[\alpha]_{\mathrm{D}}^{20}-9.3\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{ATR}) 3362(\mathrm{~N}-\mathrm{H}), 2977,2933(\mathrm{C}-\mathrm{H}), 1695(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $0.87-1.05\left(1 \mathrm{H}, \mathrm{br} s, \mathrm{C}\left(2^{\prime}\right) H_{\mathrm{A}}\right), 1.05-1.18\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{C}\left(2^{\prime}\right) H_{\mathrm{B}}\right), 1.71\left(2 \mathrm{H}\right.$, app s, $\left.\mathrm{C}(3) H_{2}\right), 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{3}\right)$,
 3.51 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.26-4.56 (2H, br m, C(3') H2), 4.86-5.32 (2H, br m, C(4)H, C(9b)H), 7.72 (1H, d, J 8.6, $\mathrm{C}(6) H), 7.93-8.13(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(7) H), 8.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(9) H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ [selected peaks] 26.8 $(C(3)), 29.2\left(C\left(2^{\prime}\right)\right), 27.8,28.2,28.2\left(3 \times \mathrm{CMe}_{3}\right), 42.5(C(3 \mathrm{a})), 45.3(C(2)), 51.1(\mathrm{OMe}), 53.9,54.3(C(4)$,
$C(9 \mathrm{~b})), 125.0(C(6)), 125.9(A r), 128.3$ ($C(7)$), 129.5 (Ar), 132.3 ($C(9)$), 139.6 (Ar), 153.8, 155.6, 155.9 $(3 \times \mathrm{NCO}), 166.0\left(\mathrm{CO}_{2} \mathrm{Me}\right) ;^{8} \mathrm{~m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 590\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{NaO}_{8}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ requires 612.3255; found 612.3258 .
(S,S,S)-4-(3'-Aminopropyl)-8-(methoxycarbonyl)- 2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline $x \mathrm{HCl}$ ["Ma's intermediate"] 23•xHCl

A solution of $22(37 \mathrm{mg}, 62 \mu \mathrm{~mol},>99: 1 \mathrm{dr})$ in methanolic $\mathrm{HCl}(1.25 \mathrm{M}, 4 \mathrm{~mL})$ was stirred at rt for 6 h then concentrated in vacuo. Methanolic $\mathrm{HCl}(1.25 \mathrm{M}, 2 \mathrm{~mL})$ was then added and the resultant mixture was concentrated in vacuo again to give $23 \cdot x \mathrm{HCl}$ as a white amorphous solid (24 mg , quant, $>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-48.7$ (c 0.3 in MeOH) ${ }^{9}$ \{lit. ${ }^{10}[\alpha]_{\mathrm{D}}^{20}-49.9$ (c 1.25 in MeOH); lit. ${ }^{11}[\alpha]_{\mathrm{D}}^{18}-54.4$ (c 0.29 in MeOH); lit. ${ }^{12}[\alpha]_{\mathrm{D}}^{29}-57.7$ (c 0.3 in MeOH$)\} ; \mathrm{v}_{\max }(\mathrm{ATR})$ 2950, $2892(\mathrm{~N}-\mathrm{H}), 2748$, $2576(\mathrm{C}-\mathrm{H}), 1704(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right)$ $1.67-1.79\left(1 \mathrm{H}\right.$, br m, C(1') $\left.H_{\mathrm{A}}\right), 1.81-2.01\left(3 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}\left(1^{\prime}\right) H_{\mathrm{B}}, \mathrm{C}\left(2^{\prime}\right) H_{2}\right), 2.12-2.23\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(3) H_{\mathrm{A}}\right)$, 2.39-2.54 (2H, br m, C(3) $\left.H_{\mathrm{B}}, \mathrm{C}(3 \mathrm{a}) H\right), 2.96-3.09\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}\left(3^{\prime}\right) H_{2}\right), 3.09-3.17(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}(4) H)$, 3.38-3.45 (2H, br m, C(2)H2), 3.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.66-4.73 (1H, br d, C(9b)H), 6.86 ($1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(6) H$), 7.76-7.82 (1H, br m, C(7)H), $8.02(1 \mathrm{H}, \mathrm{d}, J 1.3, \mathrm{C}(9) H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) 23.9\left(C\left(2^{\prime}\right)\right), 28.0(C(3))$, $30.5\left(C\left(1^{\prime}\right)\right), 39.4(C(3 \mathrm{a})), 40.9\left(C\left(3^{\prime}\right)\right), 43.6(C(2)), 50.9(C(4)), 52.3(\mathrm{OMe}), 59.3(C(9 \mathrm{~b})), 113.4(A r), 115.8$ (C(6)), $119.3(A r), 132.8(C(7)), 134.0(C(9)), 151.1(A r), 168.5\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; m / z\left(\mathrm{ESI}^{+}\right) 290\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; HRMS (ESI $) \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 290.1863; found 290.1864

[^5]
$\mathrm{Et}_{3} \mathrm{~N}(0.38 \mathrm{~mL}, 2.75 \mathrm{mmol})$ was added to a solution of $23 \cdot x \mathrm{HCl}(92 \mathrm{mg}, 0.23 \mathrm{mmol},>99: 1 \mathrm{dr})$ and thiourea $24^{13}(296 \mathrm{mg}, 1.14 \mathrm{mmol})$ in $\mathrm{MeCN} / \mathrm{MeOH}(2: 1,7 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$. A solution of $\mathrm{AgNO}_{3}(272 \mathrm{mg}, 1.60 \mathrm{mmol})$ in MeCN (2 mL) was added dropwise via syringe (in the dark) over a period of 30 min . The resultant mixture was stirred at $40^{\circ} \mathrm{C}$ (in the dark) for 16 h . The reaction mixture was then filtered through a short pad of Celite (eluent $\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}, 100: 1$) and the filtrate was concentrated in vacuo. The residue was dissolved in $\mathrm{CHCl}_{3}(20$ $\mathrm{mL})$ and the resultant solution was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous layer was extracted with CHCl_{3} $(20 \mathrm{~mL})$ and the combined organic extracts were dried and concentrated in vacuo. Purification via flash column chromatography (eluent $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 30: 1$) gave 25 as a colourless oil ($104 \mathrm{mg}, 64 \%,>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-142.5$ (c 0.8 in CHCl_{3}); $\left\{\right.$ lit. ${ }^{14}[\alpha]_{\mathrm{D}}^{20}-94.2$ (c 0.28 in CHCl_{3}); lit. ${ }^{15}[\alpha]_{\mathrm{D}}^{28}-179.1$ (c 0.80 in CHCl_{3}); lit. ${ }^{16}$ $[\alpha]_{\mathrm{D}}-95.2\left(c 0.58\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right\} ; v_{\max }(\mathrm{ATR}) 3281(\mathrm{~N}-\mathrm{H}), 2974(\mathrm{C}-\mathrm{H}), 1708,1606(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 1.12-1.35 (2H, m, C(1') H_{2}), $1.49\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} 3\right.$), $1.52\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe} 3\right.$), $1.54-1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(2^{\prime}\right) H_{2}\right), 1.65$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 1.68\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 1.89-2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{2}\right)$, 2.31-2.42 (1H, m, C(3a)H), 3.10-3.20 (1H, m, C(3') H_{A}), 3.27-3.50 (4H, m, C(2)H $\left.H_{2} \mathrm{C}(4) H, \mathrm{C}\left(3^{\prime}\right) H_{\mathrm{B}}\right)$, 3.67-3.93 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}$), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.16-5.33\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2}=\mathrm{CMe}_{2}\right), 5.75$ (1H, d, J 6.9, C(9b)H), $6.60(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{C}(6) H), 7.10(1 \mathrm{H}, \mathrm{br}$ s, NH), 7.67 (1H, dd, J 8.3, 1.9, C(7)H), 7.97 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(9) H), 8.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 18.0, $18.0\left(2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 25.6,25.6$ $\left(2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 27.9(C(3)), 28.3\left(C\left(2^{\prime}\right)\right), 28.4,28.5\left(2 \times \mathrm{CMe}_{3}\right), 29.7\left(C\left(1^{\prime}\right)\right), 39.4,39.4(C(3 \mathrm{a})$, $\left.\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}\right), 42.5\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}\right), 46.8,46.8\left(C(2), C\left(3^{\prime}\right)\right)$, $50.5(C(4)), 51.4(\mathrm{OMe}), 53.4(C(9 \mathrm{~b}))$, 77.8, $78.3\left(2 \times \mathrm{CMe}_{3}\right), 113.8(C(6)), 118.1$ (Ar), 119.5, $120.2\left(2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}\right), 127.8,128.8$ (Ar), 130.0 $(C(7)), 131.7(C(9)), 137.2,137.3\left(2 \times \mathrm{NCH}_{2} \mathrm{CH}=C \mathrm{Me}_{2}\right), 146.3,159.9,163.7(2 \times \mathrm{NCO}, 2 \times \mathrm{NCN}), 167.4$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right) ;{ }^{17} \mathrm{~m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 710\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{38} \mathrm{H}_{60} \mathrm{~N}_{7} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 710.4600; found 710.4601.

[^6]

Step 1: A solution of $0.2 \mathrm{M} \mathrm{aq} \mathrm{NaOH} \mathrm{(} 2 \mathrm{~mL}$) was added to a solution of $25(39 \mathrm{mg}, 55 \mu \mathrm{~mol},>99: 1 \mathrm{dr})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ and the resultant mixture was heated at reflux for 16 h . The reaction mixture was then partially concentrated in vacuo to approximately 25% of its original volume and the residue was poured onto satd aq $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with brine (10 mL), then dried and concentrated in vacuo.

Step 2: Anisole ($60 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$) and TFA $(0.12 \mathrm{~mL}, 1.62 \mathrm{mmol})$ were added sequentially to a solution of the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ and the resultant mixture was stirred at rt for 16 h . The reaction mixture was then concentrated in vacuo and the residue was purified by preparative HPLC ${ }^{18,19,20}$ to give $\mathbf{1} \times x \mathrm{TFA}$ as a pale yellow oil ($13.3 \mathrm{mg}, 34 \%$ from 25, $>99: 1 \mathrm{dr}$); $[\alpha]_{\mathrm{D}}^{20}-118$ (c 0.3 in MeOH); $\left\{\right.$ lit. ${ }^{21}$ for sample isolated from natural source $[\alpha]_{\mathrm{D}}-8.5$ (c 0.01 in MeOH); lit. ${ }^{22}[\alpha]_{\mathrm{D}}^{20}-122.7$ (c 0.31 in MeOH); lit. ${ }^{23}[\alpha]_{\mathrm{D}}^{29}-164.3$ (c 0.14 in $\mathrm{MeOH})$; lit. ${ }^{24}[\alpha]_{\mathrm{D}}^{23}-164.8(c 0.33$ in MeOH$\left.)\right\}$; $v_{\max }(\mathrm{ATR})$ 3338, $3207(\mathrm{~N}-\mathrm{H}, \mathrm{O}-\mathrm{H})$ 2980, $2932(\mathrm{C}-\mathrm{H}), 1673$ $(\mathrm{C}=\mathrm{O}), 1611,1526,1452 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 1.35-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(1^{\prime}\right) H_{2}\right), 1.51-1.76\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{\mathrm{A}}\right.$, $\left.\mathrm{C}\left(2^{\prime}\right) \mathrm{H}_{2}\right), 1.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMeMe}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMeMe}\right), 1.69$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMeMe}$), $1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMeMe}\right), 2.03-2.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H_{\mathrm{B}}\right), 2.37-2.48(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3 \mathrm{a}) H), 3.04-3.20(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}\left(3^{\prime}\right) H_{2}\right), 3.27(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{C}(4) H), 3.33-3.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right), 3.66-3.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}\right), 3.79-3.87$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CMe}_{2}\right), 3.88-3.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CMe}_{2}\right)$, 5.13-5.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}$), $5.25(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{C}(9 \mathrm{~b}) H), 5.27-5.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}\right), 6.58(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(6) H), 7.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 7.43(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}), 7.54(1 \mathrm{H}, \mathrm{dd}, J 8.5,1.5, \mathrm{C}(7) H), 7.51-7.62(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 2 \times \mathrm{NH}), 7.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}$,

[^7]$\mathrm{C}(9) H), 7.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 7.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 17.8,17.9,25.2,25.2$ $\left(2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe} 2\right), 25.3\left(C\left(2^{\prime}\right)\right), 26.3(C(3)), 33.4\left(C\left(1^{\prime}\right)\right), 39.5,39.8\left(2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}\right), 40.7\left(C\left(3^{\prime}\right)\right)$, $45.8(C(2)), 49.2(C(4)), 53.0(C(9 \mathrm{~b})), 113.3(C(6)), 115.7(C(9 \mathrm{a})), 116.6\left(\mathrm{br} \mathrm{q}, J 299, C \mathrm{~F}_{3}\right), 117.1(C(8))$, 119.2, $119.6\left(2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}\right), 130.0(C(7)), 130.5(C(9)), 135.6,136.0\left(2 \times \mathrm{NCH}_{2} \mathrm{CH}=C \mathrm{Ce}_{2}\right), 146.3$ $(C(5 a)), 154.3,155.5(2 \times \mathrm{NCN}), 158.2\left(\mathrm{q}, J 33.4, \mathrm{CF}_{3} \mathrm{CO}_{2}^{-}\right), 167.2\left(\mathrm{CO}_{2} \mathrm{H}\right){ }^{25} \delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)-73.7$ $\left(\mathrm{CF}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 496\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 496.3395; found 496.3377.

[^8]
2. X-ray crystal structure determination for $\mathbf{1 1}$ and $\mathbf{1 5}$

Data were collected using a Nonius κ-CCD diffractometer with graphite monochromated Mo-K α radiation, using standard procedures at 150 K . The structures were solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS. ${ }^{26,27}$

X-ray crystal structure data for $\mathbf{1 1}\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{5}\right]: M=515.40$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$, $a=9.6810(2) \AA, b=12.7183(2) \AA, c=19.2223(4) \AA, V=2366.76(8) \AA^{3}, Z=4, \mu=1.446 \mathrm{~mm}^{-1}$, colourless block, crystal dimensions $=0.14 \times 0.17 \times 0.36 \mathrm{~mm}$. A total of 3028 unique reflections were measured for $5<\theta<27$ and 5258 reflections were used in the refinement. The final parameters were $w R_{2}=0.076$ and $R_{1}=0.047[I>-3.0 \sigma(I)]$, with Flack enantiopole $=0.011(8) .{ }^{28}$

X-ray crystal structure data for $\mathbf{1 5}\left[\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{4}\right]: M=473.37$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$, $a=6.8274(1) \AA, b=11.2253(2) \AA, c=27.9028(5) \AA, V=2138.46(6) \AA^{3}, Z=4, \mu=1.955 \mathrm{~mm}^{-1}$, colourless block, crystal dimensions $=0.17 \times 0.21 \times 0.30 \mathrm{~mm}$. A total of 2774 unique reflections were measured for $5<\theta<27$ and 4675 reflections were used in the refinement. The final parameters were $w R_{2}=0.082$ and $R_{1}=0.047[I>-3.0 \sigma(I)]$, with Flack enantiopole $=0.014(9) .{ }^{29}$

[^9]
3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

tert-Butyl (E)-3-(2'-N,N-diallylamino-5'-bromophenyl)propenoate $5\left(400 \mathrm{MHz}{ }^{1} \mathbf{H}, \mathrm{CDCl}_{3}\right)$

tert-Butyl (2R,3S, αR)-2-(2'-methoxy-2'-oxoethyl)-3-[N-allyl- N-(α-methyl-4' '-methoxybenzyl)amino]-3-(2'- N, N-diallylamino- $\mathbf{5}^{\prime \prime}$-bromophenyl)propanoate $8\left(400 \mathrm{MHz}^{1} \mathrm{H}, \mathrm{CDCl}_{3}\right)$

tert-Butyl (2R,3S, αR)-2-(2'-methoxy-2'-oxoethyl)-3-[N-allyl- N-(α-methyl-4' '-methoxybenzyl)amino]-3-(2'- N, N-diallylamino- $\mathbf{5}^{\prime \prime}$-bromophenyl)propanoate $8\left(100 \mathrm{MHz}^{13} \mathrm{C}, \mathrm{CDCl}_{3}\right)$

(3aR,9bS, α R)-1-(4'-Methoxy- α-methylbenzyl)-5-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2,4-dione 11 $\left(400 \mathbf{M H z}^{1} \mathrm{H}, \mathrm{CDCl}_{3}\right)$

(3aR,9bS, α R)-1-(4'-Methoxy- α-methylbenzyl)-5-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2,4-dione 11 $\left(100 \mathrm{MHz}^{13} \mathrm{C}, \mathrm{CDCl}_{3}\right)$

$(3 \mathrm{a} R, 4 R, 9 \mathrm{bS}, \alpha R)$ or $(3 \mathrm{a} R, 4 S, 9 \mathrm{bS}, \alpha R)-N(1)$-(α-Methyl-4'-methoxybenzyl)-4-hydroxy- $N(5)$-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one $12\left(400 \mathrm{MHz}^{\mathbf{1}} \mathbf{H}, \mathrm{CDCl}_{3}\right)^{30}$

[^10]$(3 \mathrm{aR}, 4 R, 9 \mathrm{bS}, \alpha R)$ or $(\mathbf{3 a R}, 4 S, 9 \mathrm{bS}, \alpha R)-N(1)$-(α-Methyl-4'-methoxybenzyl)-4-hydroxy- $N(5)$-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one $12\left(100 \mathrm{MHz}^{13} \mathrm{C}, \mathrm{CDCl}_{3}\right)^{31}$

Chemical Shitt (ppm)
${ }^{31}$ Compound $\mathbf{1 2}$ was isolated as a single diastereoisomer of unknown configuration at $\mathrm{C}(4)$.

(2-Methoxy-2-oxoethyl)diphenyl-2-pyridylphosphonium bromide (400 $\mathrm{MHz}^{1} \mathbf{H}, \mathrm{CDCl}_{3}$)

(2-Methoxy-2-oxoethyl)diphenyl-2-pyridylphosphonium bromide ($100 \mathbf{M H z}{ }^{13} \mathbf{C}, \mathbf{C D C l}_{3}$)

(3aS,4S,9bS, αR)- $N(1)$-(α-Methyl-4'-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-N(5)-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one $14\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}\right)$

(3aS,4S,9bS, αR)- $N(1)-(\alpha-M e t h y l-4 '$ '-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-N(5)-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one $14\left(100 \mathrm{MHz}^{13} \mathrm{C}, \mathrm{CDCl}_{3}\right)$

(3aS,4S,9bS, αR)-N(1)-(α-Methyl-4'-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one 15 $\left(400 \mathrm{MHz}^{1} \mathrm{H}, \mathrm{CDCl}_{3}\right)$

(3aS,4S,9bS, αR)-N(1)-(α-Methyl-4'-methoxybenzyl)-4-(2'-methoxy-2'-oxoethyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinolin-2-one 15

 (400 $\mathbf{~ M H z ~}{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$)

(3aR,4S,9bS)-4-(2'-Hydroxyethyl)-N(5)-(tert-butoxycarbonyl)-8-bromo-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline 17 $\left(100 \mathrm{MHz}^{13} \mathrm{C}, \mathrm{CDCl}_{3}\right)$

 ($500 \mathrm{MHz}{ }^{1} \mathrm{H}$, PhMe- $d_{8}, 363 \mathrm{~K}$)

 ($125 \mathrm{MHz}^{13} \mathrm{C}$, $\mathrm{PhMe}-d_{\mathbf{8}}, 363 \mathrm{~K}$)

 $\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, \mathrm{PhMe}-d_{8}, 363 \mathrm{~K}\right.$)
 ($125 \mathrm{MHz}^{13} \mathrm{C}$, $\mathrm{PhMe}-d_{\mathbf{~}}, 363 \mathrm{~K}$)

(S,S,S)-N(1),N(5)-(Di-tert-butoxycarbonyl)-4-[3'-(N-tert-butoxycarbonylamino)propyl]-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1H-

 pyrrolo[3,2-c]quinoline $22\left(400 \mathrm{MHz}^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

(S,S,S)-N(1),N(5)-(Di-tert-butoxycarbonyl)-4-[3'-(N-tert-butoxycarbonylamino)propyl]-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline $22\left(100 ~ M H z ~{ }^{13} C^{2}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$
 ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, \mathrm{MeOD}-d_{4}$)

(S,S,S)-4-(3'-Aminopropyl)-8-(methoxycarbonyl)- 2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]-quinoline•xHCl ["Ma's intermediate"] $23 \cdot x \mathbf{H C l}$ ($125 \mathrm{MHz}{ }^{13} \mathrm{C}$, MeOD- d_{4})

(S,S,S)-N(1)-[N^{\prime}-(tert-Butoxycarbonyl)- $N^{\prime \prime}$-prenylcarbamimidoyl]-4-\{3'-[N '-(tert-butoxycarbonyl)- $N^{\prime \prime}$ '-prenylguanidino]propyl $\}-8$-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1 H -pyrrolo[3,2-c]quinoline $25\left(500 \mathrm{MHz}^{1} \mathrm{H}, \mathrm{CDCl}_{3}\right.$)

(S,S,S)-N(1)-[N^{\prime}-(tert-Butoxycarbonyl)- $N^{\prime \prime}$-prenylcarbamimidoyl]-4-\{3'-[N^{\prime}-(tert-butoxycarbonyl)- $N^{\prime \prime}$-prenylguanidino]propyl $\}$-8-(methoxycarbonyl)-2,3,3a,4,5,9b-hexahydro- $1 H$-pyrrolo[3,2-c]quinoline $25\left(125 \mathrm{MHz}^{13} \mathbf{C}, \mathrm{CDCl}_{3}\right)$

$(S, S, S)-N(1)$-[$N^{\prime \prime}$-Prenylcarbamimidoyl]-4-\{3'-[$N^{\prime \prime}$-prenylguanidino]propyl\}-8-carboxy-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-xTFA [(-)-martinellic acid] $1 \cdot x$ TFA $(500 ~ M H z ~(H, ~ D M S O-~ d ~ d ~(~) ~$

$(S, S, S)-N(1)$-[$N^{\prime \prime}$-Prenylcarbamimidoyl]-4-\{3'-[$N^{\prime \prime}$-prenylguanidino]propyl\}-8-carboxy-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline•xTFA

$(S, S, S)-N(1)$-[$N^{\prime \prime}$-Prenylcarbamimidoyl]-4-\{3'-[$N^{\prime \prime}$-prenylguanidino]propyl\}-8-carboxy-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline•xTFA [(-)-martinellic acid] $1 \cdot x$ TFA $\left(470 ~ M H z ~{ }^{19}\right.$ F, DMSO- d_{6})

[^0]: ${ }^{1}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

[^1]: ${ }^{2}$ A synthesis of $\mathbf{4}$ has previously been reported, see: Slavish, P. J.; Jiang, Q.; Xiaoli. C.; Morris, S. W.; Webb, T. R. Bioorg. Med. Chem. 2009, 17, 3308.

[^2]: ${ }^{3}$ Compound $\mathbf{1 2}$ was isolated as a single diastereoisomer of unknown configuration at $\mathrm{C}(4)$.

[^3]: ${ }^{4}$ The remaining peak in the ${ }^{13} \mathrm{C}$ NMR spectrum, corresponding to $C\left(2^{\prime \prime}\right)$ and $C\left(6^{\prime \prime}\right)$ within $\mathbf{1 9}$, was obscured by the resonances corresponding to $\mathrm{PhMe}-d_{8}$.

[^4]: ${ }^{5}$ For an example of the use of NMP as the solvent in displacement reactions with NaCN, see: Davies, S. G.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1 1976, 2279.
 ${ }^{6}$ The remaining peaks in the ${ }^{13} \mathrm{C}$ NMR spectrum, corresponding to $C(2)$ and $C\left(1^{\prime}\right)$ within $\mathbf{2 0}$, were obscured by the resonances corresponding to $\mathrm{PhMe}-d_{8}$.
 ${ }^{7}$ These solvents were dried over $4 \AA$ molecular sieves and degassed using the vacuum-refill technique under N_{2} gas.

[^5]: ${ }^{8}$ Some of the peaks in the ${ }^{13} \mathrm{C}$ NMR spectrum of 22 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at rt are broad, and the peaks corresponding to the $C\left(1^{\prime}\right), C\left(3^{\prime}\right)$ and $3 \times C \mathrm{Me}_{3}$ carbons were not observed in this spectrum.
 ${ }^{9}$ In our hands triamine $\mathbf{2 3} \cdot x \mathrm{HCl}$ was insoluble at concentrations of $>3 \mathrm{mg} / \mathrm{mL}$.
 ${ }^{10}$ Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189.
 ${ }^{11}$ Yoshitomi, Y.; Arai, H.; Makino, K.; Hamada, Y. Tetrahedron 2008, 64, 11568.
 ${ }^{12}$ Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem. Commun. 2007, 504.

[^6]: ${ }^{13}$ Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189.
 ${ }^{14}$ Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189.
 ${ }^{15}$ Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem Commun. 2007, 504.
 ${ }^{16}$ Badarinarayana, V.; Lovely, C. J. Tetrahedron Lett. 2007, 48, 2607.
 ${ }^{17}$ Some of the peaks in the ${ }^{13} \mathrm{C}$ NMR spectrum of 25 in CDCl_{3} at rt are broad.

[^7]: ${ }^{18}$ The authors would like to thank Veronique Gouverneur and Stefan Verhoog for their assistance with the purification of $1 \cdot x$ TFA.
 ${ }^{19}$ Purification of $\mathbf{1} \cdot x \mathrm{TFA}$ was conducted using a SunFire ${ }^{\mathrm{TM}}$ preparative column ($\mathrm{C}_{18}, 10 \mu \mathrm{~m}, 10 \times 250 \mathrm{~mm}$) eluting with $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(80: 20: 0.1 \rightarrow 20: 80: 0.1$, gradient elution) 40 mins with a flow rate of 2.50 $\mathrm{mL} / \mathrm{min}$. The detector was set to 330 nm and the major component had a rentention time of 19.1 min .
 ${ }^{20}$ Although several literature reports begin the solvent gradient in $80: 20 \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$, this is not a suitable solvent system to load the crude material. After optimisation, it was found best to dissolve the crude sample in $\sim 500 \mu \mathrm{~L}$ of MeOH and perform purification with several $\sim 125 \mu \mathrm{~L}$ injections.
 ${ }^{21}$ Witherup, K. M.; Ransom, R. W.; Graham, A. C.; Bernard, A. M.; Salvatore, M. J.; Lumma, W. C.; Anderson, P. S.; Pitzenberger, S. M.; Varga, S. L. J. Am. Chem. Soc. 1995, 117, 6682.
 ${ }^{22}$ Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189.
 ${ }^{23}$ Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem. Commun. 2007, 504.
 ${ }^{24}$ Shirai, A.; Miyata, O.; Tohnai, N.; Miyata, M.; Procter, D. J.; Sucunza, D.; Naito, T. J. Org. Chem. 2007, 73, 4464.

[^8]: ${ }^{25}$ The remaining peak in the ${ }^{13} \mathrm{C}$ NMR spectrum, corresponding to $C(3 \mathrm{a})$ within $1 \cdot x \mathrm{TFA}$, was obscured by the resonances corresponding to $\mathrm{PhMe}-d_{8}$.

[^9]: ${ }^{26}$ Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, C. K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487.
 ${ }^{27}$ Crystallographic data (excluding structure factors) for compounds $\mathbf{1 1}$ and $\mathbf{1 5}$ have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 926034 and 926035, respectively. Copies of these data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
 ${ }^{28}$ (a) Flack, H. D. Acta. Crystallogr., Sect. A 1983, 39, 876. (b) Flack, H. D.; Bernardinelli, G. Acta. Crystallogr., Sect. A 1999, 55, 908. (c) Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143.
 ${ }^{29}$ (a) Flack, H. D. Acta. Crystallogr., Sect. A 1983, 39, 876. (b) Flack, H. D.; Bernardinelli, G. Acta. Crystallogr., Sect. A 1999, 55, 908. (c) Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143.

[^10]: ${ }^{30}$ Compound 12 was isolated as a single diastereoisomer of unknown configuration at $\mathrm{C}(4)$.

