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ABSTRACT

CLIP technologies are now widely used to study RNA–protein interactions and many data sets are now publicly available.
An important first step in CLIP data exploration is the visual inspection and assessment of processed genomic data on se-
lected genes or regions and performing comparisons: either across conditions within a particular project, or incorporating
publicly available data. However, the output files produced by data processing pipelines or preprocessed files available to
download from data repositories are often not suitable for direct comparison and usually need further processing.
Furthermore, to derive biological insight it is usually necessary to visualize a CLIP signal alongside other data such as an-
notations, or orthogonal functional genomic data (e.g., RNA-seq). We have developed a simple, but powerful, command-
line tool: clipplotr, which facilitates these visual comparative and integrative analyses with normalization and smoothing
options for CLIP data and the ability to show these alongside reference annotation tracks and functional genomic data.
These data can be supplied as input to clipplotr in a range of file formats, which will output a publication quality figure.
It is written in R and can both run on a laptop computer independently or be integrated into computational workflows
on a high-performance cluster. Releases, source code, and documentation are freely available at https://github.com/
ulelab/clipplotr.
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INTRODUCTION

Over the last twenty years, the study of RNA–protein inter-
actions has been revolutionized by crosslinking and immu-
noprecipitation (CLIP) technologies (Lee and Ule 2018).
There is now a wealth of publicly available CLIP data pro-
duced by multiple labs and also by consortia, such as
ENCODE (Mukherjee et al. 2019; Van Nostrand et al.
2020). Databases have been established for the easy avail-
ability of processed CLIP data (Blin et al. 2015; Zhu et al.
2019) which can facilitate comparative exploratory analyses
and the integration of new experiments with the public cor-
pus. Moreover, advances in the methodology have led to
readily accessible protocols andwider uptake ofCLIPexper-
iments (Van Nostrand et al. 2017; Buchbender et al. 2020;
Hafner et al. 2021; Lee et al. 2021; Porter et al. 2021). As
a result, the questions now being addressed using CLIP ex-
periments are often comparisons between different condi-
tions, or between different RNA binding proteins (RBPs). A
number of statistical approaches have been developed to

assess differential binding using CLIP data, often based on
extending differential gene expression methods originally
designed for RNA-seq (Love et al. 2014; Wang et al. 2014;
Liu et al. 2017; McIntyre et al. 2020). Alongside these bulk
statistical analyses, it is crucial to visualize CLIP binding sig-
nals frommultiple experiments in transcripts or regions of in-
terest (ideally alongside orthogonal functional data such as
RNA-seq, ribosome profiling or 3′-end sequencing) in order
to support and understand differences in specific cases.
Moreover, comparative analysis often involves iteration be-
tween visualization and processing adjustments; most tools
focus on one or the other, but clipplotr allows the user to do
both when studying a region of interest.
Easy visualization of CLIP data alongside orthogonal ge-

nomic data is crucial to guide the biological interpretation
of RNA–protein interactions by contextualizing binding sites
or peaks with functional data. Those with bioinformatics ex-
pertise can write custom code based on packages such
pyGenomeTracks in Python (Lopez-Delisle et al. 2021) or
Gviz in R (Hahne and Ivanek 2016) to visualize general
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sequencing data. However, there are few options for exper-
imentalists with limited bioinformatics or coding experience
to explore their data easily and generate high-quality plots.
SEQing is a tool that has recently been published to visual-
ize iCLIP data and RNA-seq coverage (Lewinski et al. 2020).
It is a locally hosted, web-based tool that allows interactive
exploration of the data tracks, similar to a genome browser
and allows sharing of the session across group members.
However, the CLIP and RNA-seq tabs can only be viewed
in turn rather than simultaneously, preventing the user
from easily identifying relationships at a glance. Most com-
monly, however, data tracks are visualized in a genome
browser, such as the Integrative Genomics Viewer (IGV)
(Robinson et al. 2011). For presentation or publication,
screenshots are often taken and beautified manually in a
vector graphics program that is not easily reproduced.
Critically, none of these existing tools perform the data nor-
malization or other processing that is necessary to ensure
valid comparisons between data sets, thus hindering the it-
erative nature of comparative analysis discussed earlier.

There are two important considerations before pro-
cessed CLIP data can be compared that preclude simply
viewing the BED or BedGraph data tracks in a genome
browser. First, the data from different experiments needs
to be normalized to account for differences in library size
using an approach appropriate to the study question.
Second, the CLIP signal will generally benefit from being
smoothed to aggregate crosslink data and highlight differ-
ences in binding patterns between experiments, condi-
tions or RBPs. The need for this latter processing is
generally underappreciated and can be a major problem
for comparative CLIP visualization.

To address these gaps and facilitate exploratory CLIP
data analysis by the RNA community, we developed
clipplotr: a self-contained command-line script that can
be easily run with one command to produce publication-
quality figures for defined genomic regions of interest.
The tool simplifies visualization of CLIP data alongside
auxiliary and orthogonal data (e.g., RNA-seq, ribosome
profiling or 3′-end sequencing) and transcript annotations
from reference databases (e.g., GENCODE or Ensembl).
Most importantly, we have built in multiple normalization
and smoothing approaches for CLIP data that are essential
to enable reliable comparisons.

RESULTS AND DISCUSSION

Here, we present the features of clipplotr in two use cases
with a range of publicly available data from selected publi-
cations and the ENCODE Consortium (Zarnack et al. 2013;
Van Nostrand et al. 2016, 2020). The latest CLIP technolo-
gies all identify nucleotide-resolution crosslink coordi-
nates, which correspond to the position where the RBP
crosslinked to the RNA. Depending on the method, this
can then be identified through diagnostic events: either

truncations (e.g., iCLIP, eCLIP) or mutations (e.g.,
PAR-CLIP) (Chakrabarti et al. 2018; Lee and Ule
2018). Processing of CLIP data is beyond the scope of
clipplotr but is described in detail elsewhere (Chakrabarti
et al. 2018; Busch et al. 2020) and can be performed
by various computational pipelines available to run on
local computing clusters (e.g., iCLIP: https://github.com/
tomazc/iCount, eCLIP: https://github.com/YeoLab/eclip,
PAR-CLIP: https://github.com/ohlerlab/PARpipe, nf-core:
https://github.com/nfcore/clipseq (Ewels et al. 2020) or
on webservers (e.g., iMaps: https://imaps.goodwright
.com). Here, all CLIP data sets were downloaded already
processed to highlight the expected use of the tool.

clipplotr generates a comprehensive and
customizable visualization with a single command

hnRNP C and U2AF2 (previously termed U2AF65) have
been shown to compete directly to protect the transcrip-
tome from the exonization of Alu elements (Zarnack et al.
2013). The authors used iCLIP experiments to show that
hnRNP C bound to cryptic splice sites suppressed the exo-
nization of Alu elements. However, loss of hnRNP C
through siRNA knockdown experiments resulted in the ex-
pression of these Alu exons, demonstrated through RNA-
seq experiments. Complementary iCLIP experiments
demonstrated that U2AF2, a splicing factor, did not bind
at the hnRNP C binding sites when hnRNP C was present,
but upon knockdown of hnRNP C, there was increased
U2AF2 binding at precisely these sites. This led to the
model of direct competition between the two RBPs con-
trolling Alu exonization. In the original paper, all of these
findings were exemplified on the CD55 transcript, which
we reproduce in Figure 1 with the unaltered output pro-
duced by clipplotr, using all four of the available tracks.
We used the processed data available from the study to
avoid any differences due to CLIP data processing varia-
tions (see Materials and Methods).

Input data are iCLIP BedGraph files for the crosslink track
(‐‐xlinks); RepeatMasker Alu BED files for the auxiliary
track (‐‐auxiliary); RNA-seq coverage bigWig files for
the coverage track (‐‐coverage); and a GENCODE annota-
tion GTF file for the annotation track (‐‐gtf). All the features
of the plot annotated in Figure 1 can be customized as de-
sired using optional additional parameters. In the first panel
—the crosslink track—the iCLIP BedGraphs have been nor-
malized by library size to give a crosslinks-per-million calcu-
lation to permit valid comparisons (‐‐normalization).
The signal has been smoothed with a rolling mean using a
window size of 50 nt (‐‐smoothing) to show excellent con-
cordance between replicates and reveal differences in
crosslink signal, which represent binding regions, across
the RBPs and conditions. Sets of experiments have been
grouped together (‐‐groups) and colored (‐‐colors) ac-
cordingly: duplicates of hnRNP C, U2AF2, and U2AF2
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with hnRNP C knocked-down. The coordinates of the gray
box can be specified and here is used to highlight sites of
interest (‐‐highlight): in this case the competitive binding
site. U2AF2 only binds to this site in the absence of hnRNP
C, but in this context, it binds as strongly as hnRNP C did.
The second panel—the auxiliary track—shows the loca-

tion of inverted or reverseAlu elements (obtained from the
UCSC table browser). The binding site where hnRNPC and
U2AF2 compete is located at the 5′ end of the reverse Alu
element—directly over the splice site.
The third panel—the coverage track—can be used to

plot orthogonal genomic data. Here, we show the cover-
age of RNA-seq data from three sets of experiments:
four replicates of wild-type (CTRL) and two replicates
each of two different knockdown siRNAs (KD1 and KD2).
Again these have been grouped (‐‐coverage_groups)
and colored (‐‐coverage_colors) accordingly. There is
a marked increase in expression of the Alu element in
both knockdown conditions, indicating that the repression
in the wild-type state has been relieved and the Alu ele-
ment has been exonized.
The fourth panel—the annotation track—shows all the

transcripts in the region of interest (‐‐annotation) from
the GENCODE 34 annotation (from 2020). There are two
transcripts that contain an exon matching the Alu element
in the auxiliary track and the region of RNA-seq expression
in the coverage track, but for the majority of CD55 tran-

scripts this is an intronic region. The
plot, inset in blue, is produced using
one command, with aesthetics such
as labels, colors, groupings, panel ra-
tios and overall plot size all optionally
customizable.

So, in comparison with the original
style of visualization (reproduced in
Supplemental Fig. S1), with clipplotr’s
visualization not only is the competi-
tion between hnRNP C and U2AF2 at
the highlighted binding region more
immediately apparent (demonstrated
by U2AF2 binding in the context of
hnRNP C knockdown), but the repro-
ducibility between replicates and the
importance of this locus over the rest
of the signal is this region are also
clearer to see. We also showcase the
improved visualization using clipplotr
that facilitates interpreting the data
to describe the Alu exonization phe-
nomenon on the PTS (Supplemental
Fig. S2A) and NUP133 (Supplemental
Fig. S2B) transcripts, also shown in the
original publication. Furthermore,
clipplotr ensures reproducibility of
plot generation and it is easy to gener-

ate plots across multiple genes or regions of interest while
maintaining the same visualization options.

clipplotr’s smoothing function highlights relevant
changes in binding profiles

The importance of smoothing is demonstrated in Figure 2
with the same hnRNP C and U2AF2 example as Figure 1.
Normalization by library size has been performed before
smoothing to ensure comparability between replicates.
This is explored in more detail in the next section.
Visualizing the agreement of the two replicates in each
group is not possible when viewing raw crosslinks as a
bar graph, because the bars overlap rendering differences
indistinguishable (Fig. 2A). In gray, we highlight the region
containing the binding site where hnRNP C competes with
and displaces U2AF2 in WT cells. In the raw data, the peak
of crosslinking in this region is apparent in all conditions,
but quantitative differences between conditions are less
apparent because the signal from adjacent clustered
crosslink sites are not aggregated. Instead, in U2AF2 after
hnRNP C knockdown, other isolated positions down-
stream from this region with high signal also draw the
eye (red arrowheads). Only after smoothing using a rolling
mean with a 50 nt window (Fig. 2B) does the quantitative
difference in the amount of crosslinking across the peak re-
gions become clear: making it apparent that it is the

FIGURE 1. clipplotr outputs high-quality, easily customizable figures. A figure generated by a
clipplotr using data from Zarnack et al. (2013) is inset in blue, showing all four types of track that
can be generated. The input file formats required for each track type is indicated to the left. On
the right are annotated the customizable parameters that can be specified in the single
clipplotr command.
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amount of binding, but not the position of the binding,
that changes. Although there are also increases in binding
in the two downstream regions, it thus becomes evident
that the primary site of competition between U2AF2 and
hnRNP C is located in the region between 207,513,650
and 207,513,800 (the gray highlight box).

Current CLIP experiments produce data that identify
crosslink sites at single nucleotide resolution. However,
when visualizing these data over broad regions, such as
whole genes, exons, or introns, smoothing is necessary to
aggregate quantitative information from adjacent crosslink
sites; otherwise the signal from individual crosslinks can be-
come imperceptible, especially when comparing data sets.
Furthermore, it is possible to introduce technical variation
due to the many steps involved in CLIP library preparation
(for example, from the uridine bias of UV crosslinking,
from variation in RNase concentration or in cutting from
the gel) that may result in the data not being fully reproduc-
ible at single nucleotide resolution, but becomemore so af-
ter aggregating or smoothing. We have included both a
rolling mean (default) and a Gaussian approach as smooth-
ing methods. The rolling mean generates an appropriate
summary of the scores from adjacent sites while retaining
some of variability present in the data. Furthermore, it is
quick to run even for larger regions. The Gaussian approach

is suitable for smaller regions, owing to the more complex
calculations involved and may be useful in situations where
the data are particularly noisy to try to determine underlying
binding patterns. The smoothing window size will depend
both on the RBP and size of the region under study as
well as the quality of the data and can be optimized to
best aggregate the signal. For example, for an RBP with a
more dispersed pattern of binding, such as FUS, a wider
window would be more revealing rather than for one with
more focused binding, such as ELAVL1/HuR. Alternatively,
when examining a whole transcript, a wider window may
be necessary to enable a more summarized visualization,
whereas a focused analysis such as around an Alu element
in our example will benefit from a smaller window.

In this first use case, we have shown how clipplotr can be
used to normalize, smooth and compare binding of differ-
ent RBPs in different conditions and, with the addition of
annotation and orthogonal data, demonstrate their func-
tional effects.

clipplotr’s normalization strategies allow exploration
of multiple facets of the data

In the second use case (Fig. 3) we reproduce the finding of
an RBFOX2 binding site on the NDEL1 transcript in the

last intron of the gene, close to the
3′-UTR used as an example when
the eCLIP method was first described
(Van Nostrand et al. 2016). However,
we use more recent eCLIP data in
HepG2 and K562 cell lines produced
by the same laboratory as part of the
ENCODE Consortium (Van Nostrand
et al. 2020). This allows us to show-
case a possible use of the tool using
exclusively publicly available pro-
cessed data on sites of interest and
how different data sets can be
compared.
We use the CLIP, auxiliary and an-

notation track options from clipplotr
to generate this image (Fig. 3A).
Here, to complement the first use
case, we show a “meta-transcript” an-
notation for the NDEL1 gene, which
collapses all the exons across the tran-
scripts to simplify visualization. (Note
that the coordinates differ slightly
from the original figure as the newer
ENCODE eCLIP data uses the hg38
sequence assembly, rather than
hg19.) First, we have grouped the
CLIP tracks by cell line and normalized
by library size (Fig. 3A). Normalizing
by library size calculates a crosslinks-

B

A

FIGURE 2. clipplotr’s smoothing functions highlight relevant changes in binding profiles. The
same data is used as in Figure 1. Highlighted in the gray box is the region of competition be-
tween hnRNPC and U2AF2 binding. (A) No smoothing has been applied using ‐‐smoothing

none. The red arrowheads indicate downstream binding peaks that appear similar to that in
the highlighted box. (B) The signal has been smoothed using a rolling mean with a 50 nt win-
dow using ‐‐smoothing rollmean ‐‐smoothing_window 50.
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per-million value for each position, and accounts for the
different sequencing depths of different experiments. It
is immediately evident that there is a much stronger
RBFOX2 binding signal in the HepG2 cell line compared
to K562. This may reflect either differing expression levels
of the NDEL1 transcript or technical variability of the two
sets of experiments. However, the binding is still present,
and moreover there is little binding seen at these sites in
the size-matched input samples. Consequently, peaks
have been called at similar sites for both cell lines as can
be seen in the auxiliary tracks.
To visualize and explore the patterns of binding in more

detail, we have includedmultiple options to normalize and
scale the data: (i) do not normalize; (ii) normalize by library
size (default); (iii) normalize to the maximum peak in each
group; (iv) normalize by library size and scale the y-axis
for each group; (v) normalize by library size and then to
the maximum peak in each group; and (vi) apply a custom
normalization factor. The y-axis label is automatically ad-
justed based on the method. The importance of normaliz-
ing by library size prior to comparing different experiments
is well known, but we have kept the option not to as it may
be useful to examine the raw signal in single experiments.
First, we show the effect of (iv): so that the signal for each
group fills its respective plot (Fig. 3B). This preserves the
information that the two sets of experiments are an order
of magnitude different in the strength of the signal, but
also allows delineation of the peak morphology. Another
approach often used is (iii): this should allow an easier com-

parison of the relative differences between the two groups
of experiments as the crosslink signal is scaled from 0 to 1
(Fig. 3C). However, this approach should be used with cau-
tion: for K562, it appears as though replicate 1 has half the
signal of replicate 2, whereas in Figure 3B we can see that
the two have comparable signal when normalizing by li-
brary size. Thus, the disparity is accounted for by different
library sizes: 10,942,658 vs. 20,298,696 reads. When ex-
amining much larger regions, there may be enough signal
across the region to account for library size differences
when using this approach, but often for the more targeted
analysis undertaken for CLIP data it can be confounded. If
it is important to show relative differences in this way, we
advocate using (v) for CLIP data as shown in Figure
3D. Here, the profile is identical to Figure 3B, but the
y-axis values now allow easy quantification of relative dif-
ferences between groups.
In this second use case, we have highlighted how the dif-

ferent clipplotr normalization strategies can each be used
to derive different, complementary insights into the data
and can be selected based on the question or the specific
effects of RBP binding under study. We have also shown a
potential pitfall of normalization to the maximum peak and
recommend an alternative option.

The scope of clipplotr in the data analysis workflow

With clipplotr, the user can focus on visualizing and compar-
ing data on specific regions of interest; this forms part of the

A B

C

D

FIGURE 3. clipplotr’s normalization functions allow exploration of multiple facets of data. (A) The figure generated by clipplotr using data from
the ENCODE project showing the region from Van Nostrand et al. (2016) with the CLIP data normalized by library size using ‐‐normalization

libsize (default). The region zoomed-in in the subsequent panels is highlighted. (B) The default library size normalization is again used, but
additionally the y-axis is scaled independently for each group using ‐‐scale_y. (C ) The signal is normalized to the maximum peak in the region
for each group using ‐‐normalization maxpeak. (D) The signal is normalized first to library size and then by maximum peak in the region for
each group using ‐‐normalization libsize_maxpeak.

clipplotr—a comparative CLIP visualization tool

www.rnajournal.org 719

 Cold Spring Harbor Laboratory Press on May 18, 2023 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


wider CLIP data exploration and analysis workflow. One im-
portant analysis step that is outside of clipplotr’s scope is
peak calling. This is necessary to identify sites of high RBP
occupancy that are likely to represent functional binding in-
teractions. Tools for peak calling, and other CLIP data anal-
ysis considerations are extensively reviewed elsewhere
(Chakrabarti et al. 2018; Busch et al. 2020; Hafner et al.
2021) Although, the data processing steps performed by
clipplotr are purely for the purposes of ensuring valid visual
comparisons, the signal smoothing concept could form the
input to a peak calling approach. Furthermore, although
clipplotr facilitates comparative visualization, it does not per-
form statistical comparisons of crosslink signal or peaks be-
tween conditions. For this purpose, RNA-seq methods
such as DESeq2 (Love et al. 2014) are commonly leveraged
and have beenpreviously assessed and compared (McIntyre
et al. 2020).

Conclusions

Visual inspection of sequencing data is an important part of
the data analysis process. When such data are produced to
provide nucleotide-resolution information, such as is the
case for iCLIP, it can be challenging to visualize its quantita-
tive aspects at the level of genes or other broader genomic
regions. To solve this challenge, we have developed clip-
plotr, a command-line tool to facilitate comparative visual
exploration of CLIP and orthogonal data sets. We provide
a range of normalization, smoothing and visualization op-
tions to ensure appropriate comparisons can be easily un-
dertaken. It is straightforward to customize all these
options, and the many aspects of visual presentation,
through the command line parameters. Equally, sensible
default options have been established so that the tool will
run with minimal user input. We have already found the
tool very valuable also for visualization of mNET-seq data,
andwebelieve itwill beof use tovisualizationofmanyother
high-resolutiondataapartofCLIP, suchas forexamplestud-
ies of RNAstructure (SHAPE-map, etc.), protein–DNA inter-
actions (ChIP-exo), polymerase and ribosome-binding
(NET-seq, Ribo-seq), and similar. This simple-to-use tool
we hope will thus enable seamless data analysis, while
also creating plots that are of a standard to allow inclusion
in a published figure.

MATERIALS AND METHODS

Implementation and installation

clipplotr is publicly available under an MIT licence and main-
tained on GitHub (https://github.com/ulelab/clipplotr), where
there is also comprehensive documentation. It is implemented
in R (v. 4.0.2) using the R packages optparse, data.table, ggplot2,
ggthemes, cowplot, patchwork, zoo and smoothr, and the
Bioconductor packages rtracklayer and GenomicFeatures. A

Conda environment YAML is provided to generate a virtual envi-
ronment which will install R and all the necessary dependencies.
Alternatively, if the user already has R installed on their system,
a helper R script is provided to install these packages. A small
test data set and command is also available to confirm correct in-
stallation by generating the plot shown in Figure 1. We have test-
ed clipplotr on macOS, Linux and Windows systems.

Usage

All arguments to clipplotr can be passed at the command line. In
addition to the usage documentation, details of all the clipplotr pa-
rameters, possible arguments and defaults can be accessed using
clipplotr ‐‐help. Theminimum input requirements for clipplotr
are: (i) a set ofCLIP crosslink position tracks inBEDorBedGraph for-
mat (using ‐‐xlinks); (ii) a GTF file with the reference annotation,
for example, from GENCODE (using ‐‐gtf); (iii) a gene or genomic
region of interest (using ‐‐region); and (iv) a filename for the out-
put plot (using ‐‐output). Thiswill produce aminimal plot that con-
tains the crosslink and annotation tracks.

From themajority of analysis pipelines, either BEDor BedGraph
format files are usually produced in which each entry in the file is a
genomic position and the score the number of crosslinks detected
at that position. As BedGraph files do not contain strand informa-
tion, it is commonwith iCLIP data for this to be encodedwithin the
score: a positive value indicating the crosslink is on the positive
strand and a negative value indicating it is on the negative strand
(König et al. 2010). Preprocessed publicly available crosslink data
is also usually available in one of these file types (Blin et al. 2015;
Zhu et al. 2019; VanNostrand et al. 2020). Experiment names, col-
ors andgroupings can all be specifiedby the user, or automatically
generated from the filenames. The reference annotation GTF file
can be obtained from commonly used resources such as the
GENCODE project (Frankish et al. 2019) or Ensembl. The first
time clipplotr is run, it will generate and save an SQL database
from the provided annotation file and use this to speed up future
runs using the same annotation. The annotation tracks can either
be plotted at the “gene” or transcript level. At the “gene” level,
a single meta-transcript is plotted for each gene: this contains all
annotated exons of the gene across all transcript isoforms. At
the transcript level (default), all annotated transcript isoforms in
the region are plotted and colored by the gene with which they
are associated. The region of interest can be specified either by
gene name, gene id, or using genomic coordinates. This will
also be used as the title of the plot. The output plot can be gener-
ated as either a PDFor PNG file; the format is determined from the
supplied filename extension.

Optionally, auxiliary tracks and coverage tracks can also beplot-
ted for the samegenomic region to relateCLIP signal toothercom-
plementary data as shown in Figure 1 and Figure 3. Auxiliary tracks
are supplied as BED files and can for example be used to show ei-
ther relevant genomic features (e.g., reverseAlu elements, Fig. 1),
or CLIP features (e.g., peaks called using the CLIP crosslinks plot-
ted in the crosslink tracks, Fig. 3). If a BED9 format file is supplied
then the interval is colored accordingly. Coverage tracks can be
supplied as BigWig files and are plotted without further process-
ing. As for the CLIP tracks, names, colors and groupings can all
be specified by the user. If these optional tracks are included,
they are dynamically scaled so all tracks appropriately fit the plot
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page size; however, the user can also specify precise ratios for the
four tracks and the page size to their exact requirements.

As a full example, the detailed plot shown in Figure 1 was gen-
erated using the “one-line” command:

clipplotr \

--xlinks

'hnRNPC_iCLIP_rep1_LUjh03_all_xlink_events.bedgraph.gz,hnRNPC_iCLIP_r

ep2_LUjh25_all_xlink_events.bedgraph.gz,U2AF65_iCLIP_ctrl_rep1_all_xl

ink_events.bedgraph.gz,U2AF65_iCLIP_ctrl_rep2_all_xlink_events.bedgra

ph.gz,U2AF65_iCLIP_KD1_rep2_all_xlink_events.bedgraph.gz,U2AF65_iCLIP

_KD2_rep1_all_xlink_events.bedgraph.gz' \

--labels 'hnRNPC 1,hnRNPC 2,U2AF65 WT 1,U2AF65 WT 2,U2AF65 KD 1,U2AF65 

KD 2' \

--colours '#586BA4,#324376,#0AA398,#067E79,#A54D69,#771434' \

--groups 'hnRNPC,hnRNPC,U2AF65 WT,U2AF65 WT,U2AF65 KD,U2AF65 KD' \

--normalisation libsize \

--smoothing rollmean \

--smoothing_window 50 \

--auxiliary 'Alu_rev.bed.gz' \

--auxiliary_labels 'reverse Alu' \

--coverage

'ERR127306_plus.bigwig,ERR127307_plus.bigwig,ERR127308_plus.bigwig,ER

R127309_plus.bigwig,ERR127302_plus.bigwig,ERR127303_plus.bigwig,ERR12

7304_plus.bigwig,ERR127305_plus.bigwig' \

--coverage_labels 'CTRL1 1,CTRL1 2,CTRL2 1,CTRL2 2,KD1 1,KD1 2,KD2 

1,KD2 2' \

--coverage_colours

'#A1D99B,#74C476,#31A354,#006D2C,#FDAE6B,#E6550D,#FC9272,#DE2D26' \

--coverage_groups 'CTRL,CTRL,CTRL,CTRL,KD,KD,KD,KD' \

--gtf gencode.v34lift37.annotation.gtf.gz \

--region 'chr1:207513000:207515000:+' \

--highlight '207513650:207513800' \

--annotation transcript \

--ratios '2,0.25,2,3' \

--size_x 210 \

--size_y 297 \

--output figure1.pdf

The long forms of the parameters are shown here for ease of
comprehension, but short forms can also be used for the majority
(e.g., ‐x or ‐‐xlinks). As described earlier, not all parameters
need arguments to be provided at the command line as we
have implemented sensible default options: the minimum re-
quirements are ‐‐xlinks, ‐‐gtf, ‐‐region, and ‐‐output.

Normalization and smoothing methods

Normalization approaches can be specified using ‐‐normali-

zation. We have included two primary methods: by library
size (libsize) and by maximum peak in the region of interest

(maxpeak). For library size normalization, the number of cross-
links at a given position are divided by the total number of cross-
links in the experiment (calculated from the supplied BED or
BedGraph file) and multiplied by a scaling factor of 1,000,000
to give a “crosslinks per million” calculation. For maximum
peak normalization, the number of crosslinks at a given position
are divided by the maximum number of crosslinks observed at a
position within the specified region; thus, the values will range
from 0 to 1. Optionally it is possible to combine the two (lib-
size_maxpeak), with library size normalization carried out first,
followed bymaximum peak normalization. Additionally, it is also
possible to apply a user-defined, custom normalization (cus-
tom), by providing values for each experiment using ‐‐size_

factors. Finally, normalization can be omitted (none) to plot
raw crosslinks.
After normalization, the signal is smoothed, with the approach

specified using ‐‐smoothing. We have included two methods: a
rolling mean (rollmean) and a Gaussian kernel regression
(gaussian). Windows for both can be specified using
‐‐smoothing_window. The rolling mean is implemented from
the zoo R package (Zeileis and Grothendieck 2005) with the win-
dow centered on each position. The Gaussian kernel regression is
implemented from the smoothr R package (Strimas-Mackey
2021).

Data processing for use cases

We deliberately chose to use processed data wherever possible to
focus on the main use case of clipplotr. In the first use case, we re-
produced the results presented in Figure 1C from Zarnack et al.
(2013). All iCLIP crosslink BedGraph tracks were downloaded as
processed data from ArrayExpress E-MTAB-1371. The Alu BED
file was downloaded using the UCSC Table Browser from the
RepeatMasker track. The strands were swapped to make a reverse
Alu BED file. Processed RNA-seq data were not available from
ArrayExpressE-MTAB-1147, soweredownloadedas rawFASTQfiles
(accession numbers ERR127302-9). Reads were trimmed using Trim-
Galore v. 0.6.4_dev (https://github.com/FelixKrueger/TrimGalore)
andmapped to theGRCh37 genome assembly with theGENCODE
v34-lift37 GTF annotation using STAR v. 2.7.4a (Dobin et al. 2013).
BigWigcoverage tracksnormalized to reads-per-millionwerecreated
using STAR and bedGraphToBigWig from UCSC tools. The annota-
tion GTF was the same as used for RNA-seq mapping.
For the second use case, we reproduced the results shown in

Figure 1D from Van Nostrand et al. (2016), but using more recent
eCLIP data in HepG2 and K562 cell lines from the ENCODE
Consortium (Van Nostrand et al. 2020) to showcase comparisons
in binding between experiments and cell lines. eCLIP data was
downloaded as processed data from the ENCODE portal (https
://www.encodeproject.org). For the HepG2 cell line, crosslink
BED files were from accession numbers ENCFF239CML,
ENCFF170YQV, ENCFF515BTB, and the peak BED file from
ENCFF871NYM; and for the K562 cell line, crosslink BED files
from ENCFF537RYR, ENCFF296GDR, ENCFF212IIR, and the
peak BED file from ENCFF206RIM. The basic annotation GTF
was downloaded from GENCODE (v34).
A Snakemake pipeline script for the RNA-seq processing and

the clipplotr commands to generate these use case plots are avail-
able at https://github.com/ulelab/clipplotr/examples.
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What are the major results described in your paper and how do
they impact this branch of the field?

We present a computational tool we developed—clipplotr—that
enables and facilitates the exploration of transcriptomic data gen-
erated by CLIP (crosslinking and immunoprecipitation) sequenc-
ing experiments to study RNA–protein interactions. CLIP is now
a mature technology and being widely applied to study these in-
teractions for multiple proteins in a range of contexts. However,
there was no simple way to normalize, visualize, and compare
these binding profiles alongside orthogonal sequencing data—
clipplotr fills this gap.

What led you to study RNA or this aspect of RNA science?

I have always been fascinated by the interplay between different
players at many levels—patient–doctor, host–pathogen, or in
this case RNA–protein. During my PhD I was privileged to
work with Professor Luscombe and Professor Ule to be able to
study a wide range of these RNA–protein and RNA–RNA interac-
tions to try to understand their complex functions, which both de-
veloped my skills and nurtured my interest in this aspect of RNA
biology.

This specific project grew organically out of a need of themore ex-
perimental-focused scientists in the laboratory—they wanted an
easy way to visually compare the CLIP data they had produced.
Awareness of “data democratization” is becoming more wide-
spread and it is an important process in bringing together the ex-
perimental and computational scientists to be able to focus
together on these biological questions. We hope that clipplotr
will nicely fit into this process.

During the course of these experiments, were there any
surprising results or particular difficulties that altered your
thinking and subsequent focus?

During the development of clipplotr, it was invaluable to have
members of the laboratory use it with their data. Several of the fea-
tures grew out of a need to answer their specific questions. They
also started using it in creative ways we had not originally envis-
aged—for example, to look at transcription termination data rather
than just CLIP data.

What are your subsequent near- or long-term career plans?

I will be starting a Wellcome Trust Early Career Award in the
Department of Respiratory Medicine at University College
London this year. My next plans are to bring together my clinical
and scientific interests and use the skills I have developed to start
to address questions in respiratory science (specifically respiratory
viral infections) and hopefully gain fresh insights from a different
perspective.
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